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Abstract: The dynamical property of electrons with the tilted Dirac cone was examined 

using the tilted Weyl equation. The polarization function exhibits cusps and nonmonotonic 

structures by varying both the frequency and the momentum. A pair of tilted Dirac cones 

exhibits a new plasmon for the intermediate magnitude of momentum owing to the 

combined effects of two tilted cones. Dirac electrons with the zero-gap state (ZGS) in 

organic conductor α-(BEDT-TTF)2I3 are examined by calculating the Berry curvature, 

which displays the peak structure for a pair of Dirac particles between the conduction band and 

the valence band. The ZGS is theoretically predicted for α-(BEDT-TTF)2NH4Hg(SCN)4 under 

uniaxial pressure. Examining the band structure of the stripe charge ordered state  

of α-(BEDT-TTF)2I3 under pressure, we have found a topological transition from a 

conventional insulator to a new phase of a pair of Dirac electrons with a finite mass. 

Further, investigating the zero-energy (N = 0) Landau level under a strong magnetic field, 

we propose ferromagnetism breaking the SU(2) valley-pseudo-spin symmetry, and the 

phase fluctuations of the order parameters leading to Kosterlitz-Thouless transition at lower 

temperatures. 
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1. Introduction 

The organic conductor α-(BEDT-TTF)2I3 (BEDT-TTF=bis(ethylene-dithio)tetrathiafulvalene) [1] 

exhibits a band structure of two-dimensional semimetal or a narrow gap semiconductor as claimed by 

Mori et al. [2] based on the extended Huckel molecular orbital calculation. Actually, under high 

pressure, the material undergoes the metal-insulator transition [3], and exhibits the peculiar property 

that the carrier (hole) density and mobility change by about six orders of magnitude [4]. A similar 

behavior was found under uniaxial pressure [5], but at rather a lower pressure where the crystal 

structure under uniaxial strain and ambient pressure, and at room and low temperatures has been 

determined [6]. Using these transfer integrals between molecules [6], massless Dirac fermion has been 

found [7,8] in the band calculation. This novel state settles the long-standing problem of anomalous 

transport phenomena under pressure. In such a massless Dirac fermion, a noticeable property is 

expected due to the tilted Dirac cone. In the tilted Weyl equation [9,10], the magnitude of the tilt is 

characterized by the parameter α = v0/vc = 0.8 [11], where α = 0 corresponds to the isotropic case. The 

tilt affects the characteristic temperature dependence of the Hall coefficient [12]. Since the conductor is 

a layered two-dimensional massless Dirac fermion system [13], the inter-plane magnetoresistance also 

exhibits noticeable properties, as shown theoretically by the angle dependence of the magnetic field [14]. 

New phenomena induced by the tilted Dirac cones have been maintained by calculating the transport 

coefficient under strong magnetic field, i.e., the electric-field-induced lifting of the valley  

degeneracy [15]. 

The first discovery of massless Dirac fermion in condensed matter was in graphite [16], where the 

motions of electrons obey the Weyl equation [17]. Anomalous properties in transport phenomena, e.g., 

absence of the backward scattering and universal conductivity, have been elucidated theoretically [18] 

on the bases of this equation, and the experimental evidence was obtained in the context of a single 

layer in graphite structure, graphene [19]. Compared with graphene, α-(BEDT-TTF)2I3 has three 

unique features: (1) The layered structure with a highly two-dimensional electronic system, which 

enables us to use powerful experimental methods for bulk material such as NMR [20,21]; (2) the inner 

degree of freedom which comes from four BEDT-TTF molecule sites participating in the Dirac 

fermion in a unit cell; (3) the tilt of the Dirac cone, which produces various new electronic properties 

as described in the present paper. 

This paper reviews recent theoretical studies related to the tiled Dirac cone in organic conductors. 

The outline is as follows. In section 2, dynamical properties such as electron-hole excitation and 

collective excitation are examined to verify the role of tilting. Although the electronic state has been 

studied extensively, the dynamical properties associated with the polarization function are not yet clear 

compared with those in the isotropic case [22]. The dynamical polarization function with the arbitrary 

wave vector and frequency is calculated analytically by treating a case where the contact point of the 

Dirac cone is located below the Fermi energy [23]. A noticeable effect of tilted cone is found in the  

case of two valleys where a new plasmon appears due to the combined effect of the right cone and the  

left cone [24]. In section 3, Dirac electrons with the zero-gap state (ZGS) in the organic conductor  

α-(BEDT-TTF)2I3 are examined by calculating the Berry curvature. In addition to the peak structure for 

a pair of Dirac particles between the conduction band and the valence band, the other neighboring 

bands show another pair of peaks of Dirac electrons with a tendency toward merging [25]. In section 4, 
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the ZGS is theoretically predicted for α-(BEDT-TTF)2 NH4Hg(SCN)4 under uniaxial pressure [26]. 

The peaks of the Berry curvature are highly anisotropic at the ambient pressure, while those become 

nearly isotropic at high pressure. In section 5, we re-examine the band structure of the stripe charge 

ordered state of α-(BEDT-TTF)2I3 under pressure using an extended Hubbard model [27]. By 

increasing pressure, we find a topological transition from a conventional insulator with a single-

minimum in the dispersion relation to a new phase with a double-minimum. This transition is 

characterized by the emergence of a pair of Dirac electrons with a finite mass. In section 6, the  

possible quantum Hall ferromagnet and Kosterlitz-Thouless transition are investigated for the zero-

energy (N = 0) Landau level in α-(BEDT-TTF)2I3 under strong magnetic field [28]. Ferromagnetism 

breaking the SU(2) valley-pseudo-spin symmetry in the N = 0 Landau level is proposed by noting the 

fact that the scattering processes between valleys becomes non-zero in the case of the tilted Dirac 

cones. In this case, the phase fluctuations of the order parameters can be described by the XY model 

leading to a Kosterlitz-Thouless transition at lower temperatures. A summary is given in section 7.  

2. Dynamical Polarization Function 

We examine the following 2x2 effective Hamiltonian [9] which gives the tilted Weyl equation on 

the Luttinger-Korn basis at the Dirac point, 

=  
(1)  

where the matrix is given by  

 
(2)  

Here we define ξsk
R(L)

 = +(–)v0kx + svc|k|, (s = +,-) and α = v0/vc. From the two contact points 

corresponding to two valleys of cones, we focus on one, which is given by the state located close to k0. 

The polarization function per valley is calculated as  

 (3)  

where f(ξ) = 1/(1 + exp[(ξ – μ)/T] with T being the temperature. In terms of the eigen function, Fs(k), 

of the 2 × 2 matrix Hamiltonian, we obtain  

 
(4)  

The polarization function is calculated on the plane of q and ω for respective regions as shown in 

Figure 1.  
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Figure 1. Several regions on the q-ω plane for calculating the polarization function 

(Equation (3)). From [23]. Reproduced with permission from JPSJ. 

 

The results consist of six regions. These regions 1A, 2A, 3A, 1B, 2B, and 3B are classified into two 

regions, A and B, corresponding to the process of intraband and interband excitations, respectively. 

The regions A and B are separated by a solid line expressed as ωres = (1 + cosθq)vcq, which is called the 

resonance frequency. The resonance frequency is obtained owing to the nesting of the excitations with 

the linear dispersion, and the polarization function diverges with the chirality factor Fs(k). The 

boundary between 2A and 3A is given by ω+. The boundary between 2A and 1A (2B and 1B) is given 

by ωA. The boundary between 2B and 3B is given by ωB. In the case of the isotropic Dirac cone  

(i.e., α = 0), there is a boundary given by ω/μ + vcq/μ = 2 which separates 1A and 2A (1B and 2B) for 

the intraband (the interband). In the regions 3A and 1B, the imaginary part vanishes. For the tilted 

Dirac cone, the boundary between 1A and 2A exhibits a noticeable behavior characterized by the 

appearance of cusps for the imaginary part as shown in Figure 2. 

Figure 2. Normalized imaginary part, Im Π(q,θq,ω) vc
2
/μ, as a function of ω/μ, for θq = π/2 

and α = 0.8. From [23]. Reproduced with permission from JPSJ. 

 

Figure 3 shows the normalized imaginary part, Im Π(θq,ω) vc
2
/μ, on the plane of vcq/μ and ω/μ for 

θq = π/2. The color gauge with the gradation represents the magnitude of the imaginary part. The global 
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feature is mainly determined by the property of ωres. In the case of vc q/μ >> 1, where the  

characteristic energy becomes much larger than the interband energy, Im Π(θq,ω) of the intraband 

excitation (ω < ωres) becomes much smaller than that of the interband excitation (ω > ωres) in contrast 

to the case,vc q/μ = 2. The broad peak in the intraband excitation does not change much for θq < π/2, 

while it is strongly masked for π/2 < θq < π due to the rapid decreasing ωres. 

Figure 3. Normalized imaginary part, Im Π(θq,ω) vc
2
/μ, on the plane of vcq/μ and ω/μ for 

θq = π/2. From [23]. Reproduced with permission from JPSJ. 

 

In Figure 4 the normalized optical conductivity of Reσ(θq,ω) is shown as a function of ω/μ with 

some choices of θ q = 0, π/4 and π/2, with α = 0.8. The dotted line denotes the isotropic case where  

Re σ is zero for ω < μ and is constant for μ < ω. The conductivity Re σ is zero for ω < 2 μ/(1 + α) and  

1 for ω > 2μ /(1 – α), while it takes an intermediate value for 2 μ/(1 + α) < ω < 2μ/(1 – α).  

Figure 4. Normalized optical conductivity of Reσ(θq,ω) as a function of ω/μ. From [23]. 

Reproduced with permission from JPSJ. 

 

The plasma mode is calculated from 1 + vq ReΠ(q,θq,ωpl(1,2)) = 0 with vq = 2πe
2
/ε0q. Since the 

plasma frequency ωpl is located just above the resonance frequency, the solution is expected close to 

ωpl1 =ω
0

pl1 and ωpl2=ω
0

pl2, respectively. However, the imaginary part is complicated due to the 

combined effects of Π 
R
(q,θq,ω) + Π 

L
(q,θq,ω). We use the scaled quantities as qvc/μ and ω/μ with 

e
2
/(ε0vc) = 1. The plasma frequency corresponds to ω, which gives a peak of ImΠRPA(q,θq,ω).  
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In Figure 5(a), Im ΠRPA(q,θq,ω) for θq = 0 is shown as a function of ω/μwith fixed vcq/μ = 0.5, 0.75, 

1, 1.5, 2, 3, 4, 5 and 6, respectively. The dash-dotted line (ωpl1(q,θq) denotes the location of ω/μ for the 

peak of the plasmon, which is appreciable for small vcq/μ. The dotted line denotes the location of ω for 

the novel plasmon, i.e., ωpl2(q,θq), which is found for the intermediate magnitude of vcq/μ. Such a 

plasmon, ωpl2(q,θq) originates from the interplay of two tilted cones. These two plasmons, which are 

found just above ωres are obtained as the hybridization of the electron of the right cone and that of the 

left cone. The appreciable peak of Im ΠRPA(q,θq,ω) moves from ωpl1(q,θq) to ωpl2(q,θq) with increasing 

q, i.e., the weight for small q is determined by ωpl1(q,θq) and that of intermediate q is determined by 

ωpl2(q,θq). In Figure 5(b), Im ΠRPA(q,θq,ω) is shown for θq = π/4. It is found that the weight for 

ωpl2(q,θq) is suppressed. This implies that both the dispersion relation and the intensity exhibit 

appreciable θq dependence. Such an anisotropy of the intensity gives rise to plasmon filtering. The 

novel plasmon has the following characteristics. The plasma frequency ωpl2(q,θq) in the case of θq = 0 

exists for any q. At θq = π/4, ωpl2(q,θq) does not exist for small q, and is also absent for any q when  

θq = π/2. Furthermore, we find that ωpl1(q,θq) is proportional to q
1/2

 for small q, and that ωpl2(q,θq)-ωres 

is proportional to q for intermediate vcq/μ. 

Figure 5. Im ΠRPA(q,θq,ω) as a function of ω/μwith fixed vcq/μ = 0.5, 0.75, 1, 1.5, 2, 3, 4, 5 

and 6, for θq = 0 (a), and θq =π /4 (b). From [24]. Reproduced with permission from JPSJ. 

 

Here we examine the filtering of the plasma frequency by tuning the angle θq of the external field 

with frequency ω and q. Figure 6 is an example of Im ΠRPA(q,θq,ω) when the external frequency is 

chosen as ω = ωpl2(q,0) (solid line), ωpl2(q,π/8) (dotted line), and ωpl2(q,π/4) (dashed line) for the fixed 

vcq/μ = 5. For ω = ωpl2(q,0), a pronounced peak with the peak height (about 15) and the width  

(0.036 π) shows that the plasmon excitation occurs in the narrow region close to θq = 0. For the choice of  

ω = ωpl2(q,π/8), the peak appears at θq = +(–)π/8 where the intensity is reduced less than 1/10 compared 

with ω = ωpl2(q,0). The peak is further reduced for ω = ωpl2(q,π/4). No peak is expected when the 

frequency is outside of the regime of the plasma frequency. In terms of the dielectric function ε(q,θq,ω), 

the location of the peak is determined by Reε(q,θq,ω) = 0 while the height and the width are determined 

by Im ε(q,θq,ω).Thus the peak (or the double peak) structure gives the filtering of plasmon, which 

depends on θq. 
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Figure 6. θq dependence of Im ΠRPA(q,θq,ω) for vcq/μ = 5 with the fixed ω = ωpl2(q,0) 

(solid line), ωpl2(q,π/8) (dotted line), and ωpl2(q,π/4) (dashed line). From [24]. Reproduced 

with permission from JPSJ. 

 

3. Berry Curvature of the Dirac Particle of α-(BEDT-TTF)2I3 

The contact point in a normal state, i.e., without charge ordering, is determined essentially by the 

property of the transfer energy, and the effect of interaction is to modify mainly the location of the 

contact point. Then, by taking account of only the transfer energy, we examine the Hamiltonian for  

α-(BEDT-TTF)2I3 given by 

 
(5)  

where α and β(=1, 2, 3,4) are indices for the site of each molecule A(1), A'(2), B(3) and C(4) in the unit 

cell, and i, j are those for the cell forming a square lattice with N sites. The quantity a denotes the 

annihilation operator for the electron, and t denotes the transfer energy between the neighboring site. 

As shown in Figure 7, there are seven transfer energies given by tb1, …, tb4 for the direction of the  

b(-x)-axis and ta1, …, ta3 for the direction of the a(y) -axis, respectively. 

Figure 7. Crystal structure on a two-dimensional plane with four molecules A(1), A’(2), 

B(3), and C(4), in the unit cell where the respective bonds represent seven transfer energies  

tb1, ..., ta3. From [25]. Reproduced with permission from JPSJ. 

 

 H=   
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By introducing site potentials given by I1σ = −I2σ= −∆0, and I3σ = −I4σ = 0, the 4 × 4 Hamiltonian on 

the site basis and with a Fourier transform is given by  

 

(6)  

In the above Hamiltonian, kx is replaced by kx + π and then the center corresponds to X point. We 

obtain four bands Ej(k) where E1 > E2 > E3 > E4. For ∆0 = 0, the inversion symmetry between A and A' 

is kept, and E1 and E2 touches at Dirac point, k0, where the ZGS is found for the uniaxial pressure Pa 

being larger than 3 kbar. For the calculation of the Berry curvature, we consider the case of a finite 

value of ∆0, which induces a gap at the Dirac point.  

The Berry curvature Bn(k) for each band En(k) is calculated as [29] 

 

(7)  

where |n > denotes the eigen vector of En. Note that B1(k) is essentially determined by E1 and E2, i.e., 

the effect of E3 and E4 is negligibly small within our numerical calculation. We define Bn(k) as the 

component of Bn(k), which is perpendicular to the kx − ky plane. For the small limit of ∆0, we obtain  

B1 = ∝ (∆0)
−2

. 

The energy band and Berry phase under uniaxial Pa are calculated using an extrapolation for t (Pa) [8]. 

Energy bands of E1(a) and E2(b) for Pa =6 kbar and ∆0 = 0.02 eV is shown in Figure 8(a) and (b).  

Figure 8. Energy bands of E1(a) and E2(b) for Pa = 6 kbar. From [25]. Reproduced with 

permission from JPSJ. 

 

The Dirac cone exists at +(-)k0, with k0= (0.57 π, - 0.3 π), as shown by arrows. A pair of cones is 

seen close to E1(k0) and E2(k0) and the cones in the same band are symmetric with respect to the  

Γ (=(0,0)) point. For E1(k), the maximum is seen at the Y(=(0,π)) point, while saddle points are seen 

for the X(=(0,π)), M(=(π,π)), and Γ points. For E2(k), the minimum is seen at the M point while saddle 

= - Im
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points are seen for the X, Y, and Γpoints. The accidental degeneracy, which is found at +(–)k0 for  

−△0 ➝ 0 is realized as the minimum of E1(k) and the maximum of E2(k). 

The corresponding Berry curvature B1(k) is shown in Figure 9. The peak around –k0 (+k0) is 

positive (negative). They are antisymmetric with respect to the Γ. Since the curvature exhibits a 

noticeable peak close to +(–)k0, such a peak may be identified as the Dirac particle instead of 

calculating the contact point.  

Figure 9. Berry curvature B1(k) (component perpendicular to the kx – ky plane). From [25]. 

Reproduced with permission from JPSJ. 

 

We examined the Berry curvature for other bands. The Berry curvature of the second band E2(k) is 

shown for several choices of Pa in Figure 10. The peak located at +(–)k0 has a sign opposite to that of 

E1(k). Figure 10(d) denotes B1(k) at Pa = 6 kbar corresponding to Figure 9. In addition to such a peak, 

another pair of peaks appears close to the Γ point. The latter one is rather extended to a direction 

slightly declined toward the horizontal axis, suggesting a large anisotropy of the Dirac cone. The 

anisotropic peak disappears for Pa smaller than 3 kbar while it becomes rather isotropic for large Pa. 

Such a behavior resembles the emergence of the Dirac particle in the charge ordered state, which has 

been shown in α-(BEDT-TTF)2I3 [27]. The Berry curvature for E3(k) is obtained similarly where a pair 

of peaks close to the Γ point also exists with a sign opposite to that of E2(k). There is another peak 

close to the M point, which compensates for that of E4(k). These results show that each neighboring 

band provides a pair of Dirac particles followed by the Berry curvature with an opposite sign. When a 

pair of Dirac particles between neighboring two bands is found, one may expect a pair of Dirac 

particles for the other neighboring bands. 
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Figure 10. Contour of the Berry curvature, B1(k), of the second band E2(k) for Pa = 0(a), 

2(b), 4(c), 6(d), 8(e), and 10(f) kbar respectively. Γ = (0,0). The Dirac particle at k0 with 

the positive B1(k) exists in the bright region of kx > 0 and ky < 0.  

 

4. Zero-Gap State in α-(BEDT-TTF)2 NH4Hg(SCN)4 

In addition to α-(BEDT-TTF)2I3, the ZGS, where a contact point of the Dirac cone coincides with 

the chemical potential, is predicted for α-(BEDT-TTF)2 NH4Hg(SCN)4 under uniaxial pressure, Pc 

along the stacking axis [26]. 

There are the electron and hole surfaces owing to band-overlap at ambient pressure. The ZGS 

emerges under the uniaxial pressure along the stacking axis in the conducting plane, for Pc > 5 kbar. 

Figure 11 shows the energy dispersions of the conduction and valence band at Pc = 6 kbar, where the 

transfer energies are calculated by extrapolation using the data at Pc = 0 kbar [30,31] and 1.5 kbar [31] 

obtained from the X-ray experiment. A pair of the Dirac cones is located at k0 = (−0.25, 0.51) . The 

chemical potential coincides with the contact points since there is no band-overlap. The Dirac cones 

are rather isotropic compared with those of α-(BEDT-TTF)2I3. 

The singularity of phase of the wave function, which describes the intrinsic property of the Dirac 

electron, has been confirmed using the Berry curvature. There is a pair of peaks in the Berry curvature, 

which corresponds to a pair of Dirac electrons with opposite chirality. The peaks of the Berry curvature 

are highly anisotropic at ambient pressure, while those become nearly isotropic at Pc = 6 kbar.  

In addition, the effective Hamiltonian on the Luttinger-Kohn representation has been investigated. It 

has been found that the Dirac cone, which exists below the chemical potential, is anisotropic and tilted 

at ambient pressure. The anisotropy of the Dirac electron at ambient pressure is related to the one-

dimension-like valley (ridge) structure between two contact points in the conduction (valence) band. 

The anisotropy and tilting of the Dirac cone are reduced with increasing pressure. 
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Figure 11. Energy dispersions of the conduction and valence band at Pc = 6 kbar of  

α-(BEDT-TTF)2 NH4Hg(SCN)4. From [26]. Reproduced with permission from JPSJ. 

 

5. Emergence of Dirac Electron Pair in Charge Ordered State of α-(BEDT-TTF)2I3 

We re-examined the band structure of the stripe charge ordered state of α-(BEDT-TTF)2I3 under 

pressure using an extended Hubbard model [27]. The model used to describe the two-dimensional 

electronic system in α-(BEDT-TTF)2I3 is shown in Figure 12. The unit cell consists of four BEDT-TTF 

molecules on sites A, A’, B and C. The sites A, B and C are inequivalent, while A is equivalent to A’ 

so that inversion symmetry is preserved in the normal state. There are six electrons for the four 

molecules in a unit cell, i.e., the band is 3/4-filled. On the basis of the HOMO orbitals, the electronic 

system is described by the extended Hubbard model with several transfer energies, the on-site repulsive 

interaction U and the anisotropic nearest-neighbor repulsive interaction V

 
(8)  

where i, j denote site indices of a given unit cell, and a,b = A, A’, B and C are indices of BEDT-TTF 

sites in the unit cell. In the first term, the transfer energies as a function of a uniaxial pressure (Pa) 

along the a-axis are estimated from an extrapolation using the data at P = 0 kbar [2] and Pa = 2 kbar [6]. 

We use the parameter U = 0.4 eV and the Vab takes on two different values, Va = 0.17~0.18 eV along 

the stacking direction, and Vb = 0.05 eV along the perpendicular direction. With this choice of 

parameters, we obtain a pressure dependence of the electronic spectrum consistent with experimental 

results [5]. Throughout the paper, the lattice constant is taken as unity. As in previous work [32], we 

restrict ourselves to a Hartree mean field theory. 
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Figure 12. The model describing the electronic system of α-(BEDT-TTF)2I3. The unit cell 

consists of four BEDT-TTF molecules A, A’, B and C with seven transfer energies. The 

nearest neighbor repulsive interactions are given by Va and Vb [27].  

 

The Pa-Va phase diagram obtained from the self-consistent Hartree approximation is shown in  

Figure 13 [27]. This figure exhibits three transition lines. Two of them (the continuous and dashed 

lines) have already been found in previous work [32] and the third one (dotted line) is a novel transition. 

The schematic band spectrum close to the Fermi surface is also shown in Figure 13. The solid line 

marks a charge ordering transition resulting from the simultaneous breaking of time reversal and 

inversion symmetries. It separates the charge ordered metallic state (COM) from the Zero Gap state 

(ZGS). In the ZGS phase, energy bands are spin degenerate and inversion symmetry is preserved. 

Coming from this high-pressure ZGS phase and traversing the continuous line, the inversion symmetry 

is spontaneously broken by the electronic interactions. As a consequence, a gap opens leading to an 

insulating phase. However the time reversal symmetry is also spontaneously broken by the interactions 

so that the degeneracy between up and down bands is now lifted. Therefore the simultaneous breaking 

of time reversal and inversion symmetries results in a semi-metallic phase (COM) with band overlap 

leading to small electrons and hole pockets of opposite spin orientations. In striking contrast with the 

continuous line, the dashed line marks a metal-insulator transition from a charge ordered metallic 

(COM) phase to a charge ordered insulator (CO) without breaking of any symmetry.  

In traversing this transition line, the dispersion relations stay similar but their relative positions to 

the Fermi level vary. In this work, by a more detailed analysis of the COM and CO phases, we find a 

new topological transition (dotted line in Figure 13) that further splits each of the COM and CO phases 

into two phases: COM(I,II) and CO(I,II). This transition concerns a modification in the two energy 

bands close to the Fermi energy. They correspond to a given value of the spin that we choose to denote 

as “up”. The two other bands (down) are not concerned by this transition. As illustrated in Figure 13, 

the transition from CO(I) to CO(II) is characterized by a change in the form of the dispersion relation 

of the valence and conduction bands. In the CO(I) phase, there is a single minimum of charge gap 

whose position in the k space stays at the M-point. In the CO(II) phase, the single charge gap separates 

into two points at symmetrical positions from the M-point. There is now a double-well structure in the 

dispersion relation. This transition corresponds to the emergence of a pair of Dirac points. 
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Figure 13. The phase diagram on the Pa-Va plane, where U = 0.4 eV, and Vb = 0.05 eV [27]. 

The CO and COM denote insulating and metallic states with charge ordering ,respectively. 

Phase (I) shows a single minimum, while phase (II) is characterized by a double minimum 

in the up spin band. In the schematic energy spectrum close to the Fermi  

energy (horizontal line), the red and blue bands correspond to the up and down spin  

band, respectively.  

 

This modification of the band structure is described by an effective low energy Luttinger-Kohn 

Hamiltonian with nine parameters that can be extracted from a numerical Hartree calculation. From a 

detailed study of this Hamiltonian and the corresponding energy spectrum, we show that the transition 

is driven by a single quantity detSM whose sign changes at the transition. SM is the stability matrix, 

which governs the stability of the M-point [27]. A similar scenario occurs for the COM(I)-COM(II) 

transition. 

The existence of a pair of Dirac points is characterized by a special structure of the Berry curvature. 

In the CO(II) and COM(II) states, the Berry curvature shows two sharp peaks with opposite signs. On 

the other hand, in CO(I) and COM(I) phases, the Berry curvature becomes very small owing to 

cancelation of the positive and negative contributions. The existence of the Dirac point is also verified 

by integrating the Berry curvature over a region limited by a closed energy contour around a single 

point [27].  

This topological transition could be probed in a magnetic field by the modification of the Landau 

level structure, therefore by e.g. magnetoresistance experiments.  

6. Tilted-Cone-Induced Easy-Plane Pseudo-Spin Ferromagnet and Kosterlitz-Thouless 

Transition in Massless Dirac Fermions 

We have considered the low-energy effective Hamiltonian for N = 0 Landau states in a pair of tilted 

Dirac cones [28] using the bases of the Wannier functions [33] for the magnetic rectangular lattice, 

which is constructed by a linear combination of the wave functions of N = 0 Landau states in the 
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Landau gauge. This Wannier functions satisfy orthonormality and are localized around R = (ma, nb) 

with integers m and n. A unit cell satisfies ab = 2l
2
 with the magnetic length l = (hc/2 eH)

1/2
 and has 

a magnetic flux quantum hc/e. By taking the long-range Coulomb interaction and the Zeeman energy 

EZ, the low-energy effective Hamiltonian is given by  

 
(9)  

where i, j, k, and l denote the unit cells of the magnetic rectangular lattice at Ri, Rj, Rk, and Rl, 

respectively,  denote the spin, denote the valley-pseudo-spin which represents the degree of freedom 

on a pair of Dirac cones, and ci


(ciis the creation (annihilation) operator on the bases of the 

Wannier functions. The forward-scattering term of the long-range Coulomb interaction, Vijkl, comes 

from the long wave length part. This term does not depend on the spin and valley-pseudo-spin, and 

then it does not break the SU(4) symmetry, neither in the spin subspace nor in that of the pseudo-spin. 

It has been found that the forward-scattering term is not affected by the tilting. On the other hand, the 

backscattering term of the long-range Coulomb interaction, Wijkl, which is the inter-valley scattering 

term exchanging large momentum 2k0 and breaks the SU(2) symmetry in the subspace of the  

valley-pseudo-spin, comes from the short wave length part. In the absence of tilting, as e.g., in 

graphene, the backscattering term vanishes. We found that the tilting is essential to have a non-zero 

backscattering term. The ratio between the forward and backscattering terms is given by 

Wijkl/Vijkl~α
2
αL/l, where α is the tilting parameter, αL is the real lattice constant. The backscattering term 

is proportional to αL, since the large momentum |2k0|~/αL is exchanged. We note that the lattice 

constant of α-(BEDT-TTF)2I3, αL~1 nm, is much larger than that of graphene. Thus it is expected that 

the backscattering term plays an important role for electron-correlation effects in α-(BEDT-TTF)2I3. 

The typical value of the ratio Wijkl/Vijkl is approximately 0.07 for α-(BEDT-TTF)2I3 at H = 10 T using 

the tilting parameter α = 0.8.

In the absence of an explicit symmetry breaking, such as the Zeeman effect or the above-mentioned 

backscattering term, no particular spin or valley-pseudo-spin channel is selected, and one may even 

find an entangled spin-pseudo-spin ferromagnetic state at low temperature. The symmetry-breaking 

terms may, thus, be viewed as ones that choose a particular channel (spin or valley-pseudo-spin) and 

direction of a pre-existing ferromagnetic state by explicitly breaking the original SU(4) symmetry. 

In the spin-polarized state without valley-pseudo-spin polarization (= 0), electrons reside in the 

spin-up branches of the N = 0 Landau levels as shown on the left hand side of Figure 14, where m is 

the spin polarization and I is the on-site effective interaction in the magnetic rectangular lattice. In the 

valley-pseudo-spin ferromagnetic state, where the easy-plane (XY) pseudo-spin polarization lifts the 

valley-pseudo-spin degeneracy and then the spin polarization is suppressed as shown on the right hand 

side of Figure 14. Although the mean field approximation gives the first order transition from the  

spin-polarized state to the valley-pseudo-spin-polarized state with decreasing temperature, the valley 

splitting of Landau levels owing to the partial valley-pseudo-spin polarization may occur continuously 

with decreasing temperature owing to the two-dimensional fluctuation. Actually, the valley-splitting 

has been observed in the interlayer magnetoresistance [34]. 



Crystals 2012, 2 280 

 

 

Figure 14. Schematic figure of the energy levels in the spin-polarized state (left hand side) 

and the valley-pseudo-spin ferromagnetic state (right hand side). Blue and orange arrows 

denote the real spins, and μ is the chemical potential. From [28]. Reproduced with 

permission from JPSJ. 

 

In the presence of the order parameter with a finite amplitude, phase fluctuation exists with the 

characteristic length of spatial variation much longer than the fictitious lattice spacing. The effect of 

this phase fluctuation, which has so far been ignored in the mean-field approximation, is treated on the 

basis of the Wannier functions and the resulting model is similar to the XY model leading to the 

Kosterlitz-Thouless transition [28].  

7. Summary 

In the present review, we have shown the effect of tilting of Dirac cone and the characteristic 

behavior of the Berry curvature in organic conductors.  

The tilting effect is examined by calculating the polarization function of the massless Dirac particle 

for a finite doping. Using the tilted Weyl equation, the dynamical polarization is calculated to find the 

anisotropic behavior in optical conductivity and plasma frequency. A new plasma mode appears owing 

to the combined effect of the two tilted cones, leading to the filtering effect.  

We examined the Berry curvature to understand the zero-gap state under the uniaxial pressure. The 

pronounced peak of the Berry curvature around the Dirac point is obtained by adding a small potential 

acting on the A and A' sites with opposite signs, which breaks the inversion symmetry. Such a method 

of calculating the Berry curvature is useful to find the Dirac electron in an organic conductor. In 

addition to α-(BEDT-TTF)2I3, the zero-gap state is theoretically predicted for the organic conductor  

α-(BEDT-TTF)2 NH4Hg(SCN)4 under uniaxial pressure. The band structure of the stripe charge 

ordered state of α-(BEDT-TTF)2I3 is re-examined using an extended Hubbard model. We found a 

topological transition from a conventional insulator towards a new phase, which is characterized by the 

emergence of a pair of Dirac electrons with a finite mass.  

Finally, by examining the zero-energy N = 0 Landau level in α-(BEDT-TTF)2I3 under strong 

magnetic field, we found the tilted-cone-induced XY valley-pseudo-spin ferromagnetic state and 

Kosterlitz-Thouless transition as an effect of tilting.  
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