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1. Introduction

Low-dimensional molecular conductors exhibit interplay between electron correlation highlighted
by enhanced fluctuation and coupling to the lattice degree of freedom. In the last three decades
or so, charge transfer-type salts which are represented as A2B with different molecular constituents
have increasingly attracted considerable interests. Since the B unit is a closed-shell monovalent ion,
therefore providing one electron or hole to the π orbital of A molecule, a quarter-filled band structure is
realized as a stage to show such interplay [1,2]. Especially in quasi-one-dimensional (Q1D) systems,
various types of phase transitions have been found experimentally, triggering numerous theoretical
works [3]. Among the typical examples are families of TM2X [4,5] and DCNQI2X [6], whose electronic
structures are Q1D because of the stacking nature of the planar TM/DCNQI molecules and anisotropic
shape of molecular orbital (MO). TM representing TMTSF (tetramethyltetraselenafulvalene) or TMTTF
(tetramethyltetrathiafulvalene) molecules form crystals with different monovalent anions X−, then a
three quarter-filled HOMO band of TM molecule is realized, i.e., quarter-filled in terms of holes; on the
other hand in the DCNQI (N,N ′-dicyanoquinonediimine) salts, when their counterparts are monovalent
cations X+ such as Ag and Li, a quarter-filled LUMO band of DCNQI is realized.

Figure 1. Typical symmetry broken states seen in quarter-filled quasi-one-dimensional
molecular conductors. The size of circles and the thickness of bonds represent charge
density and the absolute value of transfer integrals, while arrows and broken line ellipses
represent ordered spin moments and spin singlet formation, respectively. kF is the Fermi
momentum, which is a measure for the periodicity for each state. CDW, SDW, CO, DM, and
SP stand for charge-density-wave, spin-density-wave, charge ordered, dimer-Mott insulating,
and spin-Peierls states, respectively. CO+SP and DM+SP are coexisting states of two orders.

(a) 2kF CDW (b) 2kF SDW 

(c) 4kF CO (d) 4kF bond order (DM)

(e) CO+SP (f) DM+SP

In purely one-dimensional (1D) electronic systems, it is known that any phase transition does not
occur at finite temperature (T ) owing to the enhanced fluctuations. The metallic state in 1D called
the Tomonaga–Luttinger liquid (TLL) has only collective excitations. Nevertheless, many-body effect



Crystals 2012, 2 998

is pronounced so that correlations toward ordered states, i.e., short-range order, can be enhanced at
sufficiently low T . Symmetry breaking in the actual crystalline materials takes place by dimensionality
effect added to such a situation, e.g., the coupling to the lattice and/or the interchain interaction, which
bring about finite-T phase transitions to long-range ordered states. Below, we list typical broken
symmetry states observed in the Q1D molecular conductors at quarter filling, which are schematically
shown in Figure 1. The Fermi momentum kF is measured for a regular 1D chain with lattice constant a
having a quarter-filled band, namely, one carrier per two lattice sites; kF = π/(4a).

• 2kF charge density wave (CDW) state: This is a coexistence of modulation of charge density and
lattice distortion (bond order) with the period of 4a. The origin is usually the Peierls instability,
i.e., the nesting of the Fermi surface, when the electrons are coupled with the lattice degree of
freedom (electron-phonon coupling); the modulation opens a gap at the Fermi energy ϵF in the
case of a 1D band. Sometimes the term CDW is used just to represent a charge density modulation,
regardless of its physical origin, such as the 4a modulation induced by the spin-Peierls (SP) states
mentioned below.

• 2kF spin density wave (SDW) state: This indicates a Peierls instability-induced state as well,
mostly, but with magnetic moments which are modulated with the period of 4a, instead of the
charge and lattice in the case of CDW. However, for 1D electronic systems, the antiferromagnetic
(AF) state in an insulating state due to strong electron correlation, which shows staggered pattern of
the localized spin moments, has the same period; therefore they are often mixed up in terminology.
These should be distinguished as they have distinct origins.

• 4kF charge order (CO): The intersite Coulomb interaction leads to CO with charge localized on
every other site. This is essentially a strongly correlated insulator, where localized spins show up
on the “charge rich” sites. We simply call this as the CO state in this review.

• 4kF bond order: 2a modulation of the bonds, namely, dimerization in the transfer integrals makes
the system effectively half-filled, then the on-site Coulomb interaction can drive the system to
a Mott insulating state. This is called as the dimer-Mott (DM) insulating state. As in the CO
state, localized spins appear on the bonding orbitals (anti-bonding orbitals in the case of three
quarter-filled band) of the dimerized sites.

• SP state: In the CO and DM insulators, the localized spin degree of freedom is described by the
Heisenberg model. 1D Heisenberg chains are susceptible to SP states where spin singlets are
aligned periodically. In the quarter-filling case their period is 4a (tetramerization); in other words,
2kF bond order emerges, while 2kF charge modulation is induced as well.

In this review, we will introduce theoretical results for such broken symmetry states in quarter-filled
Q1D materials. First, in Section 2, we briefly summarize results for 1D models mainly focusing
on the different ground states found there. Then in Sections 3 and 4, we show recent progresses,
theoretically reproducing finite-T phase transitions in such Q1D compounds, by using analytical and
numerical methods, respectively: By considering the interchain Coulomb repulsion within the mean-field
approximation, one can treat the effective 1D model with substantial accuracy, taking into account of the
quantum and thermal fluctuation of the interacting electrons. The CO phase transition is analyzed by the
use of standard 1D theories, namely, the bosonization and renormalization group (RG) scheme, while
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adopting numerical data when necessary (Section 3). The phase diagrams including different competing
and co-existing states, which sometimes can be complex, are numerically investigated using quantum
Monte Carlo simulations (Section 4). Sections 5 and 6 are devoted to discussions and summary.

2. Extended Hubbard Model and Ground States

In most of the charge transfer salts, low energy properties can be well described by effective models
based on one MO of the molecule consisting the valence band: for the A2B systems, a frontier MO of
A. The anisotropic transfer integrals between the packed A molecules lead to the tight-binding model
directly derived from the crystal structure, where each molecule is represented by a lattice site [7].
When interaction effects are added, one can discuss the physical properties of the material whose
comparison between theory and experiment is straightforward [1]. In most typical cases, among different
interactions, the on-site (= on-molecule) Coulomb repulsion is the largest energy scale: This is the
Hubbard model. In recent years, the importance of including the nearest neighbor Coulomb repulsions
as well, namely, considering the extended Hubbard model (EHM), has been recognized. In this section,
we introduce main results of previous theoretical studies on 1D models, focusing on their ground state
properties where the different broken symmetry states discussed in Section 1 are found. There, interplay
between such strong Coulomb interaction and the coupling to the lattice (electron-phonon interaction)
results in a variety of ordered states; they show rich phase diagrams with coexistences and competitions.
For more details, see reviews [3,8] and references therein.

2.1. One-Dimensional Electronic Model

Let us start with a very basic model for the quarter-filled Q1D molecular conductors, the 1D EHM. It
consists of an array of lattice sites with nearest-neighbor transfer integral t, on-site Coulomb repulsion
U , and nearest-neighbor Coulomb repulsion V , whose Hamiltonian is written as:

H = −t
∑
i,s

(
c†i,sci+1,s + h.c.

)
+ U

∑
i

ni,↑ ni,↓ + V
∑
i

ni ni+1 (1)

where the operator c†i,s creates an electron with spin s =↑ or ↓ at the i-th site along the chain. The density
operators are defined as ni,s = c†i,sci,s − 1/4 and ni = ni,↑ + ni,↓. The interchain coupling is completely
neglected in this model. Its ground state consists of two phases for positive U and V : the TLL and the
CO insulating states. The latter is stabilized as a long-range order only at T = 0 when both parameters
(U/t, V/t) are large (see Section 3). In the limit of U/t → ∞, for example, the TLL (CO insulator) is
realized for V/t < 2 (V/t > 2).

On the other hand, in many A2B salts, molecular stacking shows dimerization. This results in the
alternating transfer integrals, and modifies the first term in Equation (1) as

−t
∑
i,s

(
c†i,sci+1,s + h.c.

)
→ −t

∑
i,s

[
1 + (−1)iδd

] (
c†i,sci+1,s + h.c.

)
(2)

For example, in the TM2X family, δd is estimated to be around 0.1–0.2, depending on the anion X .
Finite dimerization leads to the folding of the Brillouin zone with a gap at the boundary k = ±π/(2a):
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A half-filled lower band is realized. Then, in the 1D dimerized EHM, the TLL is no longer stable once
δd ̸= 0 for positive U and V , and replaced by a Mott insulating state (the DM insulator). The CO region
(where intrinsic DM “co-exists” [9]) is shifted toward larger (U/t, V/t), whose critical line depends on
δd. Note that in the CO state with δd ̸= 0, the system loses the inversion symmetry: Ferrroelectricity
arises [10–12].

We note that the mutual interaction between the next nearest-neighbor site, V2

∑
i nini+2, is neglected

in the present review though the EHM with V2-term shows several coexistent states [13–16].

2.2. Electron-Lattice Coupling

There are also many studies on 1D interacting electronic systems coupled to the lattice degree of
freedom. Such situations implicitly include the dimensionality effect, since crystal, then the lattice
structure, is a three-dimensional object. Therefore, as seen in the following sections, finite-T transitions
should be expected.

At quarter-filling, the electron-lattice couplings give rise to various kinds of symmetry breaking.
For instance, instabilities in the charge degree of freedom include the 2kF CDW state by the Peierls
mechanism, and the DM insulator which can be generated spontaneously out of a uniform system.
Besides this, the spin degree of freedom in the insulating states is also susceptible to a lattice-coupled
instability: the SP transition. Such electron-lattice coupled states are stabilized, e.g., in 1D EHM coupled
to translational and/or rotational displacement of the molecules described by the modulation in the
transfer integrals: the so-called Su–Schrieffer–Heeger or Peierls-type electron-phonon interaction. The
model is sometimes called as the (extended) Peierls–Hubbard model. Another important coupling is that
with molecular deformations, i.e., intra-molecular vibration, which couples to the charge density on each
MO: This is called e-mv coupling or the Holstein type electron-phonon interaction (Holstein-Hubbard
model). In some situation, this coupling can considerably enhance the CO region.

Here we just show one typical example in Figure 2 [17], a phase diagram obtained numerically
for the 1D EHM [Equation (1)] with the Peierls-type coupling treated within the adiabatic limit. The
Hamiltonian is written as:

H = −t
∑
i,s

(1 + ui,i+1)
(
c†i,sci+1,s + h.c.

)
+ U

∑
i

ni,↑ ni,↓ + V
∑
i

ni ni+1 +
K

2

∑
i

u2
i,i+1 (3)

where the modulation in the transfer integral ui,i+1 increases the lattice energy whose renormalized
spring constant is K. The 2kF CDW [Figure 1 (a)] appears in the small Coulomb repulsion region,
reflecting its weak-coupling character. In the other diagonal of the phase diagram with large (U/t, V/t),
the CO state is realized, as in purely electronic models, while it shows lattice tetramerization due to the
SP instability [CO+SP state, Figure 1 (e)]. In between these two, we find the co-existence of dimerization
and tetramerization (mixture of bond and charge modulations) [18,19]; This can be interpreted as the
spontaneous formation of the DM state, leading to charge localization, then the SP singlet formation
[DM+SP state, Figure 1 (f)]. The Holstein coupling added to such a situation enhances the CO+SP
region [19].
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Figure 2. Ground state phase diagram of the 1D EHM coupled to Peierls-type
electron-lattice coupling [17] for fixed values of 1/K = 0 (dotted curve) and 1/K = 1

(solid curves). CDW, CO+SP, and DM+SP express the states accompanied with symmetry
breaking introduced in Section 1 (see Figure 1).
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3. Bosonization and Renormalization Group Study

The bosonization is one of the most powerful method to investigate 1D electronic systems, by
which the quantum fluctuation can be fully taken into account [20]. In this section, we review recent
developments and applications of such method to quarter-filled charge transfer salts, especially on
the CO phenomena. We are now able to construct a theory for finite-T phase transition, based on
the combination of bosonization and renormalization group (RG), while adopting numerical results as
“inputs” when needed [21]. Let us introduce our results to some detail, since this is achieved based on a
newly developed methodology.

3.1. One Dimensional Model

First, as a basis, we briefly introduce the bosonization approach to the quarter filled 1D EHM
[Equation (1)]. The low energy Hamiltonian is separated into the charge part Hρ and the spin part
Hσ; this is called charge spin separation. They are written in terms of bosonic phase variables as,

Hρ =
vρ0
4π

∫
dx

{
1

Kρ0

(∂xθρ)
2 +Kρ0(∂xϕρ)

2

}
+

g1/4
2(πα)2

∫
dx cos 4θρ (4)

Hσ =
vσ0
4π

∫
dx

{
1

Kσ0

(∂xθσ)
2 +Kσ0(∂xϕσ)

2

}
+

g1⊥
(πα)2

∫
dx cos 2θσ (5)

where α is a short distance cutoff of the order of the lattice spacing, a. The phase variables satisfy
[θν(x), ϕν′(x

′)] = iπsgn(x − x′)δνν′ . The quantities, vρ0, vσ0, Kρ0, Kσ0, g1/4, and g1⊥ are bare
parameters whose values are non-universal functions of the interaction and the Fermi velocity vF. The
non-linear term in the charge sector, cos 4θρ, originates from the 8kF-Umklapp scattering and leads to the
insulating ground state with CO. On the other hand, the spin sector is essentially the same as the effective
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Hamiltonian of a Heisenberg chain. Therefore, the parameters Kσ0 and g1⊥ are not independent of each
other due to the spin SU(2) symmetry and satisfy the following relation,

Kσ0 =

√
πvσ0 − g1⊥
πvσ0 + g1⊥

(6)

The low-energy properties of the bosonized Hamiltonians Equations (4,5) can be systematically
investigated by the RG approach, where the long length scale properties are analyzed by solving the
derived RG equations. Those for the charge part are written as

d

dl
Kρ(l) = −8G1/4(l)

2Kρ(l)
2 (7)

d

dl
G1/4(l) = (2− 8Kρ(l))G1/4(l) (8)

and for the spin part,

d

dl
G1⊥(l) = −2G2

1⊥(l)− 2G3
1⊥(l) (9)

where l = ln(α′/α) with the new length scale α′. The initial conditions for the above RG equations are
given from the bare parameters as Kρ(0) = Kρ0, G1/4(0) = g1/4/(2πvρ0) and G1⊥(0) = g1⊥/(πvσ0).
Note that the relation Equation (6) still holds even under the renormalization procedure; the quantity
Kσ(l) is written by using the solution of Equation (9) as

Kσ(l) =

√
1 +G1⊥(l)

1−G1⊥(l)
(10)

Whether the ground state is the metallic TLL or the CO insulating state is judged by the solution of the
RG equations for the charge part, Equations (7,8). The metallic TLL state is indicated by G1/4(∞) = 0

with Kρ(∞) > 1/4, whereas the CO insulating state is by G1/4(∞) = −∞. The metal-insulator
boundary is characterized by Kρ(∞) = 1/4. On the other hand, the spin degree of freedom, as long as
we consider repulsive interactions, has gapless excitations with G1⊥(∞) = 0 and Kσ(∞) = 1.

The bare parameters in the bosonized Hamiltonian, Equations (4,5), can be analytically obtained from
the standard bosonization procedure, where only the matrix elements of the mutual interaction between
the one-particle states close to the Fermi level are taken into account. It should be remarked that careful
treatment is necessary for the 8kF-Umklapp scattering, namely the cos 4θρ-term in Equation (4). This is
because it originates from the interaction processes where four right-going electrons are scattered into
four left-going states and vice versa, which include the one-particle states far from Fermi energy as
intermediate states. The systematic way to obtain analytical expression for the coupling constant g1/4 is
as follows [22–24]. The one-particle states are divided into two parts: the states close to ±kF and those
around ±3kF. The effective Hamiltonian for the former states are obtained by integrating out the latter
states and treating the interaction processes including both kinds of states in perturbation expansion. The
lowest order contribution to the 8kF-Umklapp scattering comes from the third order processes, which
are shown in Figure 3. When the bare parameters obtained by the above treatment are used as the initial
conditions for the RG equations, one can obtain the ground state phase diagram on the plane of U/t
and V/t. The CO insulating state is realized for the large U/t and V/t region, whereas the TLL state



Crystals 2012, 2 1003

with both charge and spin excitation without a gap appears in the other region. The phase diagram is
qualitatively the same as that derived from numerical methods [3,8]. We note that, as discussed in the
previous section, the alternating transfer integrals change the TLL to the DM insulating state because
the 4kF-Umklapp scattering is generated by the dimerization gap at k = ±2kF. In addition, the CO
region on the U -V plane is reduced because the CO and the dimerization compete with each other [24].
However, CO is still stabilized even in the presence of the dimerization.

Figure 3. Lowest order diagrams expressing the 8kF-Umklapp scattering [22,23]. Here,
p = +/− indicates the right/left going state, and the solid and the dotted lines express the
electrons close to ±kF and to ±3kF, respectively.
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The quantitative discrepancy between the phase diagrams derived by the analytical bosonization
procedure and the numerical method is ascribable, not to the procedure of using the bosonized
Hamiltonian together with the RG equations, but to the choice of the initial conditions of the RG
equations. As is already noted, the one-particle states around ±kF are taken into account in the analytical
bosonization procedure. When the mutual interaction becomes stronger, such a treatment does not
endorse quantitatively correct results, because the interaction processes far from the Fermi energy play
important roles. One of the most evident example is the 8kF-Umklapp scattering leading to the CO
state noted above. However, it is difficult to obtain the accurate values of the initial conditions by such
analytical procedures. Instead, the exact diagonalization method for finite size clusters can be used, as
demonstrated for the 1D EHM [25]. Here, the size L is related to the variable l, as l ≃ lnL. The initial
conditions obtained by such a method lead to the phase diagram which shows good agreement with that
by the “purely” numerical methods.

3.2. Quasi One Dimension

Strictly 1D models do not show any phase transition at finite T as is noted in Section 1; The CO in
the 1D EHM appears only at T = 0. In order to investigate the phase transition observed in the actual
crystalline materials, one has to take into account the high-dimensionality. Let us discuss the Q1D model
where the 1D chains described by the EHM are coupled via the interchain interaction,

H⊥ = V⊥
∑
i,⟨l,l′⟩

ni,lni,l′ (11)
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where ni,l is the electron number of the i-th site in the l-th chain, ⟨l, l′⟩ denotes a pair of adjacent chains,
and the strength of the interchain repulsive interaction is expressed by V⊥. In the following, we apply
the mean-field approximation to the interchain interaction (interchain mean-field approximation),

ni,lni,l′ → ⟨ni,l⟩ni,l′ + ni,l⟨ni,l′⟩ − ⟨ni,l⟩⟨ni,l′⟩ (12)

which enables us to investigate the finite transition temperature TCO [26,27] as well as the T -dependences
of several quantities across TCO [21] by the bosonization method. Such an interchain mean-field
treatment has been applied to different Q1D systems and is known to be accurate as long as we have
small interchain couplings [28,29].

3.2.1. Transition Temperature

We assume the CO pattern to be anti-phase between the adjacent chains, ⟨ni,l+1⟩ = −⟨ni,l⟩, which
is naturally expected to gain the energy for the positive V⊥. This leads our model to the effective 1D
Hamiltonian given by,

H = −t
∑
i,s

(
c†i,sci+1,s + h.c.

)
+ U

∑
i

ni,↑ni,↓ + V
∑
i

nini+1 + zV⊥n
∑
i

(−1)ini + zNV⊥n
2/2

(13)

where N and z are the total number of the sites in the chain and the number of the adjacent chains,
respectively. The quantity n denotes the order parameter of CO. Notice that effects of n in the adjacent
chains act as an alternating potential and thus induce a gap at k = ±π/(2a) = ±2kF. As a result, the
system effectively becomes half-filling, in which the 4kF-Umklapp scattering appears. In the bosonized
form, the Hamiltonian for the charge part (except the quadratic term of n) is written as follows,

Hρ =
vρ0
4π

∫
dx

{
1

Kρ0

(∂xθρ)
2 +Kρ0(∂xϕρ)

2

}
+

g3⊥
(πα)2

∫
dx cos 2θρ +

g1/4
2(πα)2

∫
dx cos 4θρ (14)

Here the second term expresses the 4kF-Umklapp scattering. Naturally, the bare parameters are
functions of the CO order parameter n. Up to the first order of n, g3⊥ is proportional to n, whereas
the other parameters are the same as those in the absence of n. Therefore, the transition temperature TCO

is determined by the following equation,

1 =
zV⊥ag̃

2
3⊥

(πα)4

∫
dx

∫ 1/TCO

0

dτ FCO(x, τ)|T=TCO
(15)

where g3⊥ = zV⊥ng̃3⊥, FCO(x, τ) = ⟨Tτ cos 2θρ(x, τ) cos 2θρ(0, 0)⟩0 with ⟨· · · ⟩0 denoting the thermal
average in terms of Equation (4), namely the Hamiltonian of the charge part in the absence of CO. The
quantity FCO(x, τ) is written by the solution of RG Equation as

FCO ≃ 1

2
exp

[
−
∫ ln(r/α)

0

dl
{
4Kρ(l) + 2G1/4(l)

}]
(16)

where r =
√
x2 + (vρτ)2. With regard to the appearance of CO, the (U/t, V/t)-plane can be separated

into the three distinct regions, which is summarized in Figure 4 [26]. In the region (iii) where CO
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is found even in the absence of V⊥ at T = 0, the infinitesimal V⊥ makes TCO finite, as is naturally
expected. There is another region in which TCO becomes finite under the infinitesimal V⊥; the region (ii)
is specified by 1/4 ≤ Kρ(∞) ≤ 1/2 and the metallic TLL state is realized in the strictly 1D case. In
contrast, a finite amount of V⊥ is necessary for appearance of CO insulating state at finite T for the region
(i) with Kρ(∞) > 1/2. Thus, the parameter region where the finite TCO appears under the infinitesimal
interchain coupling in the Q1D system is different from that where the CO is realized in the 1D system.

Figure 4. Three distinct regions classified by the appearance of CO insulating states at the
finite T [26]. Here, Kρ in the figure corresponds to the solution Kρ(∞) of the RG equation,
Equations (7,8).
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3.2.2. Quantities Across TCO

The bosonization and RG technique as discussed tells us how to incorporate the correlation effects
into the non-interacting system in a controllable way. However, it is not straightforward to extend it
to calculate quantitatively physical observables, particularly for the strong-coupling region. Here, we
introduce a newly developed scheme combined with numerical methods, by which we can calculate
quantities not only above but also below TCO. This is similar to the 1D case as discussed in Section 3.1;
we adopt numerical results as “inputs”.

In the presence of CO, the charge part of the effective Hamiltonian is written by Equation (14 ). The
RG equations are given as

d

dl
Kρ(l) = −2G2

3⊥(l)K
2
ρ(l)− 8G2

1/4(l)K
2
ρ(l) (17)

d

dl
G3⊥(l) = (2− 2Kρ(l))G3⊥(l)−G3⊥(l)G1/4(l) (18)

d

dl
G1/4(l) = (2− 8Kρ(l))G1/4(l)−

1

2
G2

3⊥(l) (19)

The initial condition for G3⊥(l) is given by G3⊥(0) = g3⊥/(πvρ0). On the other hand, the spin part of
the bosonized Hamiltonian is unchanged (the parameters will be affected). Namely, the Hamiltonian is
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given by Equation (5) and the RG equation corresponding to it is written by Equation (9) together with
the constraint Equation (6) from the SU(2) symmetry.

Figure 5. Temperature dependences of the spin susceptibility χσ(T ) and the
resistivity ρ(T ) together with the CO order parameter n(T ), (a) for the region (ii) in
Figure 4[(U/t, V/t) = (6.0, 2.5)] and (b) for the region (iii) [(U/t, V/t) = (10.0, 4.0)] [21].
The solid curve shows the data for V⊥ = 0, without charge order at finite T .

10−2

100

102

0.2 0.4 0.6 0.8 1
0

0.2

0.4

T/t

zV⊥ /t=1.5

zV⊥ /t=0.75n

1

2χσ

without CO

U/t=6.0
V/t=2.5

zV⊥ /t=0.75

zV⊥ /t=1.5

(a)

ρ

without CO

zV⊥ /t=0.75

zV⊥ /t=1.5

100

102

104

0.4 0.6 0.8 1 1.2
0

0.2

0.4

T/t

zV⊥ /t=1.0

n

1

2χσ

zV⊥ /t=1.0

without CO

U/t=10.0
V/t=4.0

(b)

ρ
zV⊥ /t=1.0

without CO

In order to discuss the finite T properties, the RG scaling is cut off at the scale corresponding to
T : l ≃ lT ≡ ln(Ct/T ) with C being an O(1) numerical constant. The initial conditions are obtained by
the exact diagonalization method for small size clusters as is introduced above. It should be noted that
the T -dependence of the CO order parameter n(T ) cannot be obtained within the bosonization and RG
procedure because of the ambiguity in the relationship between n and the phase variables. Therefore we
determine n(T ) by the quantum Monte Carlo (QMC) method independently. The present procedure is
explained in detail in [21]. The spin susceptibility χσ(T ) [30,31] and the resistivity ρ(T ) [32,33] are
respectively written by the T dependent parameters as

χσ(T ) =
2

πvF

χ0(T )

1− [G1⊥(T ) +G4σ(T )]χ0(T )
(20)

ρ(T ) =
2π2T

vρ0

[
G2

3⊥(T )B
2(Kρ(T ), Kρ(T )) + 4G2

1/4(T )B
2(4Kρ(T ), 4Kρ(T ))

]
(21)
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where χ0(T ) is the spin susceptibility in the noninteracting case normalized as χ0(0) = 1 and
B(x, y) = Γ(x)Γ(y)/Γ(x + y). It should be noted that G4σ(T ) = 1 − vσ(T )/vF is not obtained by
the RG scheme; we use usual finite size scaling procedure. The spin susceptibility and the resistivity
are shown as a function of T for the region (ii) [(U/t, V/t) = (6.0, 2.5)] and for the region (iii)
[(U/t, V/t) = (10.0, 4.0)] in Figure 5. The spin susceptibility is enhanced below TCO without any steep
singularity at T = TCO. The enhancement originates from the suppression of spin velocity due to the gap
formation at k = ±2kF. On the other hand, the resistivity shows a clear cusp at T = TCO. The abrupt
change originates from the emergence of 4kF-Umklapp scattering due to the gap in the energy dispersion
at ±2kF. Just below TCO, the resistivity shows a curve which is convex upward in the semi-log plot. The
behavior reflects the rapid increase of the CO order parameter n for T . TCO. At lower T , the curve
turns convex downward showing an activation type behavior exp(∆/T ) with the weak T -dependence of
∆. We comment that the resistivity is difficult to calculate exactly by solely numerical simulations.

Overall T dependence of the magnetic susceptibility of 1D electron systems is well fitted by the
so-called Bonner–Fisher behavior, namely χσ(T ) decreases (increases) as a function of T for T > T ∗

(T < T ∗), where T ∗ is of the order of the effective spin-exchange coupling. The present results shown
in Figure 5 express the case for TCO > T ∗. If smaller values of zV⊥ are used, the other case of
TCO < T ∗ would be possible. The former case may be observed in DI-DCNQI2Ag [34], whereas
TCO of TMTTF2AsF6 seems to be lower than T ∗ [35].

4. Numerical Study

Recent experimental progresses showing intricate phase competitions and coexistences have
prompted us to explore issues beyond the quarter-filled 1D EHM, where additional terms including
the dimensionality effects and electron-lattice couplings give rise to rich phase diagrams. Numerical
methods are powerful in investigating and have been applied to reveal the finite-T properties of
such models [36–38]. This is in contrast and complementary to the analytical approaches which
provide insights to the phenomena, for example, described by means of the TLL parameters in the
bosonization scheme.

Although there are a few approximation-free results in higher dimensions, numerical approaches
such as exact diagonalization [39,40], QMC simulation [41–44], and density-matrix renormalization
group method [45] have demonstrated their effectiveness in the quarter-filled 1D electronic models.
Many of the studies along this line have been devoted to the ground-state (T = 0) properties, partly
because no phase transition occurs there at finite T as discussed in the previous sections. We can
apply the numerical methods to Q1D models as well, by considering the lattice degrees of freedom
and/or using the inter-chain mean-field approximation as in the previous section. By fully taking
into account of the 1D fluctuations by solving effective 1D models while determining the mean-fields
self-consistently, we can draw finite-T phase diagrams for Q1D quarter-filled charge transfer salts, with
sufficient accuracy [36,38].
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We here discuss finite-T properties of the quarter-filled EHM coupled to the Peierls-type
electron-lattice coupling in Q1D. The Hamiltonian consists of two parts, H =

∑
j H

j
1D +

∑
⟨j,k⟩ H

⟨j,k⟩
⊥ .

The first term represents the intra-chain part along the stacking direction of molecules,

Hj
1D = −

∑
i,s

{t+ (−1)iδd} (1 + ui,j)
(
c†i,j,sci+1,j,s + h.c.

)
+

KP

2

∑
i

u2
i,j +

KP2

2

∑
i

u4
i,j

+ U
∑
i

ni,j↑ni,j↓ + V
∑
i

ni,jni+1,j (22)

where δd denotes the intrinsic lattice dimerization (alternation in the transfer integrals), ui,j the
renormalized lattice displacement, and, KP and KP2 the coupling constants of the elastic energy up
to the fourth order. The second term in H is the inter-chain Coulomb repulsion,

H⟨j,k⟩
⊥ = V⊥

∑
i

ni,jni,k (23)

We apply two approximations to the model. The lattice displacements uij , treated as classical
variables, are taken into account by the adiabatic approximations, being optimized so as to minimize
the free energy. The mean-field approximation is imposed to the inter-chain part, H⊥ as discussed in
Section 3.2. We consider periodicities up to four sites, as seen from Figure 1. The model is then reduced
to the effective 1D model, which we can treat with full quantum and thermal fluctuations by numerical
methods. We have used quantum transfer matrix method to seek for the rather high-T region [36], while
the QMC method can be applied to the whole T range even including low-T phases [38]. For the QMC
simulation, we employ the stochastic-series-expansion (SSE) method [46–48], which is high-precision
and less expensive in computational time so that we can use it in iterative calculations of self-consistent
loop needed for the adiabatic and mean-field approximations.

Figure 6. Phase diagrams in the plane of zV⊥-T for t = 1, U = 6, V = 2.5, and KP = 0.75;
(a) δd = 0 and KP2 = 0; (b) δd = 0 and KP2 = 0.75; (c) δd = 0.02 and KP2 = 0 [38].
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Figure 7. Temperature dependences of charge densities, lattice distortions, and charge
and magnetic susceptibilities for U = 6, V = 2.5, KP = 0.75, δd = 0, and KP2 = 0;
(a)–(c) zV⊥ = 1.5; (d)–(f) zV⊥ = 0.25 [38]. Open and closed circles represent results for
N = 32 and 64, respectively. Statistical errors are smaller than the symbol sizes. Data shown
by cross symbols at T=0 are obtained by the exact diagonalization (Lanczos) method for
N = 12. The dashed line in (c) (f) shows a Curie–Weiss fit for 0.3 < T < TCO(TDM).

0.0

0.5

1.0

0.0 0.4
0.82

0.86

−0.2

0.0

0.2

0.0 0.5 1.0
0.00

0.03

0.06

0

1

2

3

ch
ar

ge
 d

en
si

ty

u2, u3

T

la
tti

ce
 d

is
to

rt
io

n

u1, u4

n2

(a)

χ c

, n4

n 2
,

n 4

T
n3

n1

χ s

(b)

(c)

0.45

0.50

0.55

−0.6

−0.3

0.0

0.3

0.0 0.4
0.3

0.5

0.0 0.4 0.8
0.00

0.03

0.06

0

1

2

3

ch
ar

ge
 d

en
si

ty

u1, u3

la
tti

ce
 d

is
to

rt
io

n

u4

u2

n2

(d)

T

χ c

, n3

n1 , n4

T

u 1
, u

3

(e)

(f)
χ s

The results are summarized in the T -V⊥ phase diagrams shown in Figure 6, which are based on direct
calculations of T dependences of the order parameters as shown in Figure 7. The global feature is that the
uniform, i.e., paramagnetic metallic phase is driven to the insulating state which is DM or CO depending
on the strength of V⊥ when T is lowered. The boundary between DM and CO is very steep and likely
of first order for KP2 = 0, δd = 0 [Figure 6(a)]. On the other hand, when the anharmonic term in the
elastic energy is finite (KP2 > 0), the coexistence phase of DM and CO emerges. This is analogous to
the CO phase in the dimerized 1D EHM with electronic ferroelectricity, but different in the sense that the
system is uniform at high-T , namely, the ferroelectricity is spontaneously generated [36]. In the case of
the intrinsically dimerized lattice (δd > 0), the system always has finite dimerization and the transition
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at intermediate T occurs only to the CO state, which is continuous. Below these insulating phases, with
further decreasing T , the system undergoes the SP transition showing tetramerization. The SP phases
under DM and CO states are distinguishable [see Figure 1(e,f)] by the eight order parameters, though
their T dependences of the charge and spin susceptibilities look alike as shown in Figure 7. We note
that the paramagnetic insulating phases at intermediate region can not be obtained by simple one-body
approximations such as the Hartree–Fock analysis, which usually needs magnetic ordering to open a
charge gap.

In some molecular conductors showing SP transition, such as in MEM-(TCNQ)2, it is insisted that
the lattice displacements are not adiabatic [49]. Effect of quantum nature of the lattice displacements on
the finite-T phase diagrams is an interesting problem which remains to be investigated.

5. Discussion

Since we have developed well-organized ways of theoretically describing finite-T phase transitions
in quarter-filled Q1D systems, essentially we can now make a direct comparison to experimental results
for each compound. The canonical situation would be the CO phase transition in the EHM, without
dimerization, as illustrated in the previous sections. However, it is rather rare to have such an example
in the existing compounds; Many have intrinsic dimerization and/or complex interchain coupling.
DI-DCNQI2Ag [34,50] was formally considered to be the typical system, while recently it has been
proposed that the ordered phase below T < 220 K might be a complex CO, DM mixed state [51,52].

TMTTF2X [35,53,54] family have been providing an ideal stage for such comparison, for systems
with dimerization from the outset. As has been discussed in [38], the delicate competition and
cooperation of DM, CO, and SP states under applied pressure are reproduced: The phase diagram in
Figure 6 (c) shows a good agreement with the P -T phase diagram of X = AsF6 compound drawn based
on NMR measurements [35]. Here, zV⊥ correspond to the inverse of P ; the effect of P acts strongly on
transfer integrals, therefore the “effective” Coulomb interaction becomes smaller.

Now, several Q1D compounds without dimerization have been synthesized where a CO transition
is suggested, such as (o-DMTTF)2Br [55] and (EDT-TTF-CONMe2)2X [X = AsF6 and Br] [56,57].
On the other hand, materials known from early days such as the compounds showing SP transition,
MEM-(TCNQ)2 and (BCPTTF)2X (X = PF6, AsF6) [58–60], might be interesting to revisit with
renewed understandings. In (EDO-TTF)2PF6 [61], a strong first-order phase transition is observed which
is not reproduced in theory. More systematic comparisons are required.

From the theoretical point of view, several future directions can be listed. For example, the
bosonization method introduced in Section 3.1 has been applied to the 1D electron-lattice coupled
model [62–64]. In the presence of the lattice distortion with four-fold periodicity (2kF lattice distortion),
the transition from SP state without CO to that with CO occurs at the ground state with increasing V [62].
For V . Vc with Vc indicating the phase boundary, the lattice distortion has a maximum value, whereas
it is suppressed for V & Vc. The transition temperature of the SP state shows similar behavior [64],
consistent with the QMC results [38]. On the other hand, the alternating lattice modulation leads to the
insulating state with spontaneous lattice dimerization, and appears between the metallic state and the
CO insulating state [63]. A unified framework including such lattice degree of freedom, on top of the
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Q1D theory in Section 3, would provide a complementary understanding of the numerical works on the
equivalent model in Section 4.

Another direction is the coupling between charge and spin degrees of freedom. In Sections 3 and
4, they are essentially decoupled: the spin-charge separation can be applied. Even in the same class of
quarter-filled Q1D systems, the spin ordering, such as the AF state, is often observed; This indicates that
not only the Coulomb but also the spin-exchange interactions between the 1D chains are non-negligible.
The latter interactions stem from the interchain transfer integrals, which we neglected in the previous
sections. Actually, recent works, experimental and theoretical, revealed that the interplay between such
interchain couplings and the CO, together with the electron-lattice coupling, brings about the intricate
phase competitions seen in TMTTF2X [54,65,66]. It is a challenging and desirable topic to incorporate
the interchain spin-exchange interaction in the elaborated methodologies in Sections 3 and 4.

The spin-charge coupling also appears more directly in some Q1D molecular systems, where the
constituent molecule itself contains both the localized spin and itinerant carriers. A typical example is
found in phthalocyanine (Pc) compounds such as TPP[Fe(Pc)(CN)2]2 [67], where observations of a giant
magnetoresistance [68] has attracted much interest. In the latter material, π-electrons in the HOMO of
Pc forms a 1D conduction band, whereas d-electrons in the center Fe atom are considered to be localized
spins with strong anisotropy, namely Ising spins [68]. Since these two types of electron exist in one
molecule, we expect strong π-d interaction between them. Then, we can model the system as 1D EHM
coupled to local spins [69–71], as

H =− t
∑
i,s

(
c†i+1,sci,s + h.c.

)
+ U

∑
i

ni↑ni↓ + V
∑
i

nini+1

− JH

∑
i

sziS
z
i + JK

∑
i

Sz
i S

z
i+1 (24)

where the first three terms represent the 1D EHM for π-electron at quarter-filling and last two
terms are for d spins. JH denotes the π-d interaction. We also include the AF super-exchange
interaction, JK, between d spins, whose short-range correlation is experimentally indicated by the
analysis of the magnetic susceptibilities [72]. We have elucidated that, at low-T range compared to
JK, corresponding to a situation where the Ising spins are frozen antiferromagnetically, the π-d coupling,
JH, considerably enhances the correlation of CO [71], consistent with the insulating character seen in the
compound. Calculations at finite-T including the magnetic field effect might elucidate the spin-charge
coupled behavior in this new type of molecular system [73]. Another interesting example might be
(Per)2M (mnt)2 (M = Ni, Pd, Pt, Fe) [74] where localized spins on M (mnt)2 and itinerant carriers on
quarter-filled perylene chains interact with each other; in fact, the magnetic response suggests strong
coupling of the SP and CDW states [75].

6. Summary

In summary, we have reviewed recent progresses in theoretical works on the quasi-one-dimensional
molecular conductors. The studies on CO as an origin of insulating behavior in the 2:1 charge
transfer salts pointed to the importance of the strong-correlation effects, not only U but also V . The
bosonization together with the renormalization group technique has made progress so that the finite-T
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phase transitions in Q1D systems can be discussed analytically. The scheme has also been combined
with numerical methods to calculate physical observables such as the spin susceptibility and resistivity,
whose results can be directly compared with experiments. The numerical simulations have also been
applied to the model beyond the Q1D EHM, i.e., with coupling to the lattice, at finite-T . The obtained
phase diagrams show a variety of the broken-symmetry states with coexistence and competition and well
reproduce the P − T phase diagrams observed experimentally.
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5. Bourbonnais, C.; Jérome, D. Interacting electrons in quasi-one-dimensional organic
superconductors. In The Physics of Organic Superconductors and Conductors; Lebed, A.G., Ed.;
Springer-Verlag: Berlin, Germany, 2008.

6. Hünig, S.; Herberth, E. N,N ′-dicyanoquinone diimines (DCNQIs): versatile acceptors for
organic conductors. Chem. Rev. 2004, 104, 5535–5563.

7. Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. The Intermolecular
Interaction of Tetrathiafulvalene and Bis(ethylenedithio)tetrathiafulvalene in Organic Metals.
Calculation of Orbital Overlaps and Models of Energy-band Structures. Bull. Chem. Soc.
Jpn. 1984, 57, 627–633.

8. Mila, F.; Penc, K. Model calculations for 1D correlated systems. J. Electron. Spectrosc. 2001,
117–118, 451–467.

9. Seo, H.; Fukuyama, H. Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic
Conductors. J. Phys. Soc. Jpn. 1997, 66, 1249–1252.

10. Monceau, P.; Nad, F.; Brazovskii, S. Ferroelectric Mott-Hubbard Phase of Organic (TMTTF)2X
Conductors. Phys. Rev. Lett. 2001, 86, 4080–4083.

11. Tsuchiizu, M.; Orignac, E. Ising transition in a one-dimensional quarter-filled electron system
with dimerization. J. Phys. Chem. Solids. 2002, 63, 1459–1463.

12. Ishihara, S. Electronic Ferroelectricity and Frustration. J. Phys. Soc. Jpn. 2010, 79,
011010:1–011010:11.



Crystals 2012, 2 1013

13. Emery, V.J.; Noguera, C. Critical properties of a spin-1/2 chain with competing interactions.
Phys. Rev. Lett. 1988, 60, 631–634.

14. Kobayashi, N.; Ogata, M.; Yonemitsu, K. Coexistence of SDW and Purely-Electronic CDW in
Quarter-Filled Organic Conductors. J. Phys. Soc. Jpn. 1998, 67, 1098–1101.

15. Kishigi, K.; Hasegawa, Y. Two Kinds of the Coexistent States in One-Dimensional Quarter-Filled
Systems under Magnetic Fields and Temperatures. J. Phys. Soc. Jpn. 2000, 69, 3621–3628.

16. Tomio, Y.; Suzumura, Y. Quarter-filled spin density wave states with long-range Coulomb
interaction. J. Phys. Chem. Solids 2001, 62, 431–434.

17. Kuwabara, M.; Seo, H.; Ogata, M. Coexistence of Charge Order and Spin-Peierls Lattice
Distortion in One-Dimensional Organic Conductors. J. Phys. Soc. Jpn. 2003, 72, 225–228.

18. Ung, K.C.; Mazumdar, S.; Toussaint, D. Metal-Insulator and Insulator-Insulator Transitions in
the Quarter-Filled Band Organic Conductors. Phys. Rev. Lett. 1994, 73, 2603–2606.

19. Clay, R.; Mazumdar, S.; Campbell, D. Pattern of charge ordering in quasi-one-dimensional
organic charge-transfer solids. Phys. Rev. B 2003, 67, 115121:1–115121:9.

20. Fukuyama, H.; Takayama, H. Dynamical Properties of Quasi-One-Dimensional Conductors–
Phase Hamiltonian Approach. In Electronic Properties of Inorganic Quasi-One-Dimensional
Compounds; Monceau, P., Ed.; Reidel Publishing: Dordrecht, The Nertherlands, 1985; p. 41.

21. Yoshioka, H.; Tsuchiizu, M.; Otsuka, Y.; Seo, H. Finite-Temperature Properties across the Charge
Ordering Transition–Combined Bosonization, Renormalization Group, and Numerical Methods.
J. Phys. Soc. Jpn. 2010, 79, 094714:1–094714:9.

22. Yoshioka, H.; Tsuchiizu, M.; Suzumura, Y. Correlation Effects in a One-Dimensional
Quarter-Filled Electron System with Repulsive Interactions. J. Phys. Soc. Jpn. 2000, 69,
651–654.

23. Yoshioka, H.; Tsuchiizu, M.; Suzumura, Y. Effects of Next-Nearest-Neighbor Repulsion on
One-Dimensional Quarter-Filled Electron Systems. J. Phys. Soc. Jpn. 2001, 70, 762–773.

24. Tsuchiizu, M.; Yoshioka, H.; Suzumura, Y. Crossover from Quarter-Filling to Half-Filling in a
One-Dimensional Electron System with a Dimerized and Quarter-Filled Band. J. Phys. Soc. Jpn.
2001, 70, 1460–1463.
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