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Abstract: Compared to Pb(Zr1−xTix)O3 (PZT) polycrystalline ceramics, relaxor-PT single 
crystals offer significantly improved performance with extremely high electromechanical 
coupling and piezoelectric coefficients, making them promising materials for piezoelectric 
transducers, sensors and actuators. The recent advances in crystal growth and 
characterization of relaxor-PT-based ferroelectric single crystals are reviewed in this paper 
with emphases on the following topics: (1) the large crystal growth of binary and ternary 
relaxor-PT-based ferroelectric crystals for commercialization; (2) the composition 
segregation in the crystals grown from such a solid-solution system and possible solutions 
to reduce it; (3) the crystal growth from new binary and ternary compositions to expand the 
operating temperature and electric field; (4) the crystallographic orientation dependence and 
anisotropic behaviors of relaxor-PT-based ferroelectriccrystals; and (5) the characterization 
of the dielectric, elastic and piezoelectric properties of the relaxor-PT-based 
ferroelectriccrystals under small and large electric fields. 
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1. Introduction 

The ferroelectric system, Pb(Zr1−xTix)O3 (PZT), which was discovered 60 years ago [1], is playing 
an important role in modern transducer, sensor and actuator industries. PZT ceramics, with a 
composition lying near a morphotropic phase boundary (MPB) between the tetragonal and 
rhombohedral phases, exhibit anomalously high dielectric and piezoelectric properties as a result of 
enhanced polarizability arising from the coupling between two equivalent energy states, allowing 
optimum domain reorientation during the poling process [2–4]. After the discovery of PZT, searching 
for alternative MPB systems other than that found in PZT led to extensive studies of relaxor-based 
ferroelectrics and their solid solutions with PbTiO3 (PT). A schematic ternary phase-diagram depicting 
MPBs in PZT and relaxor-PT systems is shown in Figure 1 [5]. Lead-based relaxor materials are 
complex perovskites with the general formula Pb(BIBII)O3 (BI = Mg2+, Zn2+, Ni2+, Sc3+, Fe3+, Yb3+, 
In3+, etc., BII = Nb5+, Ta5+, W6+, etc.), which characteristically show a broad and frequency dispersive 
dielectric maxima [4,6–8]. A variety of different relaxor-PT systems have been extensively studied in 
the form of single crystals [9–11]. Relaxor-PT single crystals, such as Pb(Zn1/3Nb2/3)O3-PbTiO3  
(PZN-PT) and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have been found to offer significant high performance 
with electromechanical coupling (k33) >90% and piezoelectric coefficients (d33) > 1500 pC/N in contrast to 
PZT polycrystalline ceramics (k33 ~ 75%, d33 ~ 400–600 pC/N), making them promising candidates for 
medical and sonar transducers, industrial sensors and solid-state actuators, which need high sensitivity 
and a broad bandwidth [4,12–14]. In this paper, major advances in the crystal growth and 
characterization of relaxor-PT-based piezoelectric single crystals are reviewed with focuses on  
large-sized crystal growth process development and composition modification to improve the thermal 
and electrical stability of piezoelectric, dielectric and elastic properties. 

Figure 1. Ternary phase-diagram depicting morphotropic phase boundaries (MPBs) in 
Pb(Zr1−xTix)O3 (PZT) and relaxor-PT systems. Reprinted with permission from [5]. 
Copyright 1994 the Japan Society of Applied Physics. 
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2. Relaxor-PT-Based Ferroelectric Crystal Growth 

2.1. PZN-PT and PMN-PT 

It is always a great challenge to grow single crystals of complex compounds. The successful growth 
of PMN-PT and PZN-PT single crystals became a real breakthrough that started a new era in  
relaxor-PT-based ferroelectric crystal research. Binary PMN-PT and PZN-PT solid-solutions, 
which present a perovskite phase, can be synthesized from complex oxide systems of  
PbO-MgO(ZnO)-Nb2O5-TiO2. However, the formation of the parasitic pyrochlore phase was the most 
problematic in the crystal growth process, causing instability in crystallization and generating defects 
and polycrystals [15,16]. Several other challenges to the growth of large single crystals include 
volatilization of PbO, the high melting point of the oxides and the composition segregation of the solid 
solutions [15,16]. 

PMN-PT and PZN-PT crystals were first grown by the flux method, which demonstrated ultrahigh 
piezoelectric coefficients and strain levels with low hysteresis [4,10]. The flux method is a type of high 
temperature solution growth, which is based on the spontaneous nucleation that occurs when 
supersaturation happens in a slow cooling process. The method has been broadly adopted in the growth 
of new crystal materials, especially those that melt incongruently or volatilize seriously before 
reaching melting temperature [17]. Difficulty in crystallization orientation control, slow growth rate, 
small crystal size and flux inclusions are common limitations of the flux growth method. To overcome 
these limitations, several improved high temperature solution growth methods, including top-seeded 
solution growth (TSSG) and solution-Bridgman growth, have been developed based on the basic flux 
method for the growth of PMN-PT and PZN-PT crystals [18,19]. In top-seeded solution growth, by 
introducing a perovskite seed crystal into the solution, it became possible to trigger single nucleation 
and control the crystallization orientation to obtain large-sized single crystals. The solution-Bridgman 
growth combines the flux growth and the vertical Bridgman growth, which is more suitable for 
growing large crystals. Currently, PMN-PT and PZN-PT single crystals grown by high temperature 
solution methods have reached the sizes of 35 mm in edge length or two inches in diameter. 

The effective crystal growth technologies have been explored extensively after the extraordinary 
piezoelectric performance of PMN-PT and PZN-PT crystals were revealed. DTA study indicated that 
PMN-PT melts congruently [16,20,21], suggesting the possibility of growing PMN-PT crystals from 
the melt directly. These studies also showed that PMN-PT has a more stable perovskite phase and 
exhibits less of a tendency to form the parasitic pyrochlore phase compared to PZN-PT. By  
pre-synthesizing PMN-PT and using sealed Pt crucibles to prevent the volatilization of PbO at high 
temperature, PMN-PT single crystals have been grown directly from the melt using the Bridgman 
method [22,23]. Compared to flux growth, the Bridgman technique can grow large-sized single crystal 
boules along specific crystallographic orientations with a higher growth rate, which can potentially 
reduce the cost of PMN-PT crystals, to be competitive with the high quality piezoelectric ceramics 
used in high-end applications. 

It was indicated that the formation of inclusions/voids, spontaneous nucleation, crystallization 
orientation control and reduction of the composition variation are the major challenges in the growth of 
large-sized and high quality PMN-PT crystals by the Bridgman process [15,16,22,23]. Owing to the 
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large difference in melting point and density between each oxide, especially between PbO (Tm = 886 °C, 
ρ = 9.53 g/cm3) and MgO (Tm = 2852 °C, ρ = 3.58 g/cm3), it is usually difficult to get a 
homogeneousperovskite phase by directly mixing the oxides without the presence of a minor amount of 
the pyrochlore phase [16]. Pre-synthesized PMN-PT using a modified columbite precursor method has 
been proven to be the most efficient way to eliminate the pyrochlore phase [24]. In this method, 
instead of using oxides, MgO and Nb2O5, columbite precursor, MgNb2O6, which has a similar 
structure to the perovskite phase, was synthesized by solid-state reaction and used as the raw material 
to bypass the intermediate pyrochlore phase reaction. The high-quality PMN-PT compound can also be 
synthesized by different routes, including the coprecipitation method [25] and the molten salt synthesis 
method [26]. The inclusions/voids formation, dendrite growth and polycrystal formation are all largely 
attributed to the pyrochlore phase formed in the raw material; however, such defects can be also 
induced by other factors, such as the non-stoichiometry of the raw material, impurities and too fast of a 
growth rate. 

Since PMN-PT crystal exhibits the highest piezoelectric response along the <001> orientation, 
<001>-cut wafers have become highly demanded [16]. Owing to the inevitable axial composition 
segregation of this solid-solution in the Bridgman process [22,27], highly uniform (001) wafers can 
only be produced by successful and repeatable <001>-oriented crystal growth. However, since PMN-PT 
presents the slowest growth rate along the low-index <001> orientation (R<001> < R<110> < R<111>), the 
Bridgman growth of bulk PMN-PT crystal along <001> becomes the most challenging. Spontaneous 
nucleation is apt to happen and dominate the crystallization process, forming polycrystals instead of a 
single crystal. The growth process in Bridgman growth has to be finely controlled to avoid the 
spontaneous nucleation on the solid-liquid interface. 

Significant progress has been made in the Bridgman growth of PMN-PT in recent years.  
High-quality and large-sized PMN-PT crystals without macro-defects have been successfully grown along 
different crystallographic orientations, including <001>, <110> and <111>. Currently, <001>-oriented 
PMN-PT crystals with a 100-mm diameter are commercially available. Figure 2 shows a 100-mm 
diameter crystal boule grown along <001> and the (001) wafers cut from it. 

Figure 2. A 100-mm diameter Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystal grown along 
<001> (a) and 100-mm diameter (001) wafers (in comparison with 75-mm diameter ones); 
(b) courtesy of TRS Technologies Inc., State College, PA, USA. 

  
(a) (b) 



Catalysts2014, 4 310 
 

 

Although the Bridgman method is a very promising technique, the composition segregation issue 
has to be addressed. Since PMN-PT is a complete solid-solution system, as shown by its high 
temperature phase diagram, it inevitably exhibits an inhomogeneous composition distribution along 
crystal boules grown by the Bridgman method [22,27], resulting in the variation of dielectric and 
piezoelectric properties along the growth direction. Even though the composition variation along the 
growth direction can be restrained to some degree by applying a higher growth rate and a lower axial 
temperature gradient across the solid-liquid interface, it can never be eliminated due to the 
thermodynamic nature of the solid solution system [27]. The composition distribution can be simulated 
by a well-established equation used for describing the composition segregation behavior in solid 
solution systems during the normal solidification process [17]: 

e 1
s e 0 (1 )kc k c g −= −  (1) 

Where ke is the effective segregation coefficient, Cs and C0 the solute concentration in the crystal and 
the starting melt and g the solidified fraction. 

It was verified by chemical analysis that, except for Pb, all other elements in PMN-PT crystals 
exhibit composition segregation during crystal growth, with effective segregation coefficients of Nb 
and Mg larger than one, while that of Ti is smaller than one. Figure 3 compares the piezoelectric 
property (d33) variation with the composition distributions measured by EPMA and simulated by the 
above equation [28], which shows the region between two peaks roughly corresponding to a PT 
(PbTiO3) concentration of 31% to 35%, which is basically consistent with the broad MPB region 
between rhombohedral and tetragonal phases proposed by Guo et al. [29,30]. The simulated effective 
segregation coefficient of Ti in this run was around 0.83. Studies show that the mixed phases, 
including metastable ferroelectric monoclinic (FEm) and ferroelectric orthorhombic (FEo) phases, are 
possibly present in this region [29–31]. 

Figure 3. Comparison of piezoelectric property (d33) variation with the composition 
distribution. Reprinted with permission from [28]. Copyright 2008 CRC Press. 

 

As described above, the existence of the composition segregation-induced longitudinal property 
variation is one of the main disadvantages of Bridgman growth. Although the <001>-oriented Bridgman 
growth can produce desirable (001) wafers with very high lateral uniformity in each wafer, it cannot 
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eliminate the wafer-to-wafer variation. Usually, only a portion of each boule possesses the required PT 
composition range that meets the desired piezoelectric and dielectric properties. To further reduce or 
even eliminate the composition segregation in PMN-PT crystals, several innovative crystal growth 
methods were proposed, including, zone leveling [16], continuous feeding Bridgman growth [32] and 
solid-state crystal growth [28,33]. 

Zone leveling, a type of zone-melting crystal growth method, has been developed to produce a 
uniform, or level, distribution of solute in polycrystals and single crystals in many applications [34], 
which was proposed as an alternative method to prevent composition segregation in PMN-PT crystal 
growth [16]. Theoretically, zone leveling can produce a flat composition distribution except for the 
initial and last frozen regions (zones). The zone melting growth of PMN-PT crystals was conducted in 
both RF induction heated and resistance heated furnaces [27,28]. Constant composition at PT = 32% 
was observed over ~60 mm of total boule length (~80 mm) in a zone-leveled boule compared with the 
constantly changing composition usually observed in Bridgman grown crystals [27]. 

As proposed, continuous feeding Bridgman is a modified Bridgman method, in which PMN powder 
or pellets are charged slowly into the melt during crystal growth to keep the concentration of Mg, Nb 
and Ti constant. The challenge of this method is to minimize the thermal disturbance to the melt, as 
well as to prevent PbO from evaporation during the feeding operation. This technique was 
demonstrated successfully by the growth of 80-mm diameter PMN-PT crystals [35]. Curie temperature 
(TC) was controlled to a range of 130–138 °C in a 116-mm-long portion of such a crystal, which is 
much narrower than that in the crystals grown by the regular Bridgman technique (usually 120–160 °C). 
As TC is strongly correlated to the composition, it is indicated that the crystal possesses a much 
narrower composition distribution along the length. 

Solid-state crystal growth (SSCG) is based on an abnormal grain growth in the sintering of 
polycrystalline ceramics, in which a small number of grains is grow quickly by consuming surrounding 
fine matrix grains [28]. In SSCG of a PMN-PT crystal, a small BZT (Ba(Zr0.1Ti0.9)O3) single crystal is 
used as a seed to control the nucleation of abnormal grains, so that a large single crystal can be 
obtained in the polycrystalline matrix. Since the polycrystalline ceramic matrix is not melted, the 
composition segregation does not happen. The other advantages that the SSCG method provides 
include low process temperature, no need for Pt crucibles and crystal growth of incongruently melting 
compositions. However, in this process, it is hard to completely eliminate the porosity in the crystals, 
which may affect the mechanical and optical properties [33]. Currently, PMN-PT crystals larger than 
50 × 50 × 10 mm3 can be produced by the SSCG method [28]. 

2.2. High TC Relaxor-PT Binary Crystals 

Even though large-sized and high-quality PMN-PT crystals can be grown directly from the melt, 
their low ferroelectric-to-ferroelectric phase transition temperatures and low coercive field restrict their 
applications largely. The piezoelectric/dielectric properties of rhombohedral-phase PMN-PT crystals 
have a strong temperature dependence. For instance, PMN-29%PT exhibit a 52% change in the 
dielectric constant from room temperature to 55 °C. This change negatively affects the transducer 
impedance and matching circuitry and, therefore, the power delivery system. Furthermore, the 
rhombohedral-to-tetragonal ferroelectric phase transition temperature (Trt) for PMN-PT crystals with 
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near MPB compositions is as low as 85 °C to 95 °C, which becomes the maximum applicable 
temperature. In addition to the temperature stability, PMN-PT crystals have a coercive field as low as 
2–2.5 kV/cm, limiting the amplitude of the driving field and the power output. High Curie temperature 
piezoelectric crystals are desired to expand the operational temperature and electric field, to reduce the 
properties’ temperature dependence and to increase the acoustic power output [36]. 

Table 1 lists broadly investigated binary relaxor-PT systems, among which the Pb(Sc1/2Nb1/2)  
O3-PbTiO3 (PSN-PT), Pb(In1/2Nb1/2)O3-PbTiO3 (PIN-PT) and Pb(Yb1/2Nb1/2)O3-PbTiO3 (PYN-PT) 
were found to possess relatively high Curie temperatures near their MPB compositions [5,37,38]. 
Henceforth, numerous research has focused on these binary systems in single crystal form in order to 
achieve high performance over a wide temperature range [24,39–50]. 

Table 1. Morphotropic phase boundaries in perovskite Pb(BIBII)O3-PT ceramic systems. 

Binary System PT (x) at MPB TC (°C) at MPB TR-T (°C) at MPB 
(1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) ~0.09 ~180 95 
(1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) ~0.33 ~150 80 
(1−x)Pb(Ni1/3Nb2/3)O3-xPbTiO3 (PNN-PT) ~0.40 ~130 – 
(1−x)Pb(Co1/3Nb2/3)O3-xPbTiO3 (PCN-PT) ~0.38 ~250 – 
(1−x)Pb(Sc1/2Nb1/2)O3-xPbTiO3 (PSN-PT) ~0.43 ~260 100 
(1−x)Pb(Sc1/2Ta1/2)O3-xPbTiO3 (PST-PT) ~0.45 ~205 – 
(1−x)Pb(Fe1/2Nb1/2)O3-xPbTiO3 (PFN-PT) ~0.07 ~140 – 
(1−x)Pb(In1/2Nb1/2)O3-xPbTiO3 (PIN-PT) ~0.37 ~320 120 
(1−x)Pb(Yb1/2Nb1/2)O3-xPbTiO3 (PYN-PT) ~0.50 ~360 160 
(1−x)Pb(Mg1/2W1/2)O3-xPbTiO3 (PMW-PT) ~0.55 ~60 – 
(1−x)Pb(Co1/2W1/2)O3-xPbTiO3 (PCW-PT) ~0.45 ~310 – 

PSN-PT single crystals with MPB compositions were successfully grown by the flux method using 
PbO-B2O3 as the flux [39–41]. The growth temperature range and B2O3 ratio in the flux are deemed 
very important because of the perovskite stability. The perovskite crystal size obtained was found to be  
2–15 mm in length. PSN-33%PT crystals were reported to possess a high Curie temperature, TC ~ 206 °C 
(30–50 °C higher than PMN-PT and PZN-PT systems), while the electromechanical coupling factor 
(k33) and dielectric constant were found to be only 72% and 960, respectively. 

Single crystals of PIN-PT and their electromechanical properties were also studied. It was reported 
that PIN-28PT crystals could be grown using the flux method with PbO-PbF2-B2O3. The obtained 
crystals were 20 × 10 × 5 mm3 in size, which is much larger compared to PSN-PT crystals [42]. The 
Curie temperature was reported to be 260 °C with a rhombohedral-to-tetragonal phase transition 
temperature, Trt, around 100 °C. The electromechanical coupling in the longitudinal mode (k33) was 
estimated to be 85% at room temperature [42]. The same research group also reported growing PIN-PT 
crystals by the solution Bridgman method using PbO-B2O3 as the flux, in which a crystal with 10 mm 
in diameter and 10 mm in length was obtained and the growth direction was determined along the 
[110] direction. The TC and Trt were found to be 300 °C and 120 °C, respectively, for PIN-31%PT 
crystals [43]. It was also reported the PIN-34%PT crystals were grown by using PMNT31 as a seed 
crystal. The obtained crystals were found to have high piezoelectric coefficients d33 ~ 2000 pC/N and 
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electromechanical coupling k33 of about 94%, comparable to the PMN-PT system, while exhibiting 
higher TC at 200 °C [44]. 

For the systems mentioned above, TC on the order of 200–300 °C has been found; however, Trt is 
still in the range of only 70–120 °C. PYN-PT with MPB composition was found to possess the highest 
TC of about 360 °C among all of the lead-based relaxor-PT systems, similar to the commercial PZT5A 
ceramics. Piezoelectric single crystals in the PYN-PT system were grown using the flux method with 
Pb3O4 or Pb3O4/B2O3 as the flux. Perovskite PYN-PT solid solutions were prepared using the 
“wolframite process”, which consists of the synthesized B-site precursor, YbNbO4, prior to reaction 
with PbO and TiO2 [24,45,46]. The obtained crystals were light yellow in color and 2–8 mm in size. 

Table 2 summarized the detailed dielectric and piezoelectric properties of different relaxor-PT single 
crystal systems, in which it can be seen that all of the single crystals possess high electromechanical 
coupling, except for PSN-PT. The dielectric and piezoelectric properties were found to not only 
depend on the composition, but also depend on the Curie temperature: the higher Curie temperature the 
crystal system possesses, the lower dielectric constant and piezoelectric properties were observed; 
however, higher coercive fields were found with higher TC. 

Table 2. Detailed dielectric and piezoelectric properties of relaxor-PT single crystals. 

Crystal Tc (°C) TR-T (°C) Ec (kV/cm) KT 
33 d33 (pC/N) k33 Reference 

PMN-31PT 143 90 2.5 5100 2000 90% [47] 
PZN-4.5PT 155 120 3.2 4400 2100 90%–91% [47] 
PZN-8PT 170 100 4 6000 2500 93% [47] 

PZN-12PT 190 – 8.5 870 576 86% [48] 
PSN-33PT 206 – 6 960 – 72% [39] 
PIN-28PT 260 100 18 1500 700 85% [42,49] 
PIN-34PT 200 <100 – 5000 2000 94% [44] 
PYN-40PT 270 168 10 2700 1200 88% [47] 
PYN-45PT 325 160 12.5 2000 2000 88%–90% [46] 
BS-57PT 402 349 13.7 3000 1150 91% [50] 

2.3. High TC PMN-PT-Based Ternary Crystals 

As described above, all of the binary relaxor-PT single crystals that have a Curie temperature higher 
than that of PMN-PT single crystals could only be grown by the flux method. Owing to the instability 
of the perovskite phase of these binary compositions, commercialization of these high TC crystals was 
hindered by the availability of large-sized crystals. Recently, it was demonstrated that, by adding 
PMN-PT into some of the high TC binary systems, the formed PMN-PT-based ternary compositions 
could have a relatively stable perovskite phase, offering the possibility to grow large crystals with a 
pure perovskite phase [51,52]. 

Among the broadly studied ternary systems, substantial progress has been made on the growth of 
large-sized PIN-PMN-PT crystals by the Bridgman process. For the preparation of PIN-PMN-PT, both 
a wolframite precursor, InNbO4, and a columbite precursor, MgNb2O6, were firstly synthesized, 
respectively, by calcination of oxides at 1000–1200 °C. Using these precursors, PIN-PMN-PT with a 
pure perovskite phase was synthesized by another calcination process at lower temperature (750–900 °C). 
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Like PMN-PT crystals, PIN-PMN-PT crystals with a pure perovskite phase form during solidification, 
so the crystals can be grown directly from the melt by the Bridgman process. By presenting a seed 
crystal, PIN-PMN-PT crystals with a diameter up to 75 mm have been grown along the preferred 
crystallographic orientations, including <001>, <110> and <111>. Figure 4 shows the as-grown  
PIN-PMN-PT crystals. It was found that the Trt and TC of PIN-PMN-PT (26%–36%PIN) crystals reach 
120–140 °C and 160–200 °C, respectively, marking a 35–40 °C increase compared to PMN-PT 
crystals with a similar PT concentration. Furthermore, they exhibit a similar d33 value  
(1100–2200 pC/N) as PMN-PT crystals, but a much higher coercive field (4.5–6 kV/cm). 

Figure 4. Seventy five-millimeter and 50-mm diameter <001>-oriented PIN-PMN-PT 
crystals grown by the Bridgman process (courtesy of TRS Technologies, Inc., State College, 
PA, USA). 

 

PZT ceramics have been the mainstay for high-performance piezoelectric applications. However, 
the attempt to grow single-crystal PZT has not been successful. So far, only very small crystals of PZT 
can be produced by high temperature solution growth, which cannot provide samples for complete 
property measurement. As PMN-PT crystals, chemically homogeneous PMN-PZT crystals were also 
successfully grown by the solid-state crystal growth (SSCG) process [53]. By this delicately controlled 
sintering process, the as-grown PMN-PZT crystals achieved a similar size and quality as SSCG-grown 
PMN-PT crystals. Interestingly, the TC of all PMN-PZT crystals is approximately 200 °C; however, by 
changing the PMN/PZ/PT ratio, Trt could be adjusted in the range of 100–160 °C, while d33 in the 
range of 1000–2000 pC/N [53]. 

Recently, some other PMN-PT-based ternary solid solution systems, including Pb(Yb1/2Nb1/2)O3-
Pb(Mg1/3Nb2/3)O3-PbTiO3 (PYN-PMN-PT), Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 (PIN-PZN-PT) 
and Pb(Fe1/2Nb1/2)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 (PFN-PYN-PT), have been investigated [54–57]. By 
the top-seeded solution growth (TSSG) method, crystals with compositions near an MPB have been 
grown, which show comparable piezoelectric properties to PMN-PT crystals, but higher Curie 
temperature and/or coercive field. As the TSSG method has been successfully applied to the large-scale 
production of some nonlinear optical crystals, such as β-BaBO4 (BBO) and KTiOPO4 (KTP) crystals, 
it is possible that it can be tailored to produce large crystals of these ternary solid solution crystals. 
Currently, PYN-PMN-PT crystals with a length and width over 3 cm have been obtained by the TSSG 
method. As complex flux systems are required to facilitate crystallization and to achieve a high crystal 
growth rate, the main challenge in the TSSG growth of crystals of these complex ternary compositions 
is to repeatedly produce high quality crystals that maintain consistent properties. 
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Table 3 summarizes the major piezoelectric and dielectric properties of PMN-PT-based ternary 
solid solution crystals that can operate at higher temperature and a higher electric field than current  
state-of-the-art PMN-PT single crystals. 

Table 3. Detailed dielectric and piezoelectric properties of PMN-PT-based ternary crystals. 

Crystal Tc (°C) TR-T (°C) 
Ec 

(kV/cm) 
KT 

33 d33 (pC/N) k33 Reference 

PMN-29PT 135 96 2 5400 1540 91% [58] 
PMN-31PT 143 90 2.5 5100 2000 90% [47] 

PIN-PMN-PT * 160~200 120~140 4.5–6 4000–5000 1100–2200 89%–93% [59] 
PMN-PZT ** 190~200 100~160 >5 3000–6000 1000–2000 89%–92% [53] 

20PYN-40PMN-40PT 180 130 5.4 2400 2440–2580 90.9% [54] 
15PYN-53PMN-32PT 205 50 7 6270 1800 90% [55] 
30PIN–33PbZN–37PT 236 175 14.3 2500 1900–2100 86% [56] 
10PFN–38PYN–52PT 325 155 10.3 1620 1100 70% [57] 

* 26%–36% PIN and 28%–32% PT; ** Composition PMN-PZT-11~PMN-PZT-5. 

3. Relaxor-Based Ferroelectrics Crystal Characterization 

3.1. Crystallographic Orientation Dependence of Property 

It was reported that the relaxor-PT single crystals show a strong anisotropic behavior. Thus, in this 
section, the dielectric, ferroelectric, piezoelectric and electromechanical properties were studied as a 
function of their main crystallographic orientations, i.e., along the <001>, <110> and <111> directions. 
As reported, for rhombohedral relaxor-PT single crystals, different engineered domain configurations 
can be obtained by poling along different crystallographic directions. Since the spontaneous 
polarization is along the <111> crystallographic direction, a single domain can be achieved when the 
crystal was poled along <111>, and the obtained domain configuration was 1R, while the engineered 
domain configurations can be labeled as 4R and 2R, when polarized along the <001> and <110> 
directions, respectively [60]. 

Figure 5 shows the measured electric field-induced polarization (a) and strain (b) hysteresis loops 
for <001>-, <110>- and <111>-oriented PMN-30% PT crystals. The remnant polarization, Pr, and 
coercive field, EC, were found to be dependent on the orientation. From the symmetric loops, the Pr 
was found to be on the order of 0.24 C/m2, 0.34 C/m2 and 0.41 C/m2 for the <001>, <110> and <111> 
orientations, while the coercive field, EC, was on the order of 2.5 kV/cm, 2.9 kV/cm and 3.2 kV/cm, 
respectively. It is known that there are eight possible polarization orientations along the pseudo-cubic 
<111> direction for rhombohedral relaxor-PT single crystals (3-m symmetry). Upon applying an 
electric field, the dipoles reorientate as close as possible to the applied electric field direction. For 
<001>-poled crystals, there are four equivalent polar vectors along the <111> direction, with an 
inclined angle of −54.7° from the poling field. The four <111> domains are equivalent, with a  
domain-engineered configuration resulting in a macro symmetry of 4mm. For <110>-poled crystals, 
there are two equivalent polar vectors along the <111> direction, which will rotate 35.5° toward the 
applied field direction of <110> with a designated domain-engineered configuration of 2R. For this 
case, the macroscopic symmetry is in mm2. In contrast, there is only one polar vector along the <111> 
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direction for <111>-poled ferroelectric crystals; thus, it will form a monodomain state, 1R, exhibiting a 
symmetry of 3m. According to the domain-engineered configurations, the polarization level derived 
from the hysteresis loops should correspond, in theory, to the intrinsic value along the polar axis of the 
monodomain crystal, Ps, following Pr<001> = Pr<110>/√2 = Pr<111>/√3 [61–63]. As expected, the Pr 
values for the different orientations obtained from Figure 5a corresponded well to the predicted values. 
From Figure 5b, it is seen that in the sequence of orientation, <001>, <011> and <111>, the electric 
field required to reverse the domain (coercive field EC) increased, which is consistent with that 
indicated by the polarization hysteresis, while the positive strain achieved after the domain 
reorientation decreased. 

Figure 5. Polarization hysteresis for PMN-30% PT crystals along crystallographic 
orientations <001>, <110> and <111>. Reprinted with permission from [61]. Copyright 
2009 AIP Publishing. 

  
(a) (b) 

Analogous to dielectric and ferroelectric properties, the piezoelectric and electromechanical 
properties were also found to show anisotropic behaviors. The longitudinal piezoelectric coefficient, 
d33, was found to reach its peak value when poled along crystallographic direction <001>, while it 
drops significantly when poled along the <111> orientation. The transverse piezoelectric response for 
relaxor-PT perovskite crystals is more complicated, where it has been reported that there are four 
different vibration modes showing good piezoelectric characteristics. These modes are (001)/<100>, 
(001)/<110>, (110)/<001> and (110)/<  1�10>, where the first number indicates the electrode face 
(perpendicular to poling direction) and the second number is the acoustic wave propagation  
direction [64]. It has been demonstrated that the highest transverse piezoelectric coefficients are 
obtained from crystals poled along <110> and vibrated along the <001> direction [64–68], with small 
signal d32 coefficients on the order of ~−1500 pC/N and electromechanical coupling factor k32 ~ 0.90 
in PZN-PT, PMN-PT and PMN-PZT crystals. 

The main properties for longitudinal and transverse modes for PIN-PMN-PT single crystals at room 
temperature are listed in Table 4 [69]. The dielectric permittivity was found to be on the order of 4400, 
3400 and 700 for <001>-, <110>- and <111>-poled rhombohedral PIN-PMN-PT crystals, respectively, 
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while the dielectric losses were 0.2% and 0.1%, respectively. The longitudinal electromechanical 
coupling factor, k33, was found to be 0.92 for <001> samples, slightly higher than that of <110>-poled 
crystals (~0.91), but to drop significantly for <111> samples, being on the order of 0.43. The 
piezoelectric d33 was on the order of 1500 pC/N for the <001> cut, higher than the value for the  
<110>-oriented sample ~925 pC/N, while the d33 was found to be only ~90 pC/N for the <111>  
single-domain PIN-PMN-PT crystals, as observed in other relaxor-PT systems. The typical extensional 
transverse modes for the perovskite ferroelectric crystal were summarized in Table 4, as well, where 
the first number indicates the poling direction and the second number gives the vibration orientation. 
Unlike <001>-poled samples, a large discrepancy between the piezoelectric d31 and d32 was observed 
in <110>-poled crystals. The optimal transverse properties were found for (110)/<001> cut (polarized 
along <110> with vibration along the <001> direction), with electromechanical coupling factor k32 on 
the order of 0.91 and corresponding piezoelectric d32 on the order of −1420 pC/N. 

Table 4. Longitudinal and transverse piezoelectric and electromechanical properties for 
<001>-, <110>- and <111>-poled PIN-PMN-PT crystals. 

PIN-PMN-PT Kij loss kij dij(pC/N) sjj
E (pm2/N) 

Longitudinal ij = 33 
001 4400 0.2% 0.92 1500 68.0 
110 3400 0.1% 0.91 925 34.8 
111 700 0.1% 0.43 90 7.0 

Lateral 

ij = 31 001/100 4400 0.2% 0.50 −700 51.2 
ij = 31 (45°) 001/110 4400 0.2% 0.81 −800 25.0 

ij = 32 110/001 3400 0.1% 0.91 −1420 83.1 
ij = 31 110/1�10 3400 0.1% 0.74 590 21.5 

The temperature-dependent piezoelectric and electromechanical coupling for the above-mentioned 
modes are shown in Figures 6 and 7. Figure 6 presents the temperature-dependent characteristics of the 
longitudinal electromechanical coupling and piezoelectric coefficient for <001>- and <110>-poled 
PIN-PMN-PT crystals. The k33 for <001>-poled crystals was found to be on the order of 0.91 at −50 °C, 
increasing to 0.94 at 125 °C, the ferroelectric phase transition temperature, above which, the k33 
decreased to only 0.78. In contrast, the coupling for the <110>-poled crystals was >0.90 at −50  °C, 
slightly increased to 0.93 at a temperature of 116 °C, above which, k33 dropped due to the 
rhombohedral-to-orthorhombic (R-O) phase transition. The orthorhombic-to-tetragonal (O-T) phase 
transition at 130 °C was also observed in the coupling measurement. The piezoelectric coefficient, d33, 
followed a similar trend as found in the dielectric behavior, reaching its peak value at the ferroelectric 
phase transition temperatures. 

Figure 7 gives the temperature-dependent behavior of the transverse electromechanical coupling 
and piezoelectric coefficient for <001>- and <110>-poled samples along different vibration directions. 
It was found that the electromechanical coupling factors, kij, for different poling and vibration 
directions followed a similar tendency, maintaining their values in the temperature range from −50 °C 
to TF-F (ferroelectric phase transition temperature). The coupling factors were found to drop sharply 
above the phase transition temperature, where the crystals transformed to the tetragonal and/or 
orthorhombic phases. The piezoelectric coefficients, d31 and d32 (considering the symmetry of mm2 in 
<110>-poledcrystal, the value of d31 is assumed to be positive, while d32 is negative, based on IEEE 
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standards), showed a similar temperature-dependent behavior as found for the longitudinal mode, 
reaching peak values close to the ferroelectric transition temperature, above which, the transverse 
piezoelectric response disappeared. 

Figure 6. Longitudinal electromechanical coupling k33 (a) and piezoelectric coefficient d33; 
(b) as a function of temperature for <001>- and <110>-poled single crystals. Reprinted 
with permission from [69]. Copyright 2009 AIP Publishing. 

  
(a) (b) 

Figure 7. Transverse electromechanical coupling k31/k32 and piezoelectric d31/d32 as a 
function of temperature for <001>- and <110>-poled crystals. Reprinted with permission 
from [69]. Copyright 2009 AIP Publishing. 

  
(a) (b) 

3.2. Full Sets of Electromechanical Properties (under a Low Electric Field) 

For transducer and actuator modeling, it is very useful to obtain complete sets of electromechanical 
coefficients of relaxor-PT-based binary and ternary crystals. Two approaches were generally employed 
for such measurements. The first is the resonance method described in the IEEE standards [70]. Based 
upon the macro symmetries established by the domain-engineered configurations in rhombohedral 
relaxor-PT crystals, different sets of samples need to be prepared for the resonance measurements. For 
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the lower symmetry, more samples with different orientations need to be prepared, because there are 
more independent physical constants that exist. Furthermore, the resonance method requires the 
samples to have a large aspect ratio in order to avoid mode interference. However, the resonance 
method is relatively simple, since all of the measurements can be done on an impedance analyzer, and 
the calculated coefficients can be verified by different sets of equations. The other approach is the 
ultrasonic method, which is performed under a non-resonance condition and, therefore, may be more 
accurate than the resonance method, since there is no interference among different modes. By sending 
longitudinal and sheer waves into crystal samples with specific orientations, all material constants can 
be obtained. The samples required a pair of perfectly aligned faces, but no specific aspect ratio. 
However, large errors may emerge for the crystals with low symmetry when deriving constants from 
some mixed modes. To measure and derive a complete set of electromechanical coefficients for 
crystals with low symmetry, it may be necessary to combine the ultrasonic and resonance methods (a 
hybrid method) [71]. 

Table 5. Elastic compliance constants, sij (10−12 m2/N), and elastic stiffness constants, cij 
(1010 N/m2). 

Properties Es11  12
Es  13

Es  33
Es  44

Es  66
Es  

PMN-PT 52.1 −24.6 −26.4 59.9 16.0 28.3 
PIN-PMN-PT 49.0 −20.0 −26.5 57.3 15.2 39.4 

Mn:PIN-PMN-PT 45.4 −15.9 −28.1 62.4 15.4 27.8 
Properties 11

Ds  12
Ds  13

Ds  33
Ds  44

Ds  66
Ds  

PMN-PT 41.8 −34.8 −3.9 10.3 14.0 28.3 
PIN-PMN-PT 38.2 −30.8 −4.0 10.3 14.3 39.4 

Mn:PIN-PMN-PT 34.4 −26.9 −3.9 9.2 13.9 27.8 
Properties 11

Ec  12
Ec  13

Ec  33
Ec  44

Ec  66
Ec  

PMN-PT 12.4 11.1 10.4 10.8 6.3 3.5 
PIN-PMN-PT 11.9 10.5 10.4 11.4 6.6 2.5 

Mn:PIN-PMN-PT 12.8 11.1 10.8 11.3 6.5 3.6 
Properties 11

Dc  12
Dc  13

Dc  33
Dc  44

Dc  66
Dc  

PMN-PT 12.6 11.3 9.3 16.8 7.1 3.5 
PIN-PMN-PT 12.3 10.9 9.0 16.7 7.0 2.5 

Mn:PIN-PMN-PT 13.3 11.7 9.0 17.0 7.2 3.6 

Relaxor-PT-based binary and ternary single crystals with near MPB compositions usually possess a 
rhombohedral phase with 3-m symmetry at a temperature lower than its rhombohedral-to-tetragonal 
phase transition temperature. However, when the crystals are poled along the pseudocubic [001] direction, 
it can be deemed as 4-mm symmetry macroscopically. The resonance method can be used to determine 
all of its independent electromechanical constants: six elastic, three piezoelectric and two dielectric 
constants. Such complete sets of constants of [001]-poled rhombohedral PMN-PT, PIN-PMN-PT and 
Mn:PMN-PIN-PT are listed in Tables 5–7 for comparison [72,73]. For the [011]-poled crystals 
(macroscopic mm2-symmetry), there are totally 17 independent electromechanical coefficients, nine 
elastic, five piezoelectric and three dielectric, to be determined. Either a resonance or a hybrid method 
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was employed to collect the full sets of properties for [011]-poled crystals [74–76]. For the [111]-poled 
crystals (macroscopic 3-m symmetry), a hybrid method was usually required [77]. 

Table 6. Piezoelectric coefficients, dij (pC/N), eij (C/m2), gij (10−3 Vm/N) and hij (108 V/m). 

Properties d33 d31 d15 e33 e31 e15 

PMN-PT 1540 −699 164 22.3 −3.9 10.3 
PIN-PMN-PT 1320 −634 105 18.6 −4.8 6.9 

Mn:PIN-PMN-PT 1341 −609 133 16.8 −5.2 8.6 
Properties g33 g31 g15 h33 h31 h15 

PMN-PT 31.8 −15.4 9.9 26.2 −8.4 7.0 
PIN-PMN-PT 35.6 −17.0 8.8 28.9 −7.4 6.5 

Mn:PIN-PMN-PT 39.7 −18.1 11.3 34.2 −10.7 8.3 

Table 7. Electromechanical coupling factors, kij, and dielectric constants, εij (ε0). 

Properties k33 k31 k15 kt k31 (45 °C) 

PMN-PT 0.89 0.44 0.27 0.56 0.77 
PIN-PMN-PT 0.91 0.47 0.25 0.57 0.80 

Mn: PIN-PMN-PT 0.92 0.49 0.31 0.58 0.80 
Properties εT 

33
 εT 

11 εS 
33 εS 

11 

– 
PMN-PT 5400 1560 910 1340 

PIN-PMN-PT 4200 1335 729 1200 
Mn: PIN-PMN-PT 3811 1326 553 1169 

3.3. Characterization under a High Electric Field and High Mechanical Pressure 

High-power underwater transducers and high-intensity focused ultrasound (HIFU) transducers may 
be driven under a large electric field and operated under high mechanical prestress [78,79]. These 
systems are operated over a short time duration; however, a very high source level and bandwidth may 
be required. To prevent the piezoelectric materials from going into a tensile state under the application 
of a high driving electric field, it is common practice to prestress the piezoelectric elements by 
employing a compressive uniaxial prestress upon them. However, the material property may change 
under the high mechanical prestress, due to the nonlinear effects of the ferroelectric materials. It is 
therefore important to determine not only the small signal characteristics, but also whether the 
materials maintain the bandwidth and linear performance under a high driving field and a prestress 
condition. In recent years, more studies have been done on relaxor-PT crystals, including PMN-PT, 
pure and Mn-doped PIN-PMN-PT crystals, under a combination of static compressive stress and high 
electric field [80–86]. The performance of relaxor-PT crystals under dynamic compressive stress has 
also been evaluated, but only under a small electric field [87,88]. 

The <001>-poled relaxor-PT crystals possess extremely high k33 and d33, so the longitudinal 
extension mode is very attractive for high power transducer design. Figure 8 shows the strain-electric 
field (S-E) loops and extracted d33 measured under the unipolar electric field with constant amplitude 
(±12 kV/cm)/frequency (1 Hz) when compressive prestress was applied to manganese (Mn)-doped 
rhombohedral PIN-PMN-PT crystal sample along the poling direction (<001>). It is indicated that the 
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crystal sample produced higher strain under higher uniaxial pressure with the cost of increased 
nonlinear loss (as suggested by the area of the strain-field hysteresis loops). 

Figure 8. The strain-electric field (S-E) loops (a) and extracted d33 vs. prestress (b) under a 
unipolar electric field (Mn:PIN-PMN-PT crystal in the rhombohedral phase). 

  
(a) (b) 

In high power transducer design, bipolar electric field (AC field) is often applied to drive the 
piezoelectric elements in the transducers, so it is necessary to evaluate the stability of the relaxor-PT 
crystals under uniaxial stress in such a driving condition. Figure 9 shows the strain-electric field (S-E) 
loops measured by applying an AC electric field to a Mn-doped rhombohedral PIN-PMN-PT crystal 
sample under 0MPa (a) or 10MPa (b) compressive prestress, respectively [86]. Under 0MPa prestress 
(Figure 9a), when the amplitude of the AC field is equal to or smaller than 5 kV/cm (roughly equal to 
its coercive field), the crystal sample showed a linear strain-field relationship with no concern of 
depoling/repoling. Beyond 5 kV/cm, the strain showed a more nonlinear response. When the AC field 
increased to 10 kV/cm, typical “butterfly”-shaped S-E loops occurred, indicating that domain reversal 
happened under each cycle of the AC field. Under 10 MPa prestress (Figure 9b), the negative strain 
peaks became rounded, as well as the maximum negative strain reduced sharply to nearly zero [86]. As 
a result, the coercive field declined sharply, which means that a much lower electric field and less 
energy are required to reverse the domains (depole/repole the crystal). In this measurement, 
depoling/repoling was initiated by an AC field with an amplitude of 2 kV/cm, which suggests that, if 
the crystal is driven by a low-frequency AC field under certain prestress, domain reversal-caused 
nonlinearity in the strain response may limit the amplitude of the driving AC field. For <001>-poled 
relaxor-PT crystals, as the compressive prestress aligns in the same direction as the electric field used 
for poling the crystal, it tends to destabilize the 4R domain configuration. However, it was 
demonstrated that the 4R domain configuration can be stabilized by a DC bias field applied in the same 
direction as that of the poling field. As shown in Figure 10, when a positive DC bias field was applied 
to the same crystal, the centers of the strain-field response loops were shifted toward the positive side 
of the electric field axis [86]. It is quite obvious that the range of the driving AC field, in which the 
crystal exhibited a linear strain response, was expanded to ±4 kV/cm or ±6 kV/cm, respectively, when 
a +2 kV/cm or +4 kV/cm DC bias was applied. The results indicated that the reduction of the linear 
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range of strain response caused by compressive prestress is recoverable if a positive DC bias is applied 
to the crystal. 

Figure 9. S-E loops measured under a bipolar electric field and 0 MPa (a) and 10 MPa (b) 
uniaxial prestress (Mn:PIN-PMN-PT crystal in rhombohedral phase). Reprinted with 
permission from [86]. Copyright 2013 IEEE. 

  
(a) (b) 

Figure 10. S-E loops of the same crystal sample as in Figure 9 measured under 10 MPa 
prestress and 2 kV/cm (a) and 4 kV/cm (b) external DC bias, respectively. Reprinted with 
permission from [86]. Copyright 2013 IEEE. 

  
(a) (b) 

The <110>-poled relaxor-PT crystals have become more and more attractive for high power 
transducer design in recent years. When the relaxor-PT crystals operate in the <110>-poled transverse 
mode (32 mode, vibration along <001>), they possess very high d32 and k32 values; meanwhile, as the 
crystals are poled and driven through the thickness rather than the length, the required electric field to 
drive them is much lower than that for the 33 mode. Recent high field measurement also shows that 
<110>-poled relaxor-PT crystals may be more stable under the compressive prestress applied along 
their length (transverse compressive prestress). This study suggested that the transverse compressive 
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prestress will help stabilize the poling state until the electric field becomes large enough to induce the 
reversible rhombohedral-to-tetragonal phase transition [85]. 

Figure 11 shows the bipolar strain behavior of Mn:PIN-PMN-PT rhombohedral crystals at 5 kV/cm 
AC field and various stress levels [85]. It was found that all of the strain curves for the <110>-poled 
Mn:PIN-PMN-PT rhombohedra crystal are linear and non-hysteretic, demonstrating that no domain 
reversal occurs at 5 kV/cm. On the contrary, domain reversal happened at an AC field as low as  
2 kV/cm for the <001>-poled Mn:PIN-PMN-PT crystal when it was under longitudinal compressive 
prestress, as implied by Figure 9b. 

Figure 11. Bipolar strain behavior for Mn:PIN-PMN-PT crystals under different prestress 
levels. Reprinted with permission from [85]. Copyright 2013 AIP Publishing. 

 

4. Conclusions 

The successful flux growth of PMN-PT and PZN-PT single crystals started a new era in the 
exploration of the complex relaxor-based ferroelectric crystals. It is discovered that a variety of binary 
relaxor-PT and ternary relaxor-relaxor-PT/relaxor-PZ-PT crystals with claimed MPB compositions 
possess superior dielectric and piezoelectric properties to the conventional PZT ceramics, offering 
substantial advantages, such as a broad bandwidth, high sensitivity and/or high strain level for 
piezoelectric transduction and actuation applications [89]. 

In recent years, the vertical Bridgman growth of the large PMN-PT crystals led to a true 
breakthrough in the commercialization of relaxor-PT crystals. Currently, high-quality PMN-PT 
crystals with diameters up to 100 mm have become commercially available. However, as composition 
segregation is inevitable in the Bridgman growth method, further efforts are taken to improve the 
longitudinal composition homogeneity by applying alternative crystal growth techniques, including 
zone leveling, continuous feeding Bridgman growth and solid-state crystal growth. 

To expand the operational temperature and electric field, a broad variety of binary relaxor-PT 
systems were investigated, among which, the PSN-PT, PIN-PT and PYN-PT with near MPB 
compositions were found to possess phase transition temperatures and coercive fields much higher 
than PMN-PT crystals. However, the obstacles encountered in the growth of large crystals hindered the 
further development of high Curie temperature (TC), binary relaxor-PT crystals. In recent years, it was 
demonstrated that, by adding PMN-PT into some of the high TC binary systems, the formed  
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PMN-PT-based ternary systems could have a relatively stable perovskite phase, offering the possibility 
of growing large crystals with a pure perovskite phase. Among the broadly studied ternary systems, 
substantial progress has been made on the growth of large PIN-PMN-PT crystals by the Bridgman 
process. PIN-PMN-PT crystals with a 75-mm diameter have become commercially available recently. 

Compared to PZT ceramics, one of the distinguishing characteristics of the relaxor-based 
ferroelectric crystals is the strong anisotropy of their properties, which imposes new challenges in 
crystal characterization, as well as offering new opportunities for device design. The investigation of 
the orientation dependence of the rhombohedral relaxor-PT crystals indicated that, for the longitudinal 
mode (33 mode), the electromechanical coupling of <001>-poled crystals shows a similar value to that 
of <110>-poled crystals; however, the piezoelectric coefficient of <001>-poled crystal is much higher. 
For the transverse modes (d31 and d32 modes), significant anisotropy was observed for <110>-poled 
crystals. Optimal transverse properties were found for the crystals polarized through <110> with 
vibration along <001> (32 mode), possessing values of electromechanical coupling and the piezoelectric 
coefficient similar to those of the <001>-poled longitudinal mode. Another challenge in the 
characterization of relaxor-PT crystals is that their properties can be influenced largely by multiple 
factors, including temperature, preloading stress and electric field, especially when the crystals are 
engaged in applications that require a high power output. It was observed that uniaxial compressive 
prestress, which is usually applied to the crystal elements in high power devices to prevent them from 
fracturing under tensile stress, strongly affects the piezoelectric performance of the relaxor-PT-based 
crystals along different poling orientations. However, systematic studies are needed in this critical field 
to determine the operational domains of these crystals for high power applications. 
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