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Abstract: We present a survey of the effect of vacancies on quantum transport in graphene,

exploring conduction regimes ranging from tunnelling to intrinsic transport phenomena.

Vacancies, with density up to 2%, are distributed at random either in a balanced manner

between the two sublattices or in a totally unbalanced configuration where only atoms

sitting on a given sublattice are randomly removed. Quantumtransmission shows a

variety of different behaviours, which depend on the specific system geometry and disorder

distribution. The investigation of the scaling laws of the most significant quantities allows

a deep physical insight and the accurate prediction of theirtrend over a large energy region

around the Dirac point.
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1. Introduction

Structural defects have been widely observed in graphene and are known to dramatically alter its

properties [1]. For tailoring and diversifying graphene properties, defects can also be deliberately

incorporated using ion irradiation or chemical treatments. As a matter of illustration, chemical

substitutions of carbon atoms by nitrogen and boron (recently reported experimentally [2]) open novel

ways to engineer mobility gaps [3,4] and tune the characteristics of graphene-based transistors [5].

The simplest defect in any material is the missing lattice atom. Single vacancies in graphene have

been experimentally observed by transmission electron microscopy (TEM) [6,7] and scanning tunnelling

microscopy (STM) [8]. Figure1, for example, shows the local electronic fingerprint of a monovacancy

revealed by an STM image, produced on graphite throughAr+ ion-irradiation [8]. Vacancies can

also be used as a simplified model for other types of defects that modify the hybridization of the

atomic orbitals, such as adsorbates covalently bound to thecarbon atoms. This type of disorder has

several effects on the electronic structure of graphene, asthe introduction of zero energy modes when

the vacancies are unequally distributed among the two sublattices [9]. As for transport properties,

localization effects have been predicted to be suppressed for disorder that preserves the graphene

sublattice symmetry [10]. Vacancies, when equally distributed among the two sublattices, preserve

such a symmetry of the system and lead to the saturation of theconductivity atσ0 = 4e2/(πh)

when increasing the vacancy density [11,12]. This behaviour suggests the suppression of localization

phenomena. However, these theoretical predictions were obtained in the semi-classical limit, while other

recent studies on hydrogenated graphene [13,14] have shown that the finite value of the conductivity is

not robust in the quantum regime.

Figure 1. transmission electron microscopy (STM) picture of a singlevacancy on graphite.

By courtesy of J.M. Gomez-Rodriguez [8].

In this paper, we explore the effect of single vacancies on the transport properties of two dimensional

(2D) graphene and finite graphene flakes within highly doped contacts. Both of these configurations

allow us to investigate a relatively wide energy region around the Dirac point, thus clarifying many

aspects of the impact of vacancies on different transport regimes and in particular the diffusive regime

of 2D samples and thepseudodiffusiveregime typical of graphene tunnel junctions [15]. We analyse

the role played by different parameters, such as the vacancydensity, their distribution on the sublattices
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and, for the tunnel junctions, different geometries. Our results are summarized by some general scaling

behaviour that we identified.

This paper is organized as follows. Section2describes in detailed the 2D and tunnel junction graphene

configuration and briefly illustrates the simulation methodologies we adopted. Section3 presents the

numerical results and their interpretation. Finally, Section 4 concludes.

2. System Description and Methodology

To describe graphene, we adopt a single orbitalpz tight-binding model. The Hamiltonian of a pristine

graphene layer reads

H =
∑

<i,j>

γ|i〉〈j| (1)

whereγ is the coupling constant,|i〉 indicates the state corresponding to thepz orbital on thei-th carbon

atom and the sum is performed over the couples of first neighbour atoms indicated by< i, j >.

A vacancy in the honeycomb lattice leaves three dangling bonds, which might eventually recombine

into one double bond and one dangling bond. Here, we will consider non-reconstructed vacancies

with passivated dangling bonds. We model the vacancies accordingly, by simply removing thepz
orbitals at the vacancy sites from the Hamiltonian (1). This model, which obviously does not hold for

real vacancies, is a good approximation for pseudo-vacancies generated, for example, by adsorbates

that re-hybridize the orbitals of the carbon fromsp2 to sp3. Thanks to its generality, this model

has been commonly used in the literature. Note that we do not take into account the spin degree

of freedom, because here we focus only on the interplay between sublattice symmetry and electronic

transport. The role of vacancies in inducing the magnetization of graphene (widely investigated in the

literature [16–20]) is beyond the scope of this study.

The specific repartition of the vacancies among the two sublattices is a crucial aspect of our study. In

fact, by using the rank-nullity theorem, it has been shown [9] that an imbalance of vacancies between

the A and B sublattices induces zero energy modes. The demonstration is valid only for inter-orbital

coupling limited to first-neighbours and it is as follows. Consider a bipartite system withNA sites on

the A sublattice andNB on theB sublattice. Without loss of generality, we considerNA > NB. The

number of imbalanced vacancies is given byNV = NA − NB. The Hamiltonian can be decomposed

into its projections onto the A and B subspaces,i.e., HAA = ǫAINA
, HBB = ǫBINB

, HAB = TNA,NB
and

HBA = TNB ,NA
, whereǫA andǫB are the onsite energies for the A and B sublattices,I is the identity

matrix and the size of the matrices is indicated. When the Hamiltonian operates on a generic state

φ = (φA, φB) it givesH(φA, φB) = (ǫAφA + TNA,NB
φB, ǫBφB + TNB ,NA

φA). SinceNA > NB, we can

find NV linearly independent vectorsφn
A (n = 1...NV ) such thatTNB ,NA

φA = 0. Therefore, the vectors

(φn
A, 0B) are eigenvectors of the Hamiltonian with eigenvaluesǫA. In grapheneǫA = 0 and we obtain

NV zero energy states strictly confined on theA sublattice.

These states affect the spectrum around the Dirac point. In [9], a gap formation is reported, although

not observed in [14] for equal vacancy concentrations, the width of which is predicted to be:

gap ≈ ~vFn
1/2 ≈ ~

vF
ζ

(2)

i.e., inversely proportional to the average distance between vacanciesζ = n−1/2.
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2.1. Electronic Structure and Transport in 2D Graphene: Methodology

Electronic structure calculations are performed using theLanczos recursion method on a sample

of 106 carbon atoms with periodic boundary conditions. This sample size is large enough to allow

for a randomisation of the distribution of vacancies. The parameters for the Lanczos calculation are

N = 1500 recursion steps and an energy resolution ofη = 15 meV.

As concerns electronic transport, to simulate the conductivity in the semi-classical and quantum

regimes, an efficient real space implementation for computing the Kubo formula is used. We present

here a summary of this technique, with the intent to make the interpretation of the results illustrated later

on in this paper easier. One starts with an alternative expression of the Kubo conductivity [21–27]

σ(ω) =
2πe2~

Ω

∫ +∞

−∞

f(E)−f(E+~ω)

~ω
Tr

[

V̂x δ(E−Ĥ) V̂x δ(E−Ĥ+~ω)
]

dE (3)

whereĤ is the Hamiltonian operator,̂Vx is the operator for the electronic velocity along thex-axis and

f(E) is the Fermi-Dirac distribution function. The DC conductivity corresponds to the limitω = 0. At

0 temperature

lim
ω→0

f(E)−f(E+~ω)

~ω
= − ∂f

∂E
= δ(E −EF) (4)

whereEF is the Fermi energy. After a Fourier transform, the diagonalconductivity writes:

σDC = e2n(EF) lim
t→∞

[

1

t

〈

∆X2(t)
〉

E

]

(5)

wheren(EF) is the density of states per surface unit and〈∆X2(t)〉E is the measure of the electronic

quadratic spreading [28] at energyE:

〈

∆X2(t)
〉

E
=

Tr

[

δ(E−Ĥ)
(

X̂(t)− X̂(0)
)2
]

Tr
[

δ(E−Ĥ)
] (6)

whereX̂(t) is the time-dependentHeisenberg representationof the position operator along thex-axis.

By using the time-reversal symmetry and the properties of the trace operator, it is straightforward to

demonstrate that

Tr

[

δ(E−Ĥ)
(

X̂(t)− X̂(0)
)2
]

= Tr
[

A†(t) δ(E−Ĥ) A(t)
]

(7)

with

A(t) =
[

X̂, û(t)
]

= X̂û(t)− û(t)X̂ (8)

whereX̂ is the position operator in theSchr̈odinger representationand û(t) = exp(−iĤt/~) is the

time evolution operator. The traces in Equation (6) can be approximated by expectation values on

wavepackets, which are treated as random-phase states [29] :

Tr[. . .] −→ 〈wp| . . . |wp〉



Crystals2013, 3 293

and the spreading (6) can finally be written as:

〈

∆X2(t)
〉

E
=

〈wp| A†(t) δ(E−Ĥ) A(t) |wp〉
〈wp| δ(E−Ĥ) |wp〉

(9)

Equation (9) is now suitable for orderO(N) numerical techniques to calculate the transport properties.

The quadratic spreading (9) is a key quantity as it is directly related to the diffusion coefficient

(or diffusivity)

DE(t) =
〈

X2(t)
〉

E
× 1

t
(10)

the time dependence of which fully determines the transportregime. It is worth also defining the

electronic spreading

XE(t) =
√

〈X2(t)〉E =
√

tDE(t) (11)

Three different transport regimes can occur, as illustrated in Figure2:

• Ballistic regime. Electrons travel through the systems without suffering any scattering, so that

DE(t) andXE(t) are linear functions of time, with slopes respectively equal to v2F andvF .

• Diffusive regime. It is characterized by a saturation ofDE(t→∞). The saturation value identifies

the elastic relaxation timeτ .

• Localized regime. It is manifested by an increasing contribution of quantum interferences that

reduce the diffusion coefficient, which roughly scales as∼ 1/t. The spreadingXE(t) reaches an

asymptotic value related to the localization lengthξ(E).

Figure 2. Typical behaviours of the diffusion and spreading coefficients for the three

characteristic regimes: (a) ballistic; (b) diffusive and (c) localized.

(a) (b) (c)

All the dynamics of the electronic system is actually conveyed by the Ĥ operator. Since

the Hamiltonian accounts for the presence of static disorder (e.g., randomly located defects), the

time-dependent quantum dynamics of electronic wavepackets capture all multiple scattering phenomena

including those accessible within the semi-classical transport regime (Bloch–Boltzmann) such as the

elastic mean-free-path, or within the quantum interferences regime such as the localization length.

We applied the Kubo real space algorithm, using elapsed times of 1100 steps of 0.23 fs each. This

provides an accurate description of quasi-ballistic and diffusive regimes, together with the quantum
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regime in which multiple scattering phenomena yield interferences and localization. The maximum

evolution time of the random phase state is about 2.7 ps. The sample, a rectangular sheet of

21.2 nm× 12.2 nm, is chosen large enough so that the electron wavepacket propagates without reaching

the edges of the sheet, thus minimizing finite-size effects.For each concentration and distribution of

vacancies, we calculate the maximum of the diffusion coefficient Dmax(E), the mean free pathℓe(E)

and the Fermi velocityvF(E), from which we infer the semi-classical conductivity in thediffusive regime

σSC . Then we derived the conductivity at latter times to take into account quantum interferences (and

localization phenomena), using the approximation:

σ =
e2

2
n(E)

D(E, t)

t
(12)

2.2. Electronic Transport in Graphene Tunnel Junctions: Methodology

In the tunnel junction configuration, the system consists ofa large armchair graphene nanoribbon

(aGNR) or zigzag graphene nanoribbon (zGNR) with widthW , see Figure3, with highly doped contacts

and an undoped section of lengthL. The doping is obtained by setting a superimposed potentialV on

the doped regions. In our simulations, we chooseV = −1.5 eV, this entailing an-type doping.

Figure 3. Scheme of the system with (a) armchair edges and (b) zigzag edges.
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We will consider the presence of compensated/uncompensated vacancies uniformly distributed

within the undoped region with densityn. The conductivity of the system is indicated as

σ(E,L,W, n) = (2e2/h) × T (E,L,W, n) × L/W , whereE is the energy of the injected electrons

andT is the transmission coefficient obtained by the standard Landauer–Büttiker formula within the

Green’s function approach

T (E) = Tr[Γ(left)GRΓ(right)GA] ,
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whereΓ(left/right) are the rate operators corresponding to the left and right doped regions,GR/A are the

retarded and advanced Green’s functions projected onto theundoped region and the trace is performed

on the orbitals corresponding to the undoped region. All these quantities can be obtained by means of

the real space renormalization technique [30].

The corresponding resistivity isρ(E,L,W, n) = 1/σ(E,L,W, n). When n = 0, i.e., for the

pristine system, the intrinsic conductivity and resistivity are σint(E,L,W ) ≡ σ(E,L,W, n = 0)

and ρint(E,L,W ) ≡ ρ(E,L,W, n = 0). For largeW/L ratios and energiesE around the

Dirac point, the system exhibits apseudodiffusivetransport regime [15,31–36], where the conductive

channels of the contacts tunnel through the undoped region awith constant minimum conductivity

σint(E ≈ 0, L,W >> L) ≈ 4e2/(πh) = σ0. The termpseudodiffusiveindicates that the system behaves

as if it were in a diffusive regime, even though no disorder ispresent and the diffusive behaviour is only

mimicked by the peculiar values of the transport coefficients of the tunnelling conduction channels.

For n > 0, we define the extrinsic quantitiesρext(E,L,W, n) ≡ ρ(E,L,W, n) − ρint(E,L,W ) and

σext(E,L,W, n) ≡ 1/ρext(E,L,W, n). As we will see, atE = 0 and in the presence of compensated

vacancies, the conductivity may increase, thus entailing anegative extrinsic resistance.

3. Results and Discussion

We investigated several concentrations of vacanciesn up to 2%, for the two cases where the vacancies

were equally distributed among the two sublattices (AB) or on one sublattice only (AA). Subsections3.1

and 3.2 contain the results for 2D graphene. Subsection3.3 reports on the case of graphene tunnel

junctions. As illustrated and analysed below, the results for 2D graphene and graphene tunnel junctions

are in agreement and they reveal different facets of the samephysics.

3.1. Electronic Structure of 2D Graphene with Vacancies

The intrinsic density of states of 2D graphene increases linearly with energy and vanishes at the Dirac

point. As briefly discussed above, vacancies are expected toimpact the DOS especially at low energy

with the formation of zero energy states. To better illustrate their impact, we consider here the extrinsic

density of states, which is given by the difference between the DOS in the presence of vacancies and that

for pristine graphene.

Our results for the extrinsic DOS in the compensated (AB) case are plotted in Figure4a for

concentrations from0.1% to 1%. We observe that the DOS increases around the Dirac point over an

energy region that is larger for higher densities. Outside this region, the extrinsic DOS fluctuates around

0, meaning that the total DOS is not significantly modified with respect to the clean case. Although

the DOS seems to increase considerably in correspondence tothe Dirac point, as in [9] our numerical

resolution is clearly not good enough to investigate what happens exactly atE = 0.

The extrinsic DOS in the uncompensated (AA) case are plottedin Figure4b, for the same vacancy

densities. As expected, the breaking of A-B symmetry generates a relatively sharp peak at zero energy.

The peak height increases with vacancy concentration and this occurs at the expense of the DOS

at the sides of the Dirac point, where the extrinsic DOS becomes negative. Although we cannot

yet be conclusive about this point, it could be the effect of agap opening, partially hidden by the
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wings of the convoluted zero-energy peak. This could explain contradictory observations as reported

in [9,14]. Reference [9] pinpoints the opening of an energy gap, whereas [14] suggests the absence of

localization in the uncompensated case for energies close to Fermi level. Figure4c shows our estimation

of the simulated gap againstn and its fit, which gives

gap ≈ 290×
√

n[%] meV (13)

in total agreement with Equation (2).

In both AB and AA cases, vacancies preserve the hole-particle symmetry (chiral symmetry) and affect

the electronic structure around the Dirac point, although in a different manner. In the first case the DOS

increases, while for the AA distribution there is a depletion of the DOS around Fermi energy and a finite

concentration of zero-energy modes in the middle.

Figure 4. (a) Extrinsic DOS for compensated vacancies as a function of the energy;

(b) Same as (a) for uncompensated vacancies; (c) Estimation of the gap width and its fit

as a function of the density of uncompensated vacancies.
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3.2. Electronic Transport in 2D Graphene with Vacancies

We start by illustrating the results for the semi-classicalconductivity and mean free path summarized

in Figure5. We consider a vacancy densityn = 0.8% for both the compensated and the uncompensated

case. The corresponding semi-classical conductivities asa function of the electron energy are reported

in Figure 5a. Away from Dirac point and in both of the cases,σSC increases linearly with energy

with very similar values. On the contrary, around the Dirac point the results for compensated and

uncompensated vacancies are very different and are strictly connected to what was already observed

for the DOS. For the balanced case (continuous line),σSC exhibits a large plateau above the value

σ0 = 4e2/(πh) (dotted line). This result confirms what was theoretically predicted in [11] and previous

observations [12]. Moreover, a conductivity peak is present exactly around the Dirac point, as the result

of the presence of the zero-energy vacancy-generated states. However, it would be erroneous to conclude

that no localisation phenomena occur in this energy region.In fact, for longer simulation time,i.e., when

going beyond the maximum diffusion coefficient, the conductivity progressively decreases below the

theoretical minimal value for semi-classical conductivity σ0. We will discuss this aspect later on in

terms of the time evolution of the Kubo diffusion coefficient.
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Figure 5. (a) Semi-classical conductivity as a function of the energy inthe presence of

compensated and uncompensated vacancies with densityn = 0.8%; (b) Scaled mean free

path as a function of energy and for different compensated vacancy densities, and its linear fit.
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For unbalanced vacancies (dashed curve), we can clearly observe a conductivity gap and, again,

a very marked peak aroundE = 0. Note that, in this case, we adopted a higher energy resolution

(η = 3 meV) in order to have a better accuracy in the region of the gap. This also entails the presence

of many fluctuations visible at higher energy. For lower resolution, not shown here [37], the plateau is

higher (not much belowσ0) and the peak at the Dirac point is reduced. Such a phenomenonis because

the energy resolution drives the DOS to zero around Dirac point while the zero-energy peak is increased.

This evolution towards a gap when decreasing the resolutionconfirms the results presented in [9]: In

the limit of zero temperature (which can be modelled byη → 0) the system will become insulator, with

the peculiar feature of presenting a finite concentration ofmid-gap states. Such a gap opening was not

observed in [14] for low concentrations, presumably because of a lack of energy resolution.

Figure5b shows the mean free path multiplied by the vacancy density as a function of the energy

for compensated vacancies. We observe that all the curves almost superimpose, meaning thatℓe roughly

scales as1/n, as expected for much diluted scatterers. We also observe that the mean free path scales

linearly with energy and this allows us to infer the scaling law

ℓe ≈
6.3 |E[eV]|+ 0.5

n[%]
nm (14)

To better understand the physics of vacancies at the Dirac point, we now consider the evolution of

the Kubo diffusion coefficients as a function of time. We focus on the case of compensated vacancies.

Figure6a shows the diffusion coefficient at the energyE=150 meV and for vacancy densities between

0.2% and 1%. We can clearly distinguish the different transport regimes schematized in Figure3. In

particular, we observe that the maximum diffusion coefficientDmax (corresponding to the semi-classical

value) occurs at shorter timestmax for higher densities and it assumes lower values, as expected from

the mean free path behaviour, see Figure5b. The estimated position of the maxima of the diffusion

coefficient is indicated by a dashed line in the figure. After this line,D starts decreasing, more or less

slowly, toward the localisation regime. Depending on the speed of such a decrease, we can determine

whether a transition between the two transport regimes is expected.

For example, and much interestingly, we examine what happens to the diffusion coefficients for a

given density of compensated vacancy and at different energies close and far from the Dirac point.
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Figure 6. (a) Main frame: Diffusion coefficient as a function of time for electrons with

energyE = 150 meV in graphene with different densities of compensated vacancies. The

position of the maximum diffusion coefficient is indicated by a dashed line. Top inset:

Maximum diffusion coefficient as a function of the vacancy density. The solid line is a guide

to the eye. Bottom inset: Time corresponding to the maximum diffusion coefficient. The

solid line is a guide to the eye; (b) Diffusion coefficient as a function of time for compensated

vacancies with densityn = 0.4% at different energies.
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Figure6b focuses on the casen = 0.4%. At energies far from the Dirac point, the decay of the diffusion

coefficient is very slow, indicating that the system is in thediffusive transport regime. Close to the

Dirac point, on the contrary, the behaviour is very different. First of all, the maximum diffusion

coefficient is much smaller than away fromE = 0. This might appear to be in contrast with the

zero-energy peak of the semi-classical conductivity observed in Figure5a. However, we have to consider

that this peak is the combined result of an extremely high DOSand a relatively lowDmax. The second

difference is that the diffusion coefficient at the Dirac point decreases considerably with time. Such a

result clearly indicates that the transport regime at the Dirac point undergoes a transition from diffusive

to strongly localized.

3.3. Electronic Transport in Graphene Tunnel Junctions with Vacancies

Let us start this section by briefly illustrating the resultsfor the intrinsic transport properties of the

system,i.e., in the absence of vacancies. As seen in Figure3, the undoped region between the two

highly-doped contacts is a ribbon section with edgesW andL. For given widthW (< L) of the system,

the number of active conductive channelsM(E,L) in the undoped section is thus determined by the

energyE and the lengthL. If the system has armchair edges, the nanoribbon section has two armchair

edges with lengthL and two zigzag edges with lengthW , see Figure3a. Therefore, the number of

conductive modes varies as the number of modes in a zigzag nanoribbon with widthL. At low energies,

M(E,L) = Mzigzag(E × L) depends only on the productE × L. If the system has zigzag edges, the

nanoribbon section has two armchair edges with lengthW and two zigzag edges with lengthL, see

Figure3a. Similarly to the prior case, the number of conductive modes varies as the number of modes

in an armchair nanoribbon with widthL. At low energies,M(E,L) = Marmchair(E × L) changes for

different armchair ribbon families, represented by ribbons consisting of3n, 3n+1 or 3n+2 dimer lines,

with n an integer number. Therefore,L determines the energy scale of the region around the minimum
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conductivity, where we expect that, forW > L andE close to 0,σint(E,L,W ) andρint(E,L,W ) are

universal functions ofE × L. At higher energy, a larger frequency component scaling with E × W

develops due to the progressive opening of the sub-bands corresponding to transverse confinement [32].

This behaviour is confirmed by Figure7, where all curves are seen to collapse onto a universal curve

under appropriate rescaling.

Note that in Figure7a the minimum conductivity does not lie exactly atE = 0 due to the fact that

the DOS of the doped contacts is not symmetric with respect toE = 0, whereas its magnitude is slightly

lower than the universal valueσ0. For the case of the zGNRs (see Figure7b), a small peak around

E = 0 is seen. This is due to the transmission of the electrons through the first (edge) mode of the

zigzag system [38], which is also active at low energy in the undoped region. AtE = 0 the bands in

the zigzag undoped region are almost flat, the density of states is very high and this explains the peak.

The asymmetry is due to the fact that the obtained asymmetry is driven by the change from an-p-n to a

n-n-n heterojunction (as for the aGNRs).

Figure 7. Intrinsic conductivity as a function ofE × L for (a) aGNRs and (b) zGNRs

with W = 150 nm andL ∈ [5, 60] nm. The dashed horizontal lines indicate the universal

valueσ0 = 4e2/π. The insets show an enlargement of the regions around the minimum

conductivity indicated by dotted rectangles in the main frames.

σ in
t (

2e
2 /h

)

0

2

4

6

8

σ in
t (

2e
2 /h

)

E×L (eV×nm)
−5 0 5

0

2

4

6

σ in
t (

2e
2 /h

)

E×L (eV×nm)
−0.5 0 0.5

0.55

0.6

0.65

0.7

0.75

σ in
t (

2e
2 /h

)

E×L (eV×nm)
−0.5 0 0.5

0.55

0.6

0.65

0.7

(a)

(b)

Let us now consider the presence unbalanced vacancies in theundoped region. As seen for 2D

graphene in Figure4b, when increasingn = nA > 0 (nB = 0), zero energy states emerge together with

a DOS decay in a certain region around the Dirac point, which is anticipated as a gap formation. We first

consider aGNRs withW = 150 nm,L ∈ [5, 60] nm andn = 0.1% = 3.82× 10−2 nm−2. The transport

results are reported in Figure8a and show the raise of a dip in the extrinsic resistivity exactly at E = 0,

due to the presence of the highly localized zero energy states caused by the vacancies. These states

can interact with the very low energy states of the first band of the zigzag nanoribbon corresponding to

the undoped region, which decay exponentially along each sublattice when moving from the edges to

the bulk, thus enhancing tunnelling. WhenL increases, the DOS in the centre of the undoped region

decreases with a subsequent tunnelling suppression. However, the dip remains well-visible in the figure

due to the stronger increase of the resistivity in the remaining region of the gap. We next consider
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zGNRs withW = 150 nm,L ∈ [5, 60] nm andn = 0.1% = 3.82× 10−2 nm−2. The results are reported

in Figure8b. In addition to what was observed for the aGNRs, many resonances appear in the region

of the gap and increase in number for longerL. This can be explained by considering the edge states

corresponding to the zigzag edges of the section. The coupling of these extended low energy states with

the zero energy states due to vacancies give rise to the observed peaks.

In the gap region, the extrinsic resistivity increases exponentially, i.e., ρext ∝ exp (L/λ). Figure8c

shows the estimated values ofλ for the aGNRs and the zGNRs as a function of the energy in the region

of the gap. For both aGNRs and zGNRs, we haveλ ≈ 5 nm. It is important to notice that the gap width

is independent of the ribbon chirality, and it is of the same order of that found for 2D graphene, see

Figure4c. The scaling of the gap withn1/2, not shown here, is also verified for ribbons [37].

Figure 8. Extrinsic resistivity for (a) aGNRs and (b) zGNRs withW = 150 nm,L ∈ [5, 60]

nm and uncompensated vacancies withn = 0.1%; (c) Rate of the exponential decay of the

extrinsic resistivity in the region of the gap.
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Finally, we consider the case of compensated vacancies. We focus on aGNRs with width

W = 150 nm, length of the undoped regionL = 5, 10 and 15 nm, and density of vacanciesn from 0 up

to 2%. The average conductivity (over 20 different disorderrealizations) is reported in Figure9a–c as a

function of the energy for the three considered lengths. Theaverage over different random configurations

is actually necessary due to the extreme variability of the results depending on the specific configuration

of disorder [37]. In all cases, we can clearly observe a conductivity peak atE ≈ 0, which again stems

from the formation of zero-energy vacancy induced states. However, in contrast to what was observed

for uncompensated vacancies, the gap does not open and the induced states have a broader energy, which

entails a broader peak. For a single disordered configuration, the height of the peak can be occasionally

larger thanσ0, thus determining an enhanced conductivity with respect tothe pristine system.
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Figure 9. Total conductivity for aGNRs withW = 150 nm,n ∈ [0, 2%] and (a) L = 5 nm;

(b) L = 10 nm and (c) L = 15 nm; (d) Coefficient of the linear dependence of the extrinsic

resistivity as a function of the compensated vacancy density.
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From the analysis of the data, it turns out that, away from theDirac point, the average extrinsic

resistivity is roughly proportional ton, i.e., < ρext(E,L,W, n) ≥ α(E,L,W ) × n, at least at the low

densities here considered and as long as the resistivity is not too high. The estimatedα is shown in

Figure9d. AroundE = 0, α decreases and indeed the linear behaviour of the extrinsic resistivity is

limited to low densities, while it becomes sublinear at higher densities, thus indicating the slower decay

of the minimum conductivity at the Dirac point.

A further analysis shows thatρext = f(E×L, n×L2×β), whereβ = 1 aroundE = 0 and it slightly

increases withL elsewhere. The dependence onE ×L is related to the activation of the energy bands in

the undoped region, as already discussed. The scaling withn× L2 indicates that the extrinsic resistivity

depends on the square ofχ = n1/2 × L = L/ζ , which is the average number of impurities (per unit of

ribbon width) that an electron is expected to meet when crossing the undoped region.

To verify this scaling, in Figure10, ρext is plotted as a function ofn × L2 for some selected values

of E × L. Note that, due to rescaling, the available data cover smaller regions for largerL. Figure10

summarizes some of our main results: (i) the reduced extrinsic resistivity at the Dirac point with respect

to the other energy regions; (ii) the approximately linear dependence of the extrinsic resistivity on the

defect densityn; (iii) universal scaling of the average extrinsic resistivity as a function ofE×L andn×L

at the Dirac point. At higher energies, the superposition ofthe curves progressively degrades, especially

at higher densities for which the rise of the extrinsic resistivity turns out to be faster for shortL. This

is physically sound, because for short pristine undoped regions, the transport coefficients of individual

conductive channels through the evanescent states are higher than for undoped longer regions. Therefore,



Crystals2013, 3 302

apart for energies aroundE = 0 where resonant impurities play a major role, they are proportionally

more strongly affected by disorder.

Figure 10. Average extrinsic resistivity for aGNRs withW = 150 nm andL = 5 nm (black

lines),L = 10 nm (blue lines) andL = 15 nm (red lines), as a function ofE × L and the

dimensionless parametern× L2, wheren is here expressed as vacanciesper unit area.
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4. Conclusions

We performed a thorough simulation of electronic transportin graphene in the presence of

compensated and uncompensated vacancies. We considered the case of 2D graphene, investigated

with the real space Kubo–Greenwood approach, and the case ofa finite section of graphene ribbon

within two highly doped contacts. For 2D graphene, we have found that conventional localization

phenomena develop whenever vacancies are distributed at random and in a balanced fashion between

both sublattices, and that mean free paths and localizationlengths are smaller at the Dirac point. A

suppression of DOS and conductivity were obtained for uncompensated distribution of vacancies in a

single sublattice. The results for the finite graphene ribbons within doped contacts are qualitatively in

agreement with those for 2D graphene. For uncompensated vacancies, a gap opens around the Dirac

point, with a conductivity that decreases exponentially with the length of the undoped region. Exactly

at the Dirac point and for armchair edge geometry, the resistivity exhibits a dip, which indicates the

residual enhanced tunnelling of the electrons through resonant states only existing at zero energy. In the

case of zigzag ribbons, many resonances appear in the gap when increasing the length of the undoped

region. These are consequences of the coupling between the resonant states and the low energy edge

states typical of zigzag ribbons. For compensated vacancies and away from the Dirac point, the average

conductivity is found to decrease linearly with the defect density. At low energies, the decrease is much

slower and a broad conductivity peak is present. By a scalinganalysis, we found that the extrinsic

resistivity is a function of the energy times the undoped region length and of the vacancy density times

the square of the undoped region length.
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