Crystals 2012, 2(1), 96-104; doi:10.3390/cryst2010096

Article
1,4-Diazabicyclo[2.2.2]octane (DABCO) 5-aminotetrazolates
Gerhard Laus 1, Volker Kahlenberg 2, Klaus Wurst 1, Michael Hummel 1 and Herwig Schottenberger 1,*
1
Faculty of Chemistry and Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
2
Institute of Mineralogy and Petrography, University of Innsbruck, 6020 Innsbruck, Austria
*
Author to whom correspondence should be addressed; Email: herwig.schottenberger@uibk.ac.at; Tel.: +43-512-507-5120; Fax: +43-512-507-2934.
Received: 10 January 2012; in revised form: 18 January 2012 / Accepted: 19 January 2012 /
Published: 6 February 2012

Abstract

: The crystal structures of four salts of 1,4-diazabicyclo[2.2.2]octane (DABCO) and 5-aminotetrazole are described. Anhydrous 1:1 (Pbca, Rgt = 0.041) and 1:2 (P Crystals 02 00096 i001, Rgt = 0.038) salts form hydrogen-bonded layers of anions and cations. The monohydrate of the 1:1 compound (P21/c, Rgt = 0.038) shows infinite chains of DABCO cations and an undulated layer of anions and water molecules. The octahydrate of the 3:2 compound (P21/c, Rgt = 0.042) features DABCO triples and clusters of four tetrazolate ions in a network of water molecules.
Keywords:
5-aminotetrazolate; DABCO; hydrate; hydrogen bond

1. Introduction

The crystal structures of anhydrous 5-aminotetrazole [1] and its monohydrate [2] are known. Due to its amphiprotic nature [3,4,5], this nitrogen-rich heterocycle has served as cation [6,7,8,9,10] or as anion in energetic salts [11]. Organic salts containing 5-aminotetrazole as anion have been first described by Henry [12]. Crystal structures of several metal 5-aminotetrazolates have been reported [13]. This compound has also received much attention lately as ligand in coordination polymers [14,15,16,17,18,19,20].

1,4-Diazabicyclo[2.2.2]octane (DABCO) is a widely used complexing ligand, and numerous crystal structures of its salts and coordination compounds have been reported [21,22]. The two nitrogen atoms of this tertiary diamine show markedly different basicities [23], facilitating the formation of monocations (DABCO–H+). Dicationic species (DABCO–H22+) are obtained only with strong acids, e.g., the dihydrochloride [24], dinitrate [25], and sulfate [26].

Continuing our interest in DABCO salts [21] and hydrates [22] we decided to explore combinations of DABCO and 5-aminotetrazole.

2. Results and Discussion

The DABCO molecules typically adopt a cage-like structure. The aminotetrazole molecules are planar (largest deviation 0.023 Å). The four new salts contain DABCO monocations in different arrangements. In all cases, association among the aminotetrazole molecules is observed. Hydrogen bond interactions between cations and anions are found only in the anhydrous salts, whereas the hydrates show preferred interactions between anions and water molecules. Crystal data and details of the structure refinement are summarized in Table 1. Hydrogen bond parameters are shown in Table 2.

Table Table 1. Crystal data and structure refinement details for compounds 14.

Click here to display table

Table 1. Crystal data and structure refinement details for compounds 14.
Compound1234
CCDC no.855698855697855700855699
Chemical formulaC6H13N2·CH2N5C6H14N2·(CH2N5)2C6H13N2·CH2N5·H2O(C6H13N2)2·C6H12N2·(CH2N5)2·(H2O)8
Mr197.26282.34215.28650.82
Crystal size/mm30.40 × 0.40 × 0.380.36 × 0.36 × 0.280.36 × 0.24 × 0.080.2 × 0.1 × 0.05
Crystal systemOrthorhombicTriclinicMonoclinicMonoclinic
Space groupPbcaP Crystals 02 00096 i001P21/cP21/c
a5.9696(1)8.7982(6)8.8064(3)12.6856(3)
b16.7493(4)8.8927(7)11.1285(3)8.8200(2)
c19.0799(4)9.7756(5)10.5456(3)31.3885(8)
α9067.827(6)9090
β9086.181(5)102.894(3)99.390(2)
γ9071.794(7)9090
V31907.73(7)671.68(9)1007.43(5)3464.91(14)
Z8244
Dx/g cm–31.371.401.421.25
µ/mm–10.100.100.100.10
F(000)/e8483004641416
DiffractometerGemini-R UltraGemini-R UltraGemini-R UltraNonius KappaCCD
Data collection methodω scansωscansωscansφ and ω scans
Temperature/K173(2)173(2)173(2)233(2)
θmax25.425.325.423.1
h, k, l range–6 ≤ h ≤7–10 ≤ h ≤ 10–8 ≤ h ≤ 10–13 ≤ h ≤ 13
–20 ≤ k ≤ 17–10 ≤ k ≤ 10–10 ≤ k ≤ 13–9 ≤ k ≤ 9
–22 ≤ l ≤ 19–11 ≤ l ≤ 11–12 ≤ l ≤ 12–34 ≤ l ≤ 34
Absorption correctionmulti-scanmulti-scanmulti-scannone
Measured reflections103775025732215576
Independent reflections (Rint)1743 (0.028)2445 (0.025)1850 (0.033)4769 (0.042)
Observed reflections [I ≥ 2σ(I)]1534198614923567
Restraints/parameters4/1368/1996/15222/486
R1/wR2 [I ≥ 2σ(I)]0.041, 0.1080.038, 0.0980.038, 0.0830.042, 0.099
R1/wR2 (all data)0.049, 0.1120.049, 0.1020.056, 0.0890.064, 0.108
Goodness of fit1.061.091.031.03
Δρmax/min/e Å–30.23, –0.200.27, –0.280.19, –0.170.18, –0.18
Table Table 2. Hydrogen bond parameters (Å,°).

Click here to display table

Table 2. Hydrogen bond parameters (Å,°).
CompoundD–H...AH...AD...AD–H...ASymmetry operation (A)
1N7–H...N51.77(2)2.698(2)168(1)–1/2+x,1/2–y,–z
N1–H...N22.24(1)3.102(2)166(1)1/2+x,y,1/2–z
N1–H...N32.24(2)3.105(2)164(1)1+x,y,z
2N10–H...N121.86(2)2.752(2)165(2)
N11–H...N51.68(2)2.636(2)167(2)–1+x,y,z
N1–H...N72.17(2)3.059(2)172(1)x,–1+y,z
N1–H...N82.29(1)3.125(2)159(1)2–x,–y,2–z
N6–H...N22.14(2)3.003(2)175(2)x,1+y,z
N6–H...N32.08(2)2.970(2)172(2)1–x,1–y,1–z
3N1–H...N22.27(2)3.152(2)169(1)1–x,–y,–z
N1–H...N42.20(2)3.061(2)161(1)x,1/2–y,–1/2+z
N7–H...N61.85(2)2.763(2)174(2)x,3/2–y,–1/2+z
O1–H...N32.17(2)3.001(2)159(2)1–x,1/2+y,1/2–z
O1–H...N52.05(2)2.938(2)174(2)
4N3–H...N21.73(2)2.707(2)176(2)
N5–H...N11.72(2)2.687(2)175(2)
N11–H...N102.17(2)3.074(2)173(2)1–x,1–y,1–z
N11–H...N152.22(2)3.078(3)164(2)
N16–H...N72.16(2)3.048(3)164(2)
N16–H...N122.22(2)3.101(2)178(2)x,1–y,1–z
O1–H...N41.98(3)2.811(2)165(3)
O1–H...O21.92(5)2.788(3)177(5)
O2–H...N61.90(2)2.760(2)173(2)1+x,3/2–y,1/2+z
O2–H...O81.87(4)2.749(3)169(5)2–x,–1/2+y,3/2–z
O3–H...O21.95(3)2.788(3)166(4)
O3–H...O41.93(2)2.759(3)170(3)
O4–H...N91.98(3)2.843(3)180(2)1–x,1–y,1–z
O4–H...O51.88(2)2.761(3)178(2)
O5–H...N141.97(2)2.828(2)175(3)
O5–H...O11.98(2)2.841(3)169(3)1–x,–1/2+y,3/2–z
O6–H...O11.96(3)2.800(3)169(3)
O6–H...O31.89(4)2.715(4)167(4)x,1+y,z
O7–H...N131.99(3)2.847(3)176(3)1–x,1/2+y,3/2–z
O7–H...O61.88(4)2.748(3)166(4)
O8–H...N81.97(2)2.822(2)174(2)1+x,3/2–y,1/2+z
O8–H...O71.94(3)2.764(3)164(5)

2.1. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazolate (1)

In this most primitive salt of DABCO and aminotetrazole, the aminotetrazolate anions form ribbons parallel to the (0 1 0) plane, assembled from nine-membered rings and propagating in the direction of the crystallographic a axis. The DABCO cations are attached to the edges of the ribbons by hydrogen bonds (Figure 1).

Crystals 02 00096 g001 200
Figure 1. Hydrogen-bonded layer of ions parallel to the (0 1 0) plane in compound 1.

Click here to enlarge figure

Figure 1. Hydrogen-bonded layer of ions parallel to the (0 1 0) plane in compound 1.
Crystals 02 00096 g001 1024

2.2. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazole 5-aminotetrazolate (2)

Since aminotetrazole is not sufficiently strong an acid to create DABCO dications, the additional molecule of aminotetrazole in this 1:2 salt is incorporated in neutral form. The aminotetrazole molecules again form ribbons, this time assembled from eight- and ten-membered rings. The ribbons are linked by hydrogen-bonded DABCO monocations into layers parallel to the (–1 1 2) plane (Figure 2).

Crystals 02 00096 g002 200
Figure 2. Hydrogen-bonded layer of ions parallel to the (–1 1 2) plane in compound 2.

Click here to enlarge figure

Figure 2. Hydrogen-bonded layer of ions parallel to the (–1 1 2) plane in compound 2.
Crystals 02 00096 g002 1024

2.3. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazolate Hydrate (3)

It is interesting to observe the differences in the structures of the anhydrous salt 1 and the hydrate 3. The aminotetrazole anions obviously prefer coordination with water molecules if there is a choice. The resulting network and the chains of hydrogen-bonded DABCO monocations are shown in Figure 3. In this aesthetically appealing structure, the DABCO–H+ rods are gently caressed by a wave of anions and water molecules (Figure 4).

Crystals 02 00096 g003 200
Figure 3. (a) Hydrogen-bond network of anions and water molecules in the hydrate of the 1:1 salt. (b) Chain of hydrogen-bonded DABCO mono-cations in compound 3. Symmetry operations i: x,3/2–y,–1/2+z; ii: x,3/2–y,1/2+z.

Click here to enlarge figure

Figure 3. (a) Hydrogen-bond network of anions and water molecules in the hydrate of the 1:1 salt. (b) Chain of hydrogen-bonded DABCO mono-cations in compound 3. Symmetry operations i: x,3/2–y,–1/2+z; ii: x,3/2–y,1/2+z.
Crystals 02 00096 g003 1024
Crystals 02 00096 g004 200
Figure 4. Packing diagram of the hydrate 3. Hydrogen atoms omitted for clarity.

Click here to enlarge figure

Figure 4. Packing diagram of the hydrate 3. Hydrogen atoms omitted for clarity.
Crystals 02 00096 g004 1024

2.4. Bis(1-aza-4-azoniabicyclo[2.2.2]octane) 1,4-diazabicyclo[2.2.2]octane bis(5-aminotetrazolate) Octahydrate (4)

Small crystals of the octahydrate 4 were identified as a byproduct in 3. Although a slightly lower data/parameter ratio (9.81) than desirable was obtained due to weak reflections at higher angles, the structure is still considered satisfactory. A linear array of three DABCO units [27] is observed, involving two monocations and a neutral molecule. These DABCO triples are cross-linked by two water molecules (Figure 5) into infinite zig-zag chains. Clusters of four tetrazolate ions are engulfed in a cloud of water molecules including cyclic water decamers (Figure 6).

Crystals 02 00096 g005 200
Figure 5. Packing diagram of the octahydrate 4. Uninteresting hydrogen atoms omitted for clarity. Symmetry operation i: 1+x,3/2–y,1/2+z.

Click here to enlarge figure

Figure 5. Packing diagram of the octahydrate 4. Uninteresting hydrogen atoms omitted for clarity. Symmetry operation i: 1+x,3/2–y,1/2+z.
Crystals 02 00096 g005 1024
Crystals 02 00096 g006 200
Figure 6. Cluster of four aminotetrazolate ions and network of water molecules in the octahydrate 4. Hydrogen atoms omitted for clarity. Symmetry codes i: 1–x,1–y,1–z; ii: 1–x,1/2+y,3/2–z; iii: 1–x,–1/2+y,3/2–z; iv: x,3/2–y,–1/2+z; v: x,–1+y,z; vi: 1–x,2–y,1–z; vii: –1+x,–1+y,z; viii: 2–x,–1/2+y,3/2–z; ix: –1+x,3/2–y,–1/2+z.

Click here to enlarge figure

Figure 6. Cluster of four aminotetrazolate ions and network of water molecules in the octahydrate 4. Hydrogen atoms omitted for clarity. Symmetry codes i: 1–x,1–y,1–z; ii: 1–x,1/2+y,3/2–z; iii: 1–x,–1/2+y,3/2–z; iv: x,3/2–y,–1/2+z; v: x,–1+y,z; vi: 1–x,2–y,1–z; vii: –1+x,–1+y,z; viii: 2–x,–1/2+y,3/2–z; ix: –1+x,3/2–y,–1/2+z.
Crystals 02 00096 g006 1024

3. Experimental Section

3.1. Synthesis of DABCO 5-Aminotetrazolates

DABCO (0.56 g, 5 mmol) and the appropriate amount of 5-aminotetrazole were dissolved in MeOH (3 mL). For the hydrate, the required amount of H2O was added. The solution was slowly refrigerated to –20 °C. After 3 days the supernatant was discarded, and the crystals were collected.

3.2. Crystal Structure Determination

Intensity data were recorded with Oxford Diffraction Gemini-R Ultra and Nonius KappaCCD diffractometers using Mo Kα radiation. Experimental details are summarized in Table 1. Structure solution and refinement was performed with the programs SIR2002 (direct methods) [28] and SHELXL-97 [29]. CCDC reference numbers: 855697-855700. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

4. Conclusions

Assembly of simple but versatile building blocks offers a treasure trove of opportunities and rich rewards for the curious investigator. The structures described herein are impressive examples of this successful concept.

References and Notes

  1. Fujihisa, H.; Honda, K.; Obata, S.; Yamawaki, H.; Takeya, S.; Gotoh, Y.; Matsunaga, T. Crystal structure of anhydrous 5-aminotetrazole and its high-pressure behavior. CrystEngComm 2011, 13, 99–102.
  2. Bray, D.D.; White, J.G. Refinement of the Structure of 5-Aminotetrazole Monohydrate. Acta Crystallogr. 1979, B35, 3089–3091.
  3. Boraei, A.A.A. Acidity Constants of Some Tetrazole Compounds in Various Aqueous-Organic Solvent Media. J. Chem. Eng. Data 2001, 46, 939–943, doi:10.1021/je010031p.
  4. Murlowska, K.; Sadlej-Sosnowska, N. Absolute Calculations of Acidity of C-Substituted Tetrazoles in Solution. J. Phys. Chem. A 2005, 109, 5590–5595, doi:10.1021/jp040388a.
  5. Albert, A.; Goldacre, R.; Phillips, J. The Strength of Heterocyclic Bases. J. Chem. Soc. 1948, 2, 2240–2249.
  6. Xue, H.; Gao, H.; Twamley, B.; Shreeve, J.M. Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-Substituted Azoles. Chem. Mater. 2007, 19, 1731–1739.
  7. von Denffer, M.; Klapötke, T.M.; Sabaté, C.M. Hydrates of 5-Amino-1H-tetrazolium Halogenide Salts – Starting Materials for the Synthesis of Energetic Compounds. Z. Anorg. Allg. Chem. 2008, 634, 2575–2582, doi:10.1002/zaac.200800270.
  8. Klapötke, T.M.; Sabaté, C.M.; Stierstorfer, J. Hydrogen-bonding Stabilization in Energetic Perchlorate Salts: 5-Amino-1H-tetrazolium Perchlorate and its Adduct with 5-Amino-1H-tetrazole. Z. Anorg. Allg. Chem. 2008, 634, 1867–1874.
  9. Jin, C.; Ye, C.; Piekarski, C.; Twamley, B.; Shreeve, J.M. Mono and Bridged Azolium Picrates as Energetic Salts. Eur. J. Inorg. Chem. 2005, 3760–3767.
  10. von Denffer, M.; Klapötke, T.M.; Kramer, G.; Spiess, G.; Welch, J.M.; Heeb, G. Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate. Propellants, Explos., Pyrotech. 2005, 30, 191–195, doi:10.1002/prep.200500004.
  11. Tao, G.-H.; Guo, Y.; Joo, Y.-H.; Twamley, B.; Shreeve, J.M. Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J. Mater. Chem. 2008, 18, 5524–5530, doi:10.1039/b811506k.
  12. Henry, R.A. Salts of 5-Aminotetrazole. J. Am. Chem. Soc. 1952, 74, 6303, doi:10.1021/ja01144a035.
  13. Ernst, V.; Klapötke, T.M.; Stierstorfer, J. Alkali Salts of 5-Aminotetrazole—Structures and Properties. Z. Anorg. Allg. Chem. 2007, 633, 879–887, doi:10.1002/zaac.200700013.
  14. Yao, Y.-L.; Xue, L.; Che, Y.-X.; Zheng, J.-M. Syntheses, Structures, and Characterizations of Two Pairs of Cd(II)-5-Aminotetrazolate Coordination Polymers. Cryst. Growth Des. 2009, 9, 606–610, doi:10.1021/cg8009157.
  15. Liu, D.; Huang, G.; Huang, C.; Huang, X.; Chen, J.; You, X.Z. Cadmium Coordination Polymers Constructed from in Situ Generated Amino-Tetrazole Ligand: Effect of the Conditions on the Structures and Topologies. Cryst. Growth Des. 2009, 9, 5117–5127.
  16. Liu, D.; Huang, X.; Huang, C.; Huang, G.; Chen, J. Synthesis, crystal structures and properties of three new mixed-ligand d10 metal complexes constructed from pyridinecarboxylate and in situ generated amino-tetrazole ligand. J. Solid State Chem. 2009, 182, 1899–1906, doi:10.1016/j.jssc.2009.04.034.
  17. Wang, X.-W.; Chen, J.-Z.; Liu, J.-H. Photoluminescent Zn(II) Metal-Organic Frameworks Built from Tetrazole Ligand: 2D Four-Connected Regular Honeycomb (4363)-net. Cryst. Growth Des. 2007, 7, 1227–1229, doi:10.1021/cg070330w.
  18. Wang, T.-W.; Liu, D.-S.; Huang, C.-C.; Sui, Y.; Huang, X.-H.; Chen, J.-Z.; You, X.-Z. Syntheses, Crystal Structures, and Magnetic Properties of Two Mn(II) Coordination Polymers Based on the 5-Aminotetrazole Ligand: Effect of Sources of Ligand on Construction of Topological Networks. Cryst. Growth Des. 2010, 10, 3429–3435.
  19. Paul, A.K.; Sanyal, U.; Natarajan, S. Use of Polyazaheterocycles in the Assembly of New Cadmium Sulfate Frameworks: Synthesis, Structure, and Properties. Cryst. Growth Des. 2010, 10, 4161–4175, doi:10.1021/cg100865v.
  20. Qiu, Y.; Li, Y.; Peng, G.; Cai, J.; Jin, L.; Ma, L.; Deng, H.; Zeller, M.; Batten, S.R. Cadmium Metal-Directed Three-Dimensional Coordination Polymers: In Situ Tetrazole Ligand Synthesis, Structures, and Luminescent Properties. Cryst. Growth Des. 2010, 10, 1332–1340, doi:10.1021/cg9013619.
  21. Laus, G.; Hummel, M.; Többens, D.M.; Gelbrich, T.; Kahlenberg, V.; Wurst, K.; Griesser, U.J.; Schottenberger, H. The 1:1 and 1:2 salts of 1,4-diazabicyclo[2.2.2]octane and bis(trifluoromethyl­sulfonyl)amine: thermal behaviour and polymorphism. CrystEngComm 2011, 13, 5439–5446 and literature cited.
  22. Laus, G.; Kahlenberg, V.; Wurst, K.; Lörting, T.; Schottenberger, H. Hydrogen bonding in the perhydrate and hydrates of 1,4-diazabicyclo[2.2.2]octane (DABCO). CrystEngComm 2008, 10, 1638–1644 and literature cited, doi:10.1039/b807303a.
  23. Quagliano, J.V.; Banerjee, A.K.; Goedken, V.L.; Vallarino, L.M. Donor Properties of Positively Charged Ligands. Pseudotetrahedral Transition Metal Complexes Containing a Monoquaternized Tertiary Diamine. J. Am. Chem. Soc. 1970, 92, 482–488.
  24. Kennedy, S.W.; Schultz, P.K.; Slade, P.G.; Tiekink, E.R.T. Triethylenediamine dihydrochloride. Z. Kristallogr. 1987, 180, 211–217, doi:10.1524/zkri.1987.180.1-4.211.
  25. Knope, K.E.; Cahill, C.L. 1,4-Diazoniabicyclo[2.2.2]octane dinitrate. Acta Crystallogr. 2007, E63, o2955.
  26. Jayaraman, K.; Choudhury, A.; Rao, C.N.R. Sulfates of organic diamines: hydrogen-bonded structures and properties. Solid State Sci. 2002, 4, 413–422, doi:10.1016/S1293-2558(02)01269-4.
  27. Allwood, B.L.; Moysak, P.I.; Rzepa, H.S.; Williams, D.J. A novel hydrogen-bonded complex formed by reaction between bromine and 1,4-diazabicyclo[2.2.2]octane in dichloromethane solution. J. Chem. Soc., Chem. Commun. 1985, 1127–1129.
  28. Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G. More power for direct methods: SIR2002. Z. Kristallogr. 2002, 217, 629–635, doi:10.1524/zkri.217.12.629.20658.
  29. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
Crystals EISSN 2073-4352 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert