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Abstract: A zero-gap state with a Dirac cone type energy dispersion was discovered in an 

organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first 

two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In 

contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The 

present system, therefore, provides a new type of massless Dirac fermion system with 

anisotropic Fermi velocity. This system exhibits remarkable transport phenomena 

characteristic to electrons on the Dirac cone type energy structure. 

Keywords: Dirac fermion; transport phenomena; α-(BEDT-TTF)2I3; inter-band effects of 

the magnetic field; zero-mode Landau level; ν = 0 quantum Hall effect 

 

1. Introduction 

Since Novoselov et al. [1] and Zhang et al. [2] experimentally demonstrated that graphene is a 

zero-gap system with massless Dirac particles, such systems have fascinated physicists as a source of 

exotic systems and/or new physics. At the same time, the quasi-two-dimensional (2D) organic conductor 

α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene) was found to be a new type of 

massless Dirac fermion state under high pressures [3–6]. Originally, this material had been considered as 

a narrow-gap semiconductor [7–9]. In contrast to graphene, this is the first bulk (multilayer) zero-gap 

material with a Dirac cone type energy dispersion. In this review, we describe the remarkable transport 
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phenomena characteristic to electrons on the Dirac cone type energy structure in α-(BEDT-TTF)2I3 

under high pressure. 

The organic conductor α-(BEDT-TTF)2I3 is a member of the (BEDT-TTF)2I3 family [10]. All the 

crystals in this family consist of conductive layers of BEDT-TTF molecules and insulating layers of I3
−
 

anions as shown in Figure 1 [10–13]. The difference among them lies in the arrangement and orientation of 

BEDT-TTF molecules within the conducting plane, and this difference gives rise to variations in the 

transport phenomena. Most of the members of this family are 2D metals with large Fermi surfaces, and 

some of them are superconducting with TC values of several Kelvin [11–13]. On the other hand, 

α-(BEDT-TTF)2I3 is different from the other crystals. According to the band calculation, this system is a 

semimetal with two small Fermi surfaces; one with electron character and the other with hole character [8]. 

Figure 1. (a) BEDT-TTF molecule and I3
−
 anion; (b) Crystal structure of α-(BEDT-TTF)2I3 

viewed from a-axis; (c) Crystal structure viewed from c-axis. Reproduced with permission 

from [5]. 

 

When cooled, it behaves as a metal above 135 K, where it undergoes a phase transition to an insulator 

as shown in Figure 2 [10]. In the insulator phase below 135 K, the rapid decrease in the magnetic 

susceptibility indicates that the system is in a nonmagnetic state with a spin gap [14]. According to the 

theoretical work by Kino and Fukuyama [15] and Seo [16] and the experimental investigation  

by Takano et al. (nuclear magnetic resonance) [17], Wojciechowski et al. (Raman) [18] and  

Moldenhauer et al. [19], this transition is due to the charge disproportionation. In the metal state, the 

charge distribution of each BEDT-TTF molecules is approximately 0.5e [18,20]. At temperatures 

below 135 K, however, horizontal charge stripe patterns for +1e and 0 have been formed as shown in the 

inset of Figure 2.  
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Figure 2. Temperature dependence of the resistance under several hydrostatic pressures [5,8]. 

The inset shows a schematic picture of the arrangement of BEDT-TTF molecules in a 

conducting layer viewed from the c-crystal axis and the charge pattern under ambient 

pressure. At temperatures below 135 K, the BEDT-TTF molecule layer forms horizontal 

charge stripe patterns for +1e and 0 [15–19]. Reproduced with permission from [5]. 

 

When the crystal is placed under a high hydrostatic pressure of above 1.5 GPa, the metal-insulator 

transition is suppressed and the metallic region expands to low temperatures as shown in  

Figure 2 [7,21,22]. This change in the electronic state is accompanied by the disappearance of the 

charge-ordering state as shown by the Raman experiment [18]. Note that in the high-pressure phase, the 

resistance is almost constant over the temperature region from 300 to 2 K. It looks like a dirty metal with 

a high density of impurities or lattice defects. In dirty metals, the mobilities of carriers are low and 

depend on temperature only weakly, and therefore, resistance is also independent of temperature. In the 

present case, however, the situation is different. Carriers with a very high mobility approximately  

10
5
 cm/V·s exhibit extremely large magnetoresistance at low temperatures [5–8,21], indicating that the 

crystal is clean.  

To clarify the mechanism of these apparently contradictory phenomena, the Hall effect was first 

examined by Mishima et al. [22]. However, the magnetic field of 5 T they used was too high to 

investigate the property of carriers in the zero-field limit. This is because the carrier system at low 

temperatures is sensitive to the magnetic field and its character is varied even in weak magnetic fields 

below 1 T. Thus, Tajima et al. reexamined the Hall effect using a much lower magnetic field of 0.01 T [8]. 

They also investigated the magnetoresistance and Hall resistance as a function of the magnetic field up 

to 15 T and the temperature between 0.5 and 300 K. The experimental results they obtained are 

summarized as follows: (1) Under a pressure of above 1.5 GPa, the resistivity is nearly constant between 

300 and 2 K [5,8,22]. (2) In the same region, both the carrier (hole) density and the mobility change by 

about six orders of magnitude as shown in Figure 3. At low temperatures below 4 K, the carrier system 

is in a state with a low density of approximately 8 × 10
14

 cm
−3

 and a high mobility of approximately  

3 × 10
5
 cm

2
/V·s [5,8]. (3) The effects of changes in the density and the mobility just cancel out to give a 

constant resistance [5,8,22]. (4) At low temperatures, the resistance and Hall resistance are very sensitive 



Crystals 2012, 2 646 

 

 

to the magnetic field [5,7,8,21]. However, neither quantum oscillations nor the quantum Hall effect were 

observed in magnetic fields of up to 15 T [5]. (5) The system is not a metal but a semiconductor with an 

extremely narrow energy gap of less than 1 meV [5,8]. 

Figure 3. Temperature dependence of the carrier density and the mobility for P = 1.8 GPa. 

The data plotted by close circle is the effective carrier density neff and the mobility μeff. The 

magnetoresistance mobility μM and the density nM, on the other hand, is shown by open 

square from 77 K to 2 K. The results of two experiments agree well and the density obeys 

     from 10 K to 50 K (indicated by broken lines). Reproduced with permission from [5]. 

 

The mechanism of such anomalous phenomena, however, was not clarified until Kobayashi et al. 

performed an energy band calculation in 2004 based on the crystal structure analysis of 

α-(BEDT-TTF)2I3 under uniaxial strain by Kondo and Kagoshima [23] and suggested that this material 

under high pressures is in the zero-gap state [3,4]. According to their calculations, the bottom of the 

conduction band and the top of the valence band are in contact with each other at two points (we call 

these “Dirac points”) in the first Brillouin zone. The Fermi energy is located exactly on the Dirac point. 

In contrast to the case of graphene, in which the Dirac points are located at points in the k-space with 

high symmetry, the positions of the Dirac points in the present system are unrestricted. Figure 4 depicts 

the energy structure around one of the contact points. In the vicinity of the Dirac point, a Dirac cone type 

linear energy dispersion exists. It is expressed as E = ±hνF(φ)(k − k0) where νF(φ) is the Fermi velocity 

and k0 are the positions of the two contact points. As shown in Figure 4, the present Dirac cone is slanted 

and has strong anisotropy. Therefore, the Fermi velocity νF(φ) depends on the direction of the vector  

(k − k0), which is denoted by φ in the above equation. These results were supported by first-principles 

band calculations [24].  

The picture of the zero-gap system grow understanding of the remarkable transport phenomena of 

α-(BEDT-TTF)2I3. In this paper, we describe the interpretation of transport phenomena in this system 

based on the zero-gap picture.  
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Figure 4. (a) Band structure; and (b) energy contours near a Dirac point. They are calculated 

using the parameters for P = 0.6 GPa in [4]. Note that the origin of the axes is taken to be the 

position of the Dirac point. Reproduced with permission from [6]. 

 

2. Carrier Density, Mobility and Sheet Resistance 

First, let us examine the temperature dependence of the carrier density shown in Figure 3. Between 

77 and 1.5 K, it decreases by about four orders of magnitude. This large reduction of the carrier density 

is characteristic of semiconductors. However, the temperature dependence is different from those of 

the ordinary semiconductors. In ordinary semiconductors with finite energy gaps, the carrier density 

depends exponentially on the inverse temperature. On the other hand, the data in Figure 3 show a 

power-law-type temperature dependence     , with α ≈ 2. This temperature dependence of carrier 

density is explained on the basis of 2D zero-gap systems with a linear dispersion of energy. When we 

assumed the Fermi energy EF is located at the contact point and does not move with temperature, this 

relationship is derived as  

              
  

  

  
 

     
  

  (1)  

where                 
  is the density of state for zero-gap structure, f(E) is the Fermi distribution 

function, C = 1.75 nm is the lattice constant along c-axis and     is an average of νF(φ) defined by 

   
  

 
      

        
 . The averaged value of the Fermi velocity,     is estimated to be 

approximately 3 × 10
4
 cm/s. This value corresponds to the result obtained from realistic theories [4,25]. 

Carrier mobility, on the other hand, is determined as follows. According to Mott's argument [26], 

the mean free path l of a carrier subjected to elastic scattering can never be shorter than the wavelength 

λ of the carrier, so l ≤ λ. For the cases in which scattering centers exist at high densities, l ~ λ. As the 

temperature is decreased, l becomes long because λ becomes long with the decreasing energy of the 

carriers. As a result, the mobility of carriers increases in proportion to T
−2

 in the 2D zero-gap system. 

Consequently, the Boltzmann transport equation gives the temperature independent quantum 

conductivity as  
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where νxx is the velocity of carriers on Dirac cone when the electric field is applied along x-axis and  

τ is the scattering lifetime, which is assumed to depend on the energy of the carriers.  

In order to examine Equation 2, we refer to Figure 5 where the resistivity per layer (sheet resistance 

Rs) for seven samples is plotted. Note that a conductive layer of this material is sandwiched by 

insulating layers as shown in Figure 1, and therefore, each conductive layer is almost independent. 

Thus, the concept “resistivity per layer” is valid for this system. In this figure, it is shown that the sheet 

resistance depends on the temperature very weakly except for below 7 K. Note that the sheet resistance 

is close to the quantum resistance, h/e
2
 = 25.8 kΩ. It varies from a value approximately equal to the 

quantum resistance at 100 K to about 1/5 of it at 7 K. The reproducibility of data was checked using 

six samples. Many realistic theories predict that the sheet resistance of intrinsic zero-gap systems is 

given as Rs = gh/e
2
, where g is a parameter of order unity [27–29]. Thus, the constant resistance 

observed in this material is ascribed to a zero-gap energy structure.  

Figure 5. (a) Temperature dependence of Rs for seven samples under a pressure of 1.8 GPa. 

The inset Rs at temperatures below 10 K; (b) Temperature dependence of Rs for Sample 6. It 

was examined down to 80 mK. Reproduced with permission from [30]. 

 

Here, we mention the resistivity below 7 K in Figure 5. The sample dependence due to the effects 

of unstable I3
−
 anions appears strongly. A rise of Rs may be a symptom of localization because it is 

proportional to log T as shown in the inset of Figure 5a. The unstable I3
−
 gives rise to a partially 

incommensurate structure in the BEDT-TTF layers. As for Sample 6, the log T law of Rs was 

examined down to 80 mK. The log T law of resistivity, on the other hand, is also characteristic of the 

transport of Kondo-effect systems. In graphene, recently, Chen et al. have demonstrated that the 

interaction between the vacancies and the electrons give rise to Kondo-effect systems [31]. The origin 

of the magnetic moment was the vacancy. In α-(BEDT-TTF)2I3, on the other hand, Kanoda et al. 

detected anomalous NMR signals which could not be understood based on the picture of Dirac fermion 

systems at low temperatures [32]. We do not yet know whether, in the localization, the Kondo-effect or 

other mechanisms are the answer for the origin of the log T law of Rs. This answer, however, will 
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answer the question as to why the sample with the higher carrier density (lower RH saturation value  

in Figure 6) exhibits the higher Rs at low temperature. Further investigation should lead us to  

interesting phenomena. 

Figure 6. Temperature dependence of the Hall coefficient for (a) hole-doped-type; and  

(b) electron-doped-type samples. Note that in this figure, the absolute value of RH is plotted. 

Thus, the dips in (b) indicate a change in the polarity. The inset in the upper part of (a) shows 

the configuration of the six electrical contacts. The schematic illustration of the Fermi levels 

for the hole-doped type and the electron-doped type are shown in the inset in the lower part 

of (a) and the inset of (b), respectively. Reproduced with permission from [30]. 

 

Here we adduce other examples for the effect of unstable I3
−
 anions. It was also seen  

in the superconducting transition of the organic superconductors β-(BEDT-TTF)2I3 [33] and 

θ-(BEDT-TTF)2I3 [34]. 

In conclusion of this section, α-(BEDT-TTF)2I3 under high hydrostatic pressure is an intrinsic 

zero-gap system with Dirac type energy band E = ±hνF(φ)(k − k0). In the graphite systems, a monolayer 

sample (graphene) is inevitable to realize a zero-gap state. On the other hand, in the present system, 

bulk crystals can be two dimensional zero-gap systems. The carrier density depends on temperature as 

    . On the other hand, the resistance remains constant in the wide temperature region. The value 

of the sheet resistance coincide the quantum resistance h/e
2
 = 25.8 kΩ within a factor of 5. 

3. Inter-Band Effects of the Magnetic Field 

A magnetic field gives us characteristic phenomena. According to the theory of Fukuyama, the 

vector potential plays an important role in inter-band excitation in electronic systems with a vanishing 

or narrow energy gap [35]. The orbital movement of virtual electron-hole pairs gives rise to anomalous 

orbital diamagnetism and the Hall effect in a weak magnetic field. These are called the interband 

effects of the magnetic field. This discovery inspired us to examine the interband effects of the 

magnetic field in α-(BEDT-TTF)2I3. In this section, we demonstrate that these effects give rise to 

anomalous Hall conductivity in α-(BEDT-TTF)2I3. Bismuth and graphite are the most well-known 
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materials that serve as testing ground for the interband effects of magnetic fields. To our knowledge, 

however, α-(BEDT-TTF)2I3 is the first organic material in which the inter-band effects of the magnetic 

field have been detected. 

Realistic theory predicts that the interband effects of the magnetic field are detected by measuring 

the Hall conductivity σxy or the magnetic susceptibility at the vicinity of the Dirac points [35,36]. In 

order to detect these effects, we should control the chemical potential μ. In this material, however, the 

multilayered structure makes control of μ by the field-effect-transistor method much more difficult 

than in the case of graphene. Hence, we present the following idea.  

We find two types of samples in which electrons or holes are slightly doped by unstable I3
−
 anions. 

The doping gives rise to strong sample dependences of the resistivity or the Hall coefficient at low 

temperatures (Figures 5 and 6). In particular, the sample dependence of the Hall coefficient RH is 

intense. In the hole-doped sample as shown in the inset of the lower part of Figure 6a, RH is positive 

over the whole temperature range (Figure 6a). In the electron-doped sample as shown in the inset of 

Figure 6b, however, the polarity is changed at low temperatures (Figure 6b). The change in polarity of 

RH is understood as follows. In contrast to graphene, the present electron-hole symmetry is not good 

except at the vicinity of the Dirac points [24]. Thus, μ must be dependent on temperature. Of 

significance is the fact that according to the theory by Kobayashi et al., when   passes the Dirac point 

(μ = 0), RH = 0 [36]. Thus, RH at the vicinity of RH = 0 for electron-doped samples must be determined 

to detect the inter-band effects of the magnetic field. The saturation value of RH at the lowest 

temperature, on the other hand, depends on the doping density nd, as nd = ns/C = 1/(eRH), where ns is 

the sheet density. nd = ns/C = 1/(eRH). 

Note that the carrier density and the mobility in Figure 3 is the behavior for hole-doped type sample. 

However, the temperature dependence of μ is much weaker than the thermal energy and the doping levels 

are estimated to be several ppm. Thus, the relationship of Equation 1 is valid which is derived when we 

assumed that μ locates at the Dirac point and does not move with the temperature, in Section 2. 

In this section, thus, to detect the inter-band effects of the magnetic field, we focused on the 

behavior of RH in which the polarity is changed (Figure 6b). It was examined as follows. 

The first step is to examine the temperature dependence of μ. As mentioned before, we believe μ 

passes the Dirac point at the temperature T0, shown as RH = 0 [36]. The sheet density ns, on the other 

hand, is approximately proportional to T0
2
 as shown in Figure 7(a). This result suggests that μ is to be 

written as μ/kB = EF/kB − AT at T0 approximately because       , where A is the fitting parameter 

depending on the electron-hole symmetry (  
    

 ). Thus, we obtain the EF versus T0 curve in Figure 7b. 

EF is estimated from the relationship ns = EF
2
/(4πh

2
νF

2
), where the averaged Fermi velocity νF, is 

estimated to be approximately 3.3 × 10
4
 m/s from the temperature dependence of the carrier density. 

Note that the weak sample dependence of both Rs and RH at temperatures above 7 K (Figures 5 and 6) 

strongly indicates that the νF values of all samples are almost the same. When we assume that A is 

independent of EF, A is estimated to be approximately 0.24 from Figure 7b. Thus, we examine the 

temperature dependence of μ as μ/kB = EF/kB − AT with A ~ 0.24. This experimental formula 

reproduces well the realistic theoretical curve by Kobayashi et al. [36], as shown in Figure 7(c). Our 

simple calculations, on the other hand, also reproduce well this curve when we assume   
    

     , 

where   
  and   

  are the Fermi velocities for lower and upper Dirac cones, respectively. This is the 
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electron-hole asymmetry in this system. Actually, the result of the first principle band calculation by 

Kino and Miyazaki indicate that the electron-hole symmetry is not complete [24].  

Figure 7. (a) Sheet electron density ns for five samples plotted against temperature at RH.  

(b) EF was estimated from the relationship ns = EF
2
/(4πh

2
νF

2
) with νF ~ 3.3 × 10

4
 m/s. From 

this curve, the temperature dependence of μ is written approximately as μ/kB = EF/kB − AT 

with A ~ 0.24 when we assume A is independent of EF. (c) Temperature dependence of μ for 

EF = 0. Our experimental formula is quantitatively consistent with the theoretical curve of 

Kobayashi et al. [36] at temperature below 100 K. Reproduced with permission from [30]. 

 

The second step is to calculate the Hall conductivity as σxy = ρyx/(ρxxρyy + ρyx
2
). In this calculation, 

we assume ρxx = ρyy for the following reasons. According to band calculation, the energy contour of the 

Dirac cone is highly anisotropic [4]. In the galvano-magnetic phenomena, however, the anisotropy is 

averaged and the system looks very much isotropic. A simple calculation indicates that the variation in 

the mobility with the current direction is within a factor of 2. Experimentally, Iimori et al. showed that 

the anisotropy in the in-plane conductivity is less than 2 [37]. 

Based on this assumption, we show the temperature dependence of σxy for Samples 1 and 7 in 

Figures 5 and 6 in Figure 8a as an example. We see the peak structure in σxy at the vicinity of σxy = 0. 

This peak structure is the anomalous Hall conductivity originating from the interband effects of the 

magnetic field. The realistic theory indicates that the Hall conductivity without the interband effects of 

the magnetic field has no peak structure [36]. 

In the last step, we redraw σxy in Figure 8b as a function of μ using the experimental formula,  

μ/kB = EF/kB − AT with A = 0.24. It should be compared with the theoretical curve [36],    
      

 at  

T = 0. Our experimental data are roughly expressed as         
      

, where g is a parameter that 

depends on temperature because the effect of thermal energy on the Hall effect is strong. Note that σxy 

depends strongly on temperature. The energy between two peaks is the damping energy that depends 
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on the density of scattering centers in a crystal. The intensity of the peak, on the other hand, depends 

on the damping energy and the tilt of the Dirac cones [36].  

Figure 8. (a) Temperature dependence of the Hall conductivity for Samples 1 and 7 in 

Figures 5 and 6; (b) Chemical-potential dependence of the Hall conductivity for Samples 1 

and 7. Solid lines and dashed lines are the theoretical curves with and without the interband 

effects of the magnetic field by Kobayashi et al., respectively [36]. Reproduced with 

permission from [30]. 

 

Lastly, we briefly mention the zero-gap structure in this material. The smooth change in the polarity 

of σxy is also evidence that this material is an intrinsic zero-gap conductor. Nakamura demonstrated 

theoretically that in a system with a finite energy gap, σxy is changed in a stepwise manner at the Dirac 

points [38]. 

In conclusion of this section, we succeeded in detecting the interband effects of the magnetic field 

on the Hall conductivity when μ passes the Dirac point. Good agreement between experiment and 

theory was obtained.  

4. Effects of Zero-Mode Landau Level on Transport 

One of the characteristic features in Dirac fermion system is clearly seen in the magnetic field. In 

this section, the transport phenomena in the magnetic field are described. Note that we interpret the 

transport phenomena based on the assumption which EF locates at the Dirac point because EF is lower 

than broadening energy of Landau levels.  

In the magnetic field, the energy of Landau levels (LLs) in zero-gap systems is expressed as 

            
     , where n is the Landau index and B is the magnetic field strength [39]. One 

important difference between zero-gap conductors and conventional conductors is the appearance of a 

(n = 0) LL at zero energy when magnetic fields are applied normal to the 2D plane. This special LL is 

called the zero-mode. Since the energy of this level is EF irrespective of the field strength, the Fermi 
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distribution function is always 1/2. It means that half of the Landau states in the zero mode are 

occupied. Note that in each LL, there are states whose density is proportional to B. The magnetic field, 

thus, creates mobile carriers.  

For kBT < E1LL, most of the mobile carriers are in the zero-mode. Such a situation is called the 

quantum limit. The carrier density per valley and per spin direction in the quantum limit is given by 

D(B) = B/2φ0, where φ0 = h/e is the quantum flux. The factor 1/2 is the Fermi distribution function at 

EF. In moderately strong magnetic fields, the density of carriers induced by the magnetic field can be 

very high. At 3 T, for example, the density of zero-mode carriers will be 10
15

 m
−2

. This value is by 

about 2 orders of magnitude higher than the density of thermally excited carriers at 4 K, and, in the 

absence of the magnetic field, it is 10
13

 m
−2

. Therefore, carrier density in the magnetic field is 

expressed as B/2φ0 except for very low fields. 

This effect is detected in the inter-layer resistance, Rzz, in the longitudinal magnetic field. In this 

field configuration, the interaction between the electrical current and the magnetic field is weak 

because they are parallel to each other. Hence, the effect of the magnetic field appears only through the 

change in the carrier density. In this regard, the large change in the density of zero-mode carriers gives 

rise to remarkable negative magnetoresistance in the low magnetic field region, as shown in  

Figure 9 [40,41].  

Figure 9. (a) Magnetic field dependence of interlayer resistance under the pressure about  

1.7 GPa at 4 K. When B > 0.2 T, remarkable negative magnetoresistance is observed. As for 

negative magnetoresistance, fitting is done with Equation 3,                (red line); 

(b) Angle dependence of magnetoresistance. When θ = 0 and θ = 180°, the direction of the 

magnetic field is parallel to the 2D plane. θ = 90° is the direction normal to the 2D plane. 

Fitting of the data measured at 1, 2, and 3 T was done using Equation 3. Reproduced with 

permission from [40]. 

 

Recently, Osada gave an analytical formula for interlayer magnetoresistance in a multilayer Dirac 

fermion system as follows: 
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where A = πh
3
/2C'tc

2
ce

3
 is a parameter that is considered to be independent of the magnetic field if the 

system is clean. B0 is a fitting parameter that depends on the quality of the crystal, C' is defined by 

                    using the spectral density of the zero-mode Landau level and ρ0(E) 

satisfies            [42].  

Except for narrow regions around θ = 0 and θ = 180°, this formula can be simplified to Rzz = A/(|B| + B0). 

Using this formula and assuming B0 = 0.7 T, we tried to fit the curves in Figure 9. This simple formula 

reproduces well both the magnetic field dependence and the angle dependence of the 

magnetoresistance at magnetic fields above 0.5 T as shown by solid lines in Figure 9, which evidences 

the existence of zero-mode Landau carriers in α-(BEDT-TTF)2I3 at high pressures. 

Here, we briefly mention the origin of positive magnetoresistance around θ = 0 and θ = 180°. In the 

magnetic field in these directions, the Lorentz force works to bend the carrier trajectory to the direction 

parallel to the 2D plane. It reduces the tunneling of carriers between neighboring layers so that the 

positive magnetoresistance is observed. Note that the Equation 3 for θ = 0 and θ = 180° dose not 

correctly evaluate the effect of the Lorentz force and, thus, loses its validity. The value of the 

resistance peak depends weakly on the azimuthal angle. At 3 T, for example, the ratio of maximum 

value to the minimum value is less than 1.3. According to the calculation of interlayer magnetoresistance 

by Morinari, Himura and Tohyama, the effect of Dirac cones with highly anisotropic Fermi velocity is 

averaged and gives rise to this small difference [43]. 

Angle dependence of interlayer Hall resistivity ρzx in the fixed magnetic field gives also us the 

characteristic phenomena in quantum limit state [44,45]. Figure 10 shows cotθ dependence of 

inter-layer Hall resistivity ρzx in the magnetic field below 7 T at 4.2 K. We find the relationship  

of ρzx = Acotθ, where slope A is close to the quantum resistance, h/e
2
 = 25.8 kΩ and is independent of 

the magnetic field. This is simply understood as follows. In general, Hall voltage is proportional to 

cosθ. Thus, angle dependence of interlayer Hall resistivity is written as ρzx = ρ0 cosθ = B/ne cosθ.  

The degeneracy of zero-mode, on the other hand, is proportional to the magnetic field, and then  

n = B/2φ0 sinθ. Thus, we obtain the relationship ρzx = h/2e
2
 cotθ.  

Figure 10. cotθ dependence of inter-layer Hall resistivity ρzx at 4.2 K. When the magnetic 

field is applied along to 2D plane, θ = 0 or θ = 180°. Reproduced with permission from [44]. 

 

Here, let us return to Figure 9. An apparent discrepancy from Equation 3 of the data is also seen at 

both low and high magnetic fields normal to the 2D plane, because the model is oversimplified. 

Equation 3 was derived based on the quantum limit picture in which only the zero-mode LL is 
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considered. In fact, each LL has a finite width due to scattering. At a sufficiently low magnetic field, 

the zero-mode LL overlaps with other Landau levels. In such a region, Equation 3 loses its validity. 

We can recognize this region in Figure 9 below 0.2 T, where positive magnetoresistance is observed. 

This critical magnetic field, Bp, shifts to a lower field with decreasing temperature, where it almost 

saturates at about 0.04 K, as shown in Figure 11b,d.  

Figure 11. (a) Magnetic field dependence of Rzz below 4.1 K under pressure of 

approximately 1.7 GPa; (b) Rzz in the low field region below 0.4 T; (c) Magnetic field 

dependence of Rzz B; (d) Temperature dependence of Bp (solid triangles) and Bmin (solid 

circles). The solid line is the curve of E1LL with νF ~ 4 ×10
4
 m/s. Reproduced with 

permission from [41]. 

 

The overlap between the zero-mode and other LLs, primarily the n = 1 LL will be sufficiently small 

above Bp and as a result, the negative magnetoresistance is observed there. Then, we have a tentative 

relationship: E1LL ~ 2kBTp at Bp [41,46]. In fact, E1LL with νF ~ 4 × 10
4
 m/s is reproduced well except in 

the temperature region below 2 K. This Fermi velocity corresponds to that estimated from the 

temperature dependence of the carrier density [6]. The discrepancy of the data from the curve of E1LL 

below 2 K, on the other hand, suggests that thermal energy is sufficiently lower than the scattering 

broadening energy г0. Thus, г0 is roughly estimated to be approximately 2 K from the constant value of 

Bp as          
    at 0.1 T [41,46]. This scattering broadening energy is much lower than that of 

graphene. In graphene, г0 was estimated to be about 30 K. 
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The deviation from Equation 3 of data in the high field region of Figure 9 is much more serious. In 

this region, the resistance increases exponentially with increasing field. This phenomenon is understood 

as follows. 

In the above discussion, we did not consider the Zeeman effect. The Zeeman effect, however, 

should be taken into consideration because it has a significant influence on the transport phenomena at 

low temperatures. In the presence of a magnetic field, each LL is split into two levels with energies 

EnLL = ±ΔE, where ΔE = μBB is the Zeeman energy. This change in the energy structure gives rise to a 

change in the carrier density in LLs. In particular, the influence on the zero-mode carrier density is the 

strongest, because the energy level is shifted from the position of the Fermi energy. The value of the 

Fermi distribution function varies from f(EF) = 1/2 to f(ΔE) = 1/(exp(ΔE/kBT) + 1). At low temperatures 

where kBT < ΔE , this effect becomes important. It works to reduce the density of zero-mode carriers 

and, thus, increases the resistance as                        (Figure 11 a,c) [38,39]. 

According to the theory of Osada, on the other hand, μBB ~ г0 at the magnetoresistance minimum [42].  

The Zeeman energy when B = 1 T is about 1 K. Therefore, in the experiment performed at 1 K, the 

deviation of experimental results from Equation 3 is expected to start around 1 T. This is confirmed in 

Figure 11a. We find a resistance minimum. At 1.8 K, for example, the deviation is prominent in fields 

above 2 T. This critical field shifts to about 0.3 T at 0.07 K.  

Recently, Osada pointed out the possibility of ν = 0 quantum Hall effect (QHE) in this region [47]. 

In the spin-splitting state of 2D Dirac fermion system such as graphene, the edge state with a pair of 

inverse spins exists at near the edge of sample as shown in Figure 12. According to the theory by 

Osada [47], the saturation of data at low temperatures and high magnetic fields in Figure 11a strongly 

indicates the existence of the edge state. Thus, ν = 0 quantum Hall state is expected in this region. Note 

that in this special state, the characteristic in-plane transport (σxx and σxy) phenomena in conventional 

quantum Hall state is not detected.  

Figure 12. Edge state Spector in ν = 0 quantum Hall state. 

 

In conclusion of this section, we succeeded in detecting the zero-mode Landau level. The 

characteristic feature of zero-mode Landau carriers including the Zeeman effect was clearly seen in the 

inter-layer transport. The experimental data suggest that with increasing magnetic field or decreasing 

temperature, the system changes from a “Dirac fermion” state to a “quantum limit state”, then to a 

“spin-splitting” state and then to a “ν = 0 QHE” state as shown in Figure 13, where the boundaries 
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between the states in the B–T plane are depicted using the data in Figure 11. Stepwise changes in the 

states between boundaries, on the other hand, are observed in in-plane magnetoresistance as shown in 

Figure 14. 

Figure 13. Schematic diagram of boundaries in B–T plane depicted using the data in  

Figure 11. “Dirac fermion” state is the low magnetic field region, “quantum limit” state is 

the region observed negative magnetoresistance, the region that obeyed an exponential law 

is “spin-splitting” state and “ν = 0 quantum Hall effect” state is the saturation region at low 

temperature and high magnetic field. 

 

Figure 14. (a) Magnetic field dependence of the in-plane resistance down to 0.5 K. The 

low-field region below 1 T is shown in the inset; (b) Temperature dependence of the 

in-plane resistance under a magnetic field of up to 15 T. The arrows shows the boundaries 

between “Dirac fermion”, “quantum limit”, “spin-splitting” and “ν = 0 quantum Hall effect” 

states. Reproduced with permission from [5].  
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5. Conclusions  

α-(BEDT-TTF)2I3 under high hydrostatic pressure is an intrinsic zero-gap conductor with a Dirac 

type energy band. The carrier density, expressed as     , is a characteristic feature of the zero-gap 

system. On the other hand, the resistance remains constant from 2 to 300 K. The sheet resistance can be 

written in terms of the quantum resistance h/e
2
 as Rs = gh/e

2
, where g is a parameter that depends weakly 

on temperature. Moreover, we succeeded in detecting the interband effects of the magnetic field on the 

Hall conductivity when the chemical potential passes the Dirac point. In graphite systems, a monolayer 

sample (graphene) is necessary to realize a zero-gap state. On the other hand, in the present system, it 

was demonstrated that bulk crystals can be 2D zero-gap systems. We can observe this effect in the 

inter-layer magnetoresistance. The existence of the zero-mode Landau level is one of characteristic 

features in the zero-gap system. The effect of Landau degeneracy, which is proportional to the strength 

of the magnetic field, gives rise to the large negative magnetoresistance. We anticipate the ν = 0 

quantum Hall state in the spin-splitting state of zero-mode at low temperature and high magnetic field. 

Lastly, we mention the robustness of zero-gap structure in this compound. The temperature 

dependence of the carrier density that ruled out      law and log T law of Rs at low temperature 

below 7 K gives us the impression that the zero-gap structure is unstable. The detection of zero-mode 

Landau carriers including its spin splitting down to 0.07 K, however, strongly suggests that the 

zero-gap structure is robust. Further investigation for the anomalous phenomena at low temperature 

should lead us to interesting phenomena. 

This system offers a testing ground for a new type of particles, namely, massless Dirac fermions 

with a layered structure and anisotropic Fermi velocity. 
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