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Abstract: We present a survey of the effect of vacancies on quantursgaahin graphene,
exploring conduction regimes ranging from tunnelling térimsic transport phenomena.
Vacancies, with density up to 2%, are distributed at randdheein a balanced manner
between the two sublattices or in a totally unbalanced cordigon where only atoms
sitting on a given sublattice are randomly removed. Quanttansmission shows a
variety of different behaviours, which depend on the spesifstem geometry and disorder
distribution. The investigation of the scaling laws of thesnsignificant quantities allows
a deep physical insight and the accurate prediction of themd over a large energy region
around the Dirac point.
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1. Introduction

Structural defects have been widely observed in graphedeasnknown to dramatically alter its
properties 1I]. For tailoring and diversifying graphene properties, e#$ can also be deliberately
incorporated using ion irradiation or chemical treatmentds a matter of illustration, chemical
substitutions of carbon atoms by nitrogen and boron (réceaported experimentally?]) open novel
ways to engineer mobility gap8,4] and tune the characteristics of graphene-based trars[5{o

The simplest defect in any material is the missing latti@emat Single vacancies in graphene have
been experimentally observed by transmission electroroseopy (TEM) B,7] and scanning tunnelling
microscopy (STM) 8]. Figurel, for example, shows the local electronic fingerprint of a ow@cancy
revealed by an STM image, produced on graphite throfgh ion-irradiation B]. Vacancies can
also be used as a simplified model for other types of defeets rttodify the hybridization of the
atomic orbitals, such as adsorbates covalently bound t@dhson atoms. This type of disorder has
several effects on the electronic structure of graphentheasmtroduction of zero energy modes when
the vacancies are unequally distributed among the two gigala P]. As for transport properties,
localization effects have been predicted to be suppressediforder that preserves the graphene
sublattice symmetryl0]. Vacancies, when equally distributed among the two stibés, preserve
such a symmetry of the system and lead to the saturation otdhductivity ato, = 4¢?/(wh)
when increasing the vacancy densiyi,fLl2]. This behaviour suggests the suppression of localization
phenomena. However, these theoretical predictions weegnaal in the semi-classical limit, while other
recent studies on hydrogenated graphdrglf] have shown that the finite value of the conductivity is
not robust in the quantum regime.

Figure 1. transmission electron microscopy (STM) picture of a singleancy on graphite.
By courtesy of J.M. Gomez-Rodrigued] [

In this paper, we explore the effect of single vacancies enrdmsport properties of two dimensional
(2D) graphene and finite graphene flakes within highly dopmatacts. Both of these configurations
allow us to investigate a relatively wide energy region abthe Dirac point, thus clarifying many
aspects of the impact of vacancies on different transpgrtres and in particular the diffusive regime
of 2D samples and thpseudodiffusiveegime typical of graphene tunnel junctiorib]. We analyse
the role played by different parameters, such as the vaaarsity, their distribution on the sublattices
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and, for the tunnel junctions, different geometries. Oguhes are summarized by some general scaling
behaviour that we identified.

This paper is organized as follows. Sectixaescribes in detailed the 2D and tunnel junction graphene
configuration and briefly illustrates the simulation metblogies we adopted. Sectidhpresents the
numerical results and their interpretation. Finally, 8t concludes.

2. System Description and Methodology

To describe graphene, we adopt a single orbitaight-binding model. The Hamiltonian of a pristine
graphene layer reads
= Ali)l (1)
<i,j>
where~ is the coupling constanfi) indicates the state corresponding to therbital on thei-th carbon
atom and the sum is performed over the couples of first neighdtoms indicated by i, j >.

A vacancy in the honeycomb lattice leaves three danglingibowhich might eventually recombine
into one double bond and one dangling bond. Here, we will idenshon-reconstructed vacancies
with passivated dangling bonds. We model the vacanciesr@diogty, by simply removing they.
orbitals at the vacancy sites from the Hamiltonidh (This model, which obviously does not hold for
real vacancies, is a good approximation for pseudo-vaeargpenerated, for example, by adsorbates
that re-hybridize the orbitals of the carbon fram? to sp®. Thanks to its generality, this model
has been commonly used in the literature. Note that we doak@ into account the spin degree
of freedom, because here we focus only on the interplay letweblattice symmetry and electronic
transport. The role of vacancies in inducing the magnetinaif graphene (widely investigated in the
literature [L6-20]) is beyond the scope of this study.

The specific repartition of the vacancies among the two stid#a is a crucial aspect of our study. In
fact, by using the rank-nullity theorem, it has been sho@jrtjat an imbalance of vacancies between
the A and B sublattices induces zero energy modes. The deratos is valid only for inter-orbital
coupling limited to first-neighbours and it is as follows. rSaler a bipartite system with 4 sites on
the A sublattice andVi on the B sublattice. Without loss of generality, we considés > Ng. The
number of imbalanced vacancies is givenl8y = N, — Ng. The Hamiltonian can be decomposed
into its projections onto the A and B subspades, H4a = ealn,, Hgp = €pln,, Hap = Ty, v, and
Hpa = Tn, N, Whereey andep are the onsite energies for the A and B sublattideis, the identity
matrix and the size of the matrices is indicated. When the ill@man operates on a generic state
¢ = (¢pa, ¢p) it QiVeSH (pa, ) = (€ada + TN, NyPB: €805 + Ty N 0a). SINCEN, > N, we can
find Ny linearly independent vectors) (n = 1...Ny) such thatl'y, v,¢4 = 0. Therefore, the vectors
(¢4, 0p) are eigenvectors of the Hamiltonian with eigenvalagsIn graphene, = 0 and we obtain
Ny zero energy states strictly confined on theublattice.

These states affect the spectrum around the Dirac poing],la [gap formation is reported, although
not observed in14] for equal vacancy concentrations, the width of which idorted to be:

gap ~ fiwpn!/? ~ hU?F (2)

i.e., inversely proportional to the average distance betweeanges, = n~'/2.
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2.1. Electronic Structure and Transport in 2D Graphene: Metology

Electronic structure calculations are performed usingltheczos recursion method on a sample
of 10° carbon atoms with periodic boundary conditions. This sangite is large enough to allow
for a randomisation of the distribution of vacancies. Theapeeters for the Lanczos calculation are
N = 1500 recursion steps and an energy resolutiopsfl5 meV.

As concerns electronic transport, to simulate the condittin the semi-classical and quantum
regimes, an efficient real space implementation for comgutie Kubo formula is used. We present
here a summary of this technique, with the intent to makerttezpretation of the results illustrated later
on in this paper easier. One starts with an alternative espye of the Kubo conductivity?2[l—27]

o(w) = 22t /ﬂo TEV IR 10 10, (8- F) V. (B~ P )| i 3)

o0

whereH is the Hamiltonian operato¥/,, is the operator for the electronic velocity along thexis and
f(E) is the Fermi-Dirac distribution function. The DC condudi\vcorresponds to the limiv = 0. At

0 temperature

imd E)—f(Etho)  Of _
w—0 hw OF

whereFEr is the Fermi energy. After a Fourier transform, the diaga@oalductivity writes:

§(E — E) (4)

opc = e*n(Fk) tILrgo E <AX2(t)>E] (5)

wheren(Ek) is the density of states per surface unit §adX?(¢)), is the measure of the electronic
quadratic spreading2f] at energyF:

2 Tr {5(1544) (X - X(O))Q]
WA= Tr [s(E—H)| ©

Wheref((t) is the time-dependeieisenberg representatiasf the position operator along theaxis.
By using the time-reversal symmetry and the properties eftthce operator, it is straightforward to
demonstrate that

Tr [5(E—I:|) (X - X(O)ﬂ = Te [A1(1) 5(E—H) A() 7)

with
A(t) = [x u(t)} — X(t) — a(t)X (8)
where X is the position operator in th8chibdinger representatiomnd G(¢) = exp(—iHt/h) is the

time evolution operator. The traces in Equati@) ¢an be approximated by expectation values on
wavepackets, which are treated as random-phase st2@s [

Trl...] — (wp|...|wp)
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and the spreading]) can finally be written as:
(wp| A(t) (E—H) A(t) [wp)
{(wp| 6(E—H) [wp)
Equation 0) is now suitable for orde)(N') numerical techniques to calculate the transport proertie
The quadratic spreadin@®)(is a key quantity as it is directly related to the diffusioaetficient

9)

(AX?(1)), =

(or diffusivity)
(10)

Dg(t) = (X*(t)), X %

the time dependence of which fully determines the transpegime.

Xp(t) =/ (X2()) g = VIDi(t)

Three different transport regimes can occur, as illustratd-igure2:

o Ballistic regime Electrons travel through the systems without suffering secattering, so that
Dg(t) and X (t) are linear functions of time, with slopes respectively éqoa? andvr.

It is worth also defining the

electronic spreading
(11)

e Diffusive regimelt is characterized by a saturation bf; (¢t — co). The saturation value identifies

the elastic relaxation time.

e Localized regime It is manifested by an increasing contribution of quantuerferences that
reduce the diffusion coefficient, which roughly scales-a$/t. The spreading(z(t) reaches an

asymptotic value related to the localization length’).

Figure 2. Typical behaviours of the diffusion and spreading coeffitsefor the three
characteristic regimesa) ballistic; (o) diffusive and €) localized.
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All the dynamics of the electronic system is actually comayby the 7{ operator. Since

the Hamiltonian accounts for the presence of static disofeey., randomly located defects), the
time-dependent quantum dynamics of electronic wavepadggiture all multiple scattering phenomena
including those accessible within the semi-classicaldgpant regime (Bloch—Boltzmann) such as the
elastic mean-free-path, or within the quantum interfeesrregime such as the localization length.

We applied the Kubo real space algorithm, using elapsedstmnd 100 steps of 0.23 fs each. This
provides an accurate description of quasi-ballistic arftlsive regimes, together with the quantum
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regime in which multiple scattering phenomena vyield irgeghces and localization. The maximum
evolution time of the random phase state is about 2.7 ps. &hneple, a rectangular sheet of
21.2 nmx 12.2 nm, is chosen large enough so that the electron wavepa@pagates without reaching
the edges of the sheet, thus minimizing finite-size effe€ts. each concentration and distribution of
vacancies, we calculate the maximum of the diffusion cadefiicD™**(E), the mean free path.(E)
and the Fermi velocityg(E), from which we infer the semi-classical conductivity in tiusive regime
osc. Then we derived the conductivity at latter times to take itcount quantum interferences (and
localization phenomena), using the approximation:

(12)
2.2. Electronic Transport in Graphene Tunnel Junctionstideology

In the tunnel junction configuration, the system consista ¢tdrge armchair graphene nanoribbon
(aGNR) or zigzag graphene nanoribbon (zGNR) with widthsee Figure, with highly doped contacts
and an undoped section of length The doping is obtained by setting a superimposed poteVitiath
the doped regions. In our simulations, we chobse —1.5 eV, this entailing a:-type doping.

Figure 3. Scheme of the system wita)(armchair edges antb) zigzag edges.
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We will consider the presence of compensated/uncompehsateancies uniformly distributed
within the undoped region with density. The conductivity of the system is indicated as
o(E,L,W,n) = (2¢*/h) x T(E,L,W,n) x L/W, whereE is the energy of the injected electrons
and T is the transmission coefficient obtained by the standardihaer—Buttiker formula within the
Green'’s function approach

T(E) = Tr[r(left)GRF(right)GA] ’
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where['(eft/1ieht) gre the rate operators corresponding to the left and righ¢doegionsGR/A are the
retarded and advanced Green'’s functions projected ontortdeped region and the trace is performed
on the orbitals corresponding to the undoped region. Ak¢hguantities can be obtained by means of
the real space renormalization techniqB@]]

The corresponding resistivity is(F, L, W,n) = 1/o(E,L,W,n). Whenn = 0, i.e, for the
pristine system, the intrinsic conductivity and resigyivare o, (E, L,W) = o(E,L,W,n = 0)
and pi(E,L,W) = p(E,L,W,n = 0). For largeW/L ratios and energied’ around the
Dirac point, the system exhibits@seudodiffusivéransport regime15,31-36], where the conductive
channels of the contacts tunnel through the undoped regiaitraconstant minimum conductivity
o (E ~0,L,W >> L) ~ 4¢*/(mh) = 0¢. The termpseudodiffusivandicates that the system behaves
as if it were in a diffusive regime, even though no disordgaresent and the diffusive behaviour is only
mimicked by the peculiar values of the transport coeffigaftthe tunnelling conduction channels.

Forn > 0, we define the extrinsic quantities. (£, L, W,n) = p(E, L, W,n) — pm(E, L, W) and
Oext (B, LW, n) = 1/pext(E, L, W,n). As we will see, at£' = 0 and in the presence of compensated
vacancies, the conductivity may increase, thus entailinggative extrinsic resistance.

3. Results and Discussion

We investigated several concentrations of vacancigsto 2%, for the two cases where the vacancies
were equally distributed among the two sublattices (AB)roooe sublattice only (AA). SubsectioBsl
and 3.2 contain the results for 2D graphene. Subsec8dhreports on the case of graphene tunnel
junctions. As illustrated and analysed below, the resolt2D graphene and graphene tunnel junctions
are in agreement and they reveal different facets of the gdnyscs.

3.1. Electronic Structure of 2D Graphene with Vacancies

The intrinsic density of states of 2D graphene increasestlg with energy and vanishes at the Dirac
point. As briefly discussed above, vacancies are expectadpact the DOS especially at low energy
with the formation of zero energy states. To better illusttheir impact, we consider here the extrinsic
density of states, which is given by the difference betweerXOS in the presence of vacancies and that
for pristine graphene.

Our results for the extrinsic DOS in the compensated (AB)kcase plotted in Figurela for
concentrations frond.1% to 1%. We observe that the DOS increases around the Dirac poimtaove
energy region that is larger for higher densities. Outdiieregion, the extrinsic DOS fluctuates around
0, meaning that the total DOS is not significantly modifiednwigspect to the clean case. Although
the DOS seems to increase considerably in correspondertibe irac point, as ing] our numerical
resolution is clearly not good enough to investigate whapleas exactly ai’ = 0.

The extrinsic DOS in the uncompensated (AA) case are plottédgure 4b, for the same vacancy
densities. As expected, the breaking of A-B symmetry geasra relatively sharp peak at zero energy.
The peak height increases with vacancy concentration aisdotiturs at the expense of the DOS
at the sides of the Dirac point, where the extrinsic DOS bexomegative. Although we cannot
yet be conclusive about this point, it could be the effect afagp opening, partially hidden by the
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wings of the convoluted zero-energy peak. This could erptaintradictory observations as reported
in [9,14]. Reference 9] pinpoints the opening of an energy gap, wherela® $uggests the absence of
localization in the uncompensated case for energies abdSerini level. Figuréc shows our estimation
of the simulated gap againstand its fit, which gives

gap = 290 x /n[%] meV (13)

in total agreement with Equatiog)(

In both AB and AA cases, vacancies preserve the hole-padgychmetry (chiral symmetry) and affect
the electronic structure around the Dirac point, althouga different manner. In the first case the DOS
increases, while for the AA distribution there is a depletd the DOS around Fermi energy and a finite
concentration of zero-energy modes in the middle.

Figure 4. (a) Extrinsic DOS for compensated vacancies as a function efethergy;
(b) Same asd) for uncompensated vacancies) Estimation of the gap width and its fit
as a function of the density of uncompensated vacancies.
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3.2. Electronic Transport in 2D Graphene with Vacancies

We start by illustrating the results for the semi-classocadductivity and mean free path summarized
in Figure5. We consider a vacancy density= 0.8% for both the compensated and the uncompensated
case. The corresponding semi-classical conductivitiesfaaction of the electron energy are reported
in Figure5a. Away from Dirac point and in both of the cases, increases linearly with energy
with very similar values. On the contrary, around the Diraénp the results for compensated and
uncompensated vacancies are very different and are gtaotinected to what was already observed
for the DOS. For the balanced case (continuous liag); exhibits a large plateau above the value
oo = 4¢*/(mh) (dotted line). This result confirms what was theoreticaligdicted in L1] and previous
observations]2]. Moreover, a conductivity peak is present exactly arolm&@irac point, as the result
of the presence of the zero-energy vacancy-generated.stédevever, it would be erroneous to conclude
that no localisation phenomena occur in this energy rediofact, for longer simulation time,e., when
going beyond the maximum diffusion coefficient, the contlitgt progressively decreases below the
theoretical minimal value for semi-classical conducyiviy,. We will discuss this aspect later on in
terms of the time evolution of the Kubo diffusion coefficient
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Figure 5. (a) Semi-classical conductivity as a function of the energyhi@ presence of
compensated and uncompensated vacancies with densit§.8%; @) Scaled mean free
path as a function of energy and for different compensateaney densities, and its linear fit.
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For unbalanced vacancies (dashed curve), we can cleargrn@bgs conductivity gap and, again,
a very marked peak aroundl = 0. Note that, in this case, we adopted a higher energy résolu
(n = 3 meV) in order to have a better accuracy in the region of #ye ghis also entails the presence
of many fluctuations visible at higher energy. For lower heon, not shown here37], the plateau is
higher (not much below) and the peak at the Dirac point is reduced. Such a phenomshacause
the energy resolution drives the DOS to zero around Diractpuahile the zero-energy peak is increased.
This evolution towards a gap when decreasing the resoletorfirms the results presented 8j:[ In
the limit of zero temperature (which can be modellediby> 0) the system will become insulator, with
the peculiar feature of presenting a finite concentratiomf-gap states. Such a gap opening was not
observed in14] for low concentrations, presumably because of a lack ofggnesolution.

Figure5b shows the mean free path multiplied by the vacancy density @nction of the energy
for compensated vacancies. We observe that all the cumessasuperimpose, meaning tiiatoughly
scales ad /n, as expected for much diluted scatterers. We also obseavet mean free path scales
linearly with energy and this allows us to infer the scaliag |

6.3 |E[eV]| + 0.5
l, ~ nm
n[%)]

To better understand the physics of vacancies at the Dirant, e now consider the evolution of
the Kubo diffusion coefficients as a function of time. We fe@n the case of compensated vacancies.
Figure6a shows the diffusion coefficient at the energy150 meV and for vacancy densities between
0.2% and 1%. We can clearly distinguish the different tranisgegimes schematized in Figuge In
particular, we observe that the maximum diffusion coeffiti@,, .. (corresponding to the semi-classical
value) occurs at shorter timeg., for higher densities and it assumes lower values, as expécm
the mean free path behaviour, see Fighibe The estimated position of the maxima of the diffusion
coefficient is indicated by a dashed line in the figure. Aftes tine, D starts decreasing, more or less
slowly, toward the localisation regime. Depending on theespof such a decrease, we can determine
whether a transition between the two transport regimespserd.

For example, and much interestingly, we examine what happeithe diffusion coefficients for a
given density of compensated vacancy and at different esdose and far from the Dirac point.

(14)
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Figure 6. (a) Main frame: Diffusion coefficient as a function of time foleetrons with
energyE = 150 meV in graphene with different densities of compertsaseancies. The
position of the maximum diffusion coefficient is indicateyl & dashed line. Top inset:
Maximum diffusion coefficient as a function of the vacancysigy. The solid line is a guide
to the eye. Bottom inset: Time corresponding to the maximiffasdon coefficient. The
solid line is a guide to the eydy) Diffusion coefficient as a function of time for compensated
vacancies with density = 0.4% at different energies.
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Figure6b focuses on the case= 0.4%. At energies far from the Dirac point, the decay of ttfieision
coefficient is very slow, indicating that the system is in thi#usive transport regime. Close to the
Dirac point, on the contrary, the behaviour is very différerFirst of all, the maximum diffusion
coefficient is much smaller than away from = 0. This might appear to be in contrast with the
zero-energy peak of the semi-classical conductivity olesein Figureba. However, we have to consider
that this peak is the combined result of an extremely high R@&a relatively lowD,,.,. The second
difference is that the diffusion coefficient at the Diracmiailecreases considerably with time. Such a
result clearly indicates that the transport regime at thra®point undergoes a transition from diffusive

to strongly localized.

3.3. Electronic Transport in Graphene Tunnel JunctionfyWWhicancies

Let us start this section by briefly illustrating the resuitis the intrinsic transport properties of the
system,i.e,, in the absence of vacancies. As seen in Figdjréhe undoped region between the two
highly-doped contacts is a ribbon section with edgésnd L. For given widthiV (< L) of the system,
the number of active conductive channél§ £, L) in the undoped section is thus determined by the
energyFE and the length.. If the system has armchair edges, the nanoribbon sect®twraarmchair
edges with length. and two zigzag edges with lengili, see FigureBa. Therefore, the number of
conductive modes varies as the number of modes in a zigzagibbon with widthZ. At low energies,
M(E, L) = M,ig,ae(E x L) depends only on the produgt x L. If the system has zigzag edges, the
nanoribbon section has two armchair edges with lengttand two zigzag edges with lengily see
Figure3a. Similarly to the prior case, the number of conductive nsogies as the number of modes
in an armchair nanoribbon with width. At low energiesM (E, L) = Mmenaic(F % L) changes for
different armchair ribbon families, represented by ribdoansisting o8n, 3n+ 1 or 3n+ 2 dimer lines,
with n an integer number. Thereforge,determines the energy scale of the region around the minimum
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conductivity, where we expect that, foi" > L and E close to Oy (E, L, W) andp,, (E, L, W) are
universal functions of? x L. At higher energy, a larger frequency component scaling \Witx W
develops due to the progressive opening of the sub-bandsspanding to transverse confineme3]|

This behaviour is confirmed by Figui® where all curves are seen to collapse onto a universal curve
under appropriate rescaling.

Note that in FigureZa the minimum conductivity does not lie exactlyft= 0 due to the fact that
the DOS of the doped contacts is not symmetric with respekt+o0, whereas its magnitude is slightly
lower than the universal valug,. For the case of the zGNRs (see Figut®, a small peak around
E = 0is seen. This is due to the transmission of the electronsigrehe first (edge) mode of the
zigzag systemd8], which is also active at low energy in the undoped region.FAt 0 the bands in
the zigzag undoped region are almost flat, the density aésiatvery high and this explains the peak.
The asymmetry is due to the fact that the obtained asymnetignen by the change fronvap-n to a
n-n-n heterojunction (as for the aGNRS).

Figure 7. Intrinsic conductivity as a function off x L for (a) aGNRs andlf) zGNRs
with W = 150 nm andL € [5,60] nm. The dashed horizontal lines indicate the universal
valueo, = 4¢*/m. The insets show an enlargement of the regions around thienonim
conductivity indicated by dotted rectangles in the maimfes.
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Let us now consider the presence unbalanced vacancies mntt@ped region. As seen for 2D
graphene in Figurdb, when increasing = n4 > 0 (ng = 0), zero energy states emerge together with
a DOS decay in a certain region around the Dirac point, whi@nticipated as a gap formation. We first
consider aGNRs withy” = 150 nm, L € [5,60] nm andn = 0.1% = 3.82 x 1072 nm~2. The transport
results are reported in FiguBa and show the raise of a dip in the extrinsic resistivity dyaat £ = 0,
due to the presence of the highly localized zero energysstatased by the vacancies. These states
can interact with the very low energy states of the first banti® zigzag nanoribbon corresponding to
the undoped region, which decay exponentially along eablattiice when moving from the edges to
the bulk, thus enhancing tunnelling. Whénincreases, the DOS in the centre of the undoped region
decreases with a subsequent tunnelling suppression. Howbe dip remains well-visible in the figure
due to the stronger increase of the resistivity in the remgimegion of the gap. We next consider
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zZGNRs withiW = 150 nm, L € [5,60] nm andn = 0.1% = 3.82 x 102 nm~2. The results are reported
in Figure8b. In addition to what was observed for the aGNRs, many regmsaappear in the region
of the gap and increase in number for londerThis can be explained by considering the edge states
corresponding to the zigzag edges of the section. The cappfithese extended low energy states with
the zero energy states due to vacancies give rise to thevelosgeaks.

In the gap region, the extrinsic resistivity increases egmbially,i.e., pex; o< exp (L/A). Figure8c
shows the estimated values.ofor the aGNRs and the zGNRs as a function of the energy in thiene
of the gap. For both aGNRs and zGNRs, we have 5 nm. It is important to notice that the gap width
is independent of the ribbon chirality, and it is of the saméeo of that found for 2D graphene, see
Figure4c. The scaling of the gap with'/2, not shown here, is also verified for ribbord].

Figure 8. Extrinsic resistivity for &) aGNRs andlf) zGNRs withiW = 150 nm, L € [5, 60]
nm and uncompensated vacancies with- 0.1%; (c) Rate of the exponential decay of the
extrinsic resistivity in the region of the gap.

E (meV)

Finally, we consider the case of compensated vacancies. oflesfon aGNRs with width
W = 150 nm, length of the undoped regidn= 5, 10 and 15 nm, and density of vacancieisom O up
to 2%. The average conductivity (over 20 different disomgatizations) is reported in FiguBa—c as a
function of the energy for the three considered lengths.aMeeage over different random configurations
Is actually necessary due to the extreme variability of @seiits depending on the specific configuration
of disorder B7]. In all cases, we can clearly observe a conductivity peak at 0, which again stems
from the formation of zero-energy vacancy induced statesyvéd¥er, in contrast to what was observed
for uncompensated vacancies, the gap does not open anditloethstates have a broader energy, which
entails a broader peak. For a single disordered configuratie height of the peak can be occasionally
larger thanr,, thus determining an enhanced conductivity with respettigéqristine system.
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Figure 9. Total conductivity for aGNRs witf/” = 150 nm,n € [0,2%] and @) L = 5 nm;
(b) L =10 nm and ¢) L = 15 nm; (d) Coefficient of the linear dependence of the extrinsic
resistivity as a function of the compensated vacancy densit

-150 -100 -50 0 50 100 150

From the analysis of the data, it turns out that, away fromDRiv@c point, the average extrinsic
resistivity is roughly proportional te, i.e., < pes(E, L,W,n) > a(E, L,W) x n, at least at the low
densities here considered and as long as the resistivitgtisoo high. The estimated is shown in
Figure9d. AroundE = 0, o decreases and indeed the linear behaviour of the extriasistivity is
limited to low densities, while it becomes sublinear at leigiensities, thus indicating the slower decay
of the minimum conductivity at the Dirac point.

A further analysis shows that,; = f(F x L,n x L?> x ), where3 = 1 aroundE = 0 and it slightly
increases with. elsewhere. The dependencelorx L is related to the activation of the energy bands in
the undoped region, as already discussed. The scalingwitli? indicates that the extrinsic resistivity
depends on the square pf= n'/? x L = L/¢, which is the average number of impuritigg( unit of
ribbon width) that an electron is expected to meet when argsbe undoped region.

To verify this scaling, in Figurd0, p. is plotted as a function of x L? for some selected values
of £ x L. Note that, due to rescaling, the available data cover smidbions for larger.. Figurel10
summarizes some of our main results: (i) the reduced extniasistivity at the Dirac point with respect
to the other energy regions; (ii) the approximately lineepehdence of the extrinsic resistivity on the
defect density:; (iii) universal scaling of the average extrinsic resigyias a function oft’ x L andn x L
at the Dirac point. At higher energies, the superpositiothefcurves progressively degrades, especially
at higher densities for which the rise of the extrinsic gty turns out to be faster for shoft. This
is physically sound, because for short pristine undopemmnsg the transport coefficients of individual
conductive channels through the evanescent states arer ihgim for undoped longer regions. Therefore,
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apart for energies arounl = 0 where resonant impurities play a major role, they are progaally
more strongly affected by disorder.

Figure 10. Average extrinsic resistivity for aGNRs witl = 150 nm andZ = 5 nm (black
lines), L = 10 nm (blue lines) and. = 15 nm (red lines), as a function df x L and the
dimensionless parameterx< L?, wheren is here expressed as vacangesunit area.

2
<P, (h2e?)
[e2)

4. Conclusions

We performed a thorough simulation of electronic transportgraphene in the presence of
compensated and uncompensated vacancies. We consideredsth of 2D graphene, investigated
with the real space Kubo—-Greenwood approach, and the caadioite section of graphene ribbon
within two highly doped contacts. For 2D graphene, we hawedothat conventional localization
phenomena develop whenever vacancies are distributeai@maand in a balanced fashion between
both sublattices, and that mean free paths and localizé&ingths are smaller at the Dirac point. A
suppression of DOS and conductivity were obtained for urpgmsated distribution of vacancies in a
single sublattice. The results for the finite graphene nitsbwithin doped contacts are qualitatively in
agreement with those for 2D graphene. For uncompensateshei@s, a gap opens around the Dirac
point, with a conductivity that decreases exponentiallshvtine length of the undoped region. Exactly
at the Dirac point and for armchair edge geometry, the megisexhibits a dip, which indicates the
residual enhanced tunnelling of the electrons throughn@siostates only existing at zero energy. In the
case of zigzag ribbons, many resonances appear in the gapimdreasing the length of the undoped
region. These are consequences of the coupling betweeegbaant states and the low energy edge
states typical of zigzag ribbons. For compensated vacaacié away from the Dirac point, the average
conductivity is found to decrease linearly with the defestsity. At low energies, the decrease is much
slower and a broad conductivity peak is present. By a scamajysis, we found that the extrinsic

resistivity is a function of the energy times the undopedaedength and of the vacancy density times
the square of the undoped region length.
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