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Abstract:  A zero-gap state with a Dirac cone type energy dispersion was discovered in an 

organic conductor Ŭ-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first 

two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In 

contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The 

present system, therefore, provides a new type of massless Dirac fermion system with 

anisotropic Fermi velocity. This system exhibits remarkable transport phenomena 

characteristic to electrons on the Dirac cone type energy structure. 
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1. Introduction  

Since Novoselov et al. [1] and Zhang et al. [2] experimentally demonstrated that graphene is a 

zero-gap system with massless Dirac particles, such systems have fascinated physicists as a source of 

exotic systems and/or new physics. At the same time, the quasi-two-dimensional (2D) organic conductor 

Ŭ-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene) was found to be a new type of 

massless Dirac fermion state under high pressures [3ï6]. Originally, this material had been considered as 

a narrow-gap semiconductor [7ï9]. In contrast to graphene, this is the first bulk (multilayer) zero-gap 

material with a Dirac cone type energy dispersion. In this review, we describe the remarkable transport 
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phenomena characteristic to electrons on the Dirac cone type energy structure in Ŭ-(BEDT-TTF)2I3 

under high pressure. 

The organic conductor Ŭ-(BEDT-TTF)2I3 is a member of the (BEDT-TTF)2I3 family [10]. All the 

crystals in this family consist of conductive layers of BEDT-TTF molecules and insulating layers of I3
ī
 

anions as shown in Figure 1 [10ï13]. The difference among them lies in the arrangement and orientation of 

BEDT-TTF molecules within the conducting plane, and this difference gives rise to variations in the 

transport phenomena. Most of the members of this family are 2D metals with large Fermi surfaces, and 

some of them are superconducting with TC values of several Kelvin [11ï13]. On the other hand, 

Ŭ-(BEDT-TTF)2I3 is different from the other crystals. According to the band calculation, this system is a 

semimetal with two small Fermi surfaces; one with electron character and the other with hole character [8]. 

Figure 1. (a) BEDT-TTF molecule and I3
ī
 anion; (b) Crystal structure of Ŭ-(BEDT-TTF)2I3 

viewed from a-axis; (c) Crystal structure viewed from c-axis. Reproduced with permission 

from [5]. 

 

When cooled, it behaves as a metal above 135 K, where it undergoes a phase transition to an insulator 

as shown in Figure 2 [10]. In the insulator phase below 135 K, the rapid decrease in the magnetic 

susceptibility indicates that the system is in a nonmagnetic state with a spin gap [14]. According to the 

theoretical work by Kino and Fukuyama [15] and Seo [16] and the experimental investigation  

by Takano et al. (nuclear magnetic resonance) [17], Wojciechowski et al. (Raman) [18] and  

Moldenhauer et al. [19], this transition is due to the charge disproportionation. In the metal state, the 

charge distribution of each BEDT-TTF molecules is approximately 0.5e [18,20]. At temperatures 

below 135 K, however, horizontal charge stripe patterns for +1e and 0 have been formed as shown in the 

inset of Figure 2.  
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Figure 2. Temperature dependence of the resistance under several hydrostatic pressures [5,8]. 

The inset shows a schematic picture of the arrangement of BEDT-TTF molecules in a 

conducting layer viewed from the c-crystal axis and the charge pattern under ambient 

pressure. At temperatures below 135 K, the BEDT-TTF molecule layer forms horizontal 

charge stripe patterns for +1e and 0 [15ï19]. Reproduced with permission from [5]. 

 

When the crystal is placed under a high hydrostatic pressure of above 1.5 GPa, the metal-insulator 

transition is suppressed and the metallic region expands to low temperatures as shown in  

Figure 2 [7,21,22]. This change in the electronic state is accompanied by the disappearance of the 

charge-ordering state as shown by the Raman experiment [18]. Note that in the high-pressure phase, the 

resistance is almost constant over the temperature region from 300 to 2 K. It looks like a dirty metal with 

a high density of impurities or lattice defects. In dirty metals, the mobilities of carriers are low and 

depend on temperature only weakly, and therefore, resistance is also independent of temperature. In the 

present case, however, the situation is different. Carriers with a very high mobility approximately  

10
5
 cm/V·s exhibit extremely large magnetoresistance at low temperatures [5ï8,21], indicating that the 

crystal is clean.  

To clarify the mechanism of these apparently contradictory phenomena, the Hall effect was first 

examined by Mishima et al. [22]. However, the magnetic field of 5 T they used was too high to 

investigate the property of carriers in the zero-field limit. This is because the carrier system at low 

temperatures is sensitive to the magnetic field and its character is varied even in weak magnetic fields 

below 1 T. Thus, Tajima et al. reexamined the Hall effect using a much lower magnetic field of 0.01 T [8]. 

They also investigated the magnetoresistance and Hall resistance as a function of the magnetic field up 

to 15 T and the temperature between 0.5 and 300 K. The experimental results they obtained are 

summarized as follows: (1) Under a pressure of above 1.5 GPa, the resistivity is nearly constant between 

300 and 2 K [5,8,22]. (2) In the same region, both the carrier (hole) density and the mobility change by 

about six orders of magnitude as shown in Figure 3. At low temperatures below 4 K, the carrier system 

is in a state with a low density of approximately 8 × 10
14

 cm
ī3

 and a high mobility of approximately  

3 × 10
5
 cm

2
/V·s [5,8]. (3) The effects of changes in the density and the mobility just cancel out to give a 

constant resistance [5,8,22]. (4) At low temperatures, the resistance and Hall resistance are very sensitive 
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to the magnetic field [5,7,8,21]. However, neither quantum oscillations nor the quantum Hall effect were 

observed in magnetic fields of up to 15 T [5]. (5) The system is not a metal but a semiconductor with an 

extremely narrow energy gap of less than 1 meV [5,8]. 

Figure 3. Temperature dependence of the carrier density and the mobility for P = 1.8 GPa. 

The data plotted by close circle is the effective carrier density neff and the mobility ɛeff. The 

magnetoresistance mobility ɛM and the density nM, on the other hand, is shown by open 

square from 77 K to 2 K. The results of two experiments agree well and the density obeys 

ὲᶿὝ  from 10 K to 50 K (indicated by broken lines). Reproduced with permission from [5]. 

 

The mechanism of such anomalous phenomena, however, was not clarified until Kobayashi et al. 

performed an energy band calculation in 2004 based on the crystal structure analysis of 

Ŭ-(BEDT-TTF)2I3 under uniaxial strain by Kondo and Kagoshima [23] and suggested that this material 

under high pressures is in the zero-gap state [3,4]. According to their calculations, the bottom of the 

conduction band and the top of the valence band are in contact with each other at two points (we call 

these ñDirac pointsò) in the first Brillouin zone. The Fermi energy is located exactly on the Dirac point. 

In contrast to the case of graphene, in which the Dirac points are located at points in the k-space with 

high symmetry, the positions of the Dirac points in the present system are unrestricted. Figure 4 depicts 

the energy structure around one of the contact points. In the vicinity of the Dirac point, a Dirac cone type 

linear energy dispersion exists. It is expressed as E = ±hɜF(ű)(k ī k0) where ɜF(ű) is the Fermi velocity 

and k0 are the positions of the two contact points. As shown in Figure 4, the present Dirac cone is slanted 

and has strong anisotropy. Therefore, the Fermi velocity ɜF(ű) depends on the direction of the vector  

(k ī k0), which is denoted by ű in the above equation. These results were supported by first-principles 

band calculations [24].  

The picture of the zero-gap system grow understanding of the remarkable transport phenomena of 

Ŭ-(BEDT-TTF)2I3. In this paper, we describe the interpretation of transport phenomena in this system 

based on the zero-gap picture.  
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Figure 4. (a) Band structure; and (b) energy contours near a Dirac point. They are calculated 

using the parameters for P = 0.6 GPa in [4]. Note that the origin of the axes is taken to be the 

position of the Dirac point. Reproduced with permission from [6]. 

 

2. Carrier Density, Mobility and Sheet Resistance 

First, let us examine the temperature dependence of the carrier density shown in Figure 3. Between 

77 and 1.5 K, it decreases by about four orders of magnitude. This large reduction of the carrier density 

is characteristic of semiconductors. However, the temperature dependence is different from those of 

the ordinary semiconductors. In ordinary semiconductors with finite energy gaps, the carrier density 

depends exponentially on the inverse temperature. On the other hand, the data in Figure 3 show a 

power-law-type temperature dependence ὲᶿὝ , with Ŭ å 2. This temperature dependence of carrier 

density is explained on the basis of 2D zero-gap systems with a linear dispersion of energy. When we 

assumed the Fermi energy EF is located at the contact point and does not move with temperature, this 

relationship is derived as  

ὲ ὈὉὪὉÄὉ
“

φὅ

Ὧ

ᴐὺӶ
Ὕ  (1)  

where ὈὉ ςȿὉȿȾ“ᴐὺӶ is the density of state for zero-gap structure, f(E) is the Fermi distribution 

function, C = 1.75 nm is the lattice constant along c-axis and ὺӶ is an average of ɜF(ű) defined by 

᷿ Ä‰Ⱦὺ ‰ ς“ȾὺӶ. The averaged value of the Fermi velocity, ὺӶ is estimated to be 

approximately 3 × 10
4
 cm/s. This value corresponds to the result obtained from realistic theories [4,25]. 

Carrier mobility, on the other hand, is determined as follows. According to Mott's argument [26], 

the mean free path l of a carrier subjected to elastic scattering can never be shorter than the wavelength 

ɚ of the carrier, so l Ò ɚ. For the cases in which scattering centers exist at high densities, l ~ ɚ. As the 

temperature is decreased, l becomes long because ɚ becomes long with the decreasing energy of the 

carriers. As a result, the mobility of carriers increases in proportion to T
ī2

 in the 2D zero-gap system. 

Consequently, the Boltzmann transport equation gives the temperature independent quantum 

conductivity as  
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where ɜxx is the velocity of carriers on Dirac cone when the electric field is applied along x-axis and  

Ű is the scattering lifetime, which is assumed to depend on the energy of the carriers.  

In order to examine Equation 2, we refer to Figure 5 where the resistivity per layer (sheet resistance 

Rs) for seven samples is plotted. Note that a conductive layer of this material is sandwiched by 

insulating layers as shown in Figure 1, and therefore, each conductive layer is almost independent. 

Thus, the concept ñresistivity per layerò is valid for this system. In this figure, it is shown that the sheet 

resistance depends on the temperature very weakly except for below 7 K. Note that the sheet resistance 

is close to the quantum resistance, h/e
2
 = 25.8 kɋ. It varies from a value approximately equal to the 

quantum resistance at 100 K to about 1/5 of it at 7 K. The reproducibility of data was checked using 

six samples. Many realistic theories predict that the sheet resistance of intrinsic zero-gap systems is 

given as Rs = gh/e
2
, where g is a parameter of order unity [27ï29]. Thus, the constant resistance 

observed in this material is ascribed to a zero-gap energy structure.  

Figure 5. (a) Temperature dependence of Rs for seven samples under a pressure of 1.8 GPa. 

The inset Rs at temperatures below 10 K; (b) Temperature dependence of Rs for Sample 6. It 

was examined down to 80 mK. Reproduced with permission from [30]. 

 

Here, we mention the resistivity below 7 K in Figure 5. The sample dependence due to the effects 

of unstable I3
ī
 anions appears strongly. A rise of Rs may be a symptom of localization because it is 

proportional to log T as shown in the inset of Figure 5a. The unstable I3
ī
 gives rise to a partially 

incommensurate structure in the BEDT-TTF layers. As for Sample 6, the log T law of Rs was 

examined down to 80 mK. The log T law of resistivity, on the other hand, is also characteristic of the 

transport of Kondo-effect systems. In graphene, recently, Chen et al. have demonstrated that the 

interaction between the vacancies and the electrons give rise to Kondo-effect systems [31]. The origin 

of the magnetic moment was the vacancy. In Ŭ-(BEDT-TTF)2I3, on the other hand, Kanoda et al. 

detected anomalous NMR signals which could not be understood based on the picture of Dirac fermion 

systems at low temperatures [32]. We do not yet know whether, in the localization, the Kondo-effect or 

other mechanisms are the answer for the origin of the log T law of Rs. This answer, however, will 


