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Abstract: Near-infrared laser radiation based on Nd3+-doped yttrium ortho-aluminate (Nd:YAlO3,
Nd:YAP) has garnered significant interest regarding solid-state lasers. Nevertheless, the crystal
microstructures and electronic characteristics of Nd:YAP are still unclear, and the unique physical
properties underlying its enormous applications require clarification. In this study, we conducted
first-principles calculations at the atomic level to explore the electronic properties and mechanical
characteristics of both pure YAP and Nd3+-doped YAP. The results suggest that the substitution of the
Y3+ ion site with the Nd3+ impurity ion induces slight structural distortion in the YAP crystal lattice.
An impurity band emerges between the original conduction band and the valence band, attributed
to the 4f orbital of the Nd3+ ion, exerting a substantial influence on the narrowing of the band gap.
Through an analysis of the mechanical characteristics of both pure YAP and Nd:YAP, we conclude
that the incorporation of Nd3+ atoms leads to a reduction in the mechanical properties of YAP to a
certain extent. Our study can serve as a foundational data source for investigations into material
performance, especially for the application of Nd:YAP in solid-state laser systems.

Keywords: near-infrared laser; first-principles calculations; electronic structure; Nd:YAlO3

1. Introduction

In the field of solid-state lasers, luminescence at a wavelength of approximately
1 µm is imperative for various applications spanning industry, medicine, military, and
non-linear frequency generation [1–5]. Yttrium ortho-aluminate (YAlO3, YAP) with a
perovskite-type structure serves as an excellent host for various rare-earth (RE) ions. These
materials find extensive use owing to their favorable characteristics, including high thermal
conductivity, exceptional thermo-mechanical properties, low cost, large-size fabrication,
and ease of manufacturing [6]. Among the various rare-earth (RE) ions, neodymium (Nd)
ions have garnered significant attention due to their inherent advantages, including high
quantum efficiency, broad absorption bands, and long radiative lifetimes [7]. Upon doping
with rare-earth Nd3+, YAP emerges as an important candidate for generating 1 µm laser
radiation. Numerous studies have suggested that Nd:YAP is a promising alternative crystal
to Nd:YAG for achieving high power output. Observations reveal that the Nd:YAP crystal
exhibits a large stimulated emission cross-section, excellent optomechanical coefficient, and
high thermal conductivity [8,9]. Notably, the intrinsic birefringence and distinctive optical
anisotropy of the Nd:YAP host effectively mitigate thermal depolarization, enabling the
generation of a linearly polarized laser without the need for additional polarizing devices
in the laser cavity [10]. Hence, the development of laser sources utilizing the Nd:YAP
crystal holds significant practical value.
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The evolution of the Nd:YAP laser has a rich history, and scientists have contributed
to its development through rigorous experimentation, theoretical advancements, and tech-
nological innovations. For the first time, Wu et al. demonstrated a compact Q-switched
operation of a diode-pumped Nd:YAP laser with a 90 W output. They attained a 4.1 W
output at 3.5 µm from an optical parametric oscillator pumped within the cavity of a
Q-switched, diode-pumped Nd:YAP laser operating at a frequency of 10 kHz [11]. Wei et al.
analyzed the energy level transitions and polarization properties of Nd:YAP crystals, and
an a-axis, polarized, 1339 nm pulse laser was successfully constructed with pulse width and
full width at half maximum of 180 µs and 35 ns, respectively. Their efforts in polarization
selection to achieve oscillation in weak lines are noteworthy for anisotropic Nd:YAP laser
crystals, allowing for the specific targeting of particular transitions [12]. By the floating
zone method, Yanagida et al. synthesized and evaluated Nd-doped YAP crystals. After
crystal growth, the optical properties, including transmittance, photoluminescence spectra,
and photoluminescence decay curves, and scintillation properties, such as pulse height
spectra, light yield nonproportionalities, and energy resolutions, were systematically in-
vestigated, indicating the potential application of Nd:YAP in scintillation detectors [13].
Recent investigations have tended to focus on exploring the cryogenic laser applications of
Nd:YAP [8,14]. By studying the structural, thermal, and spectroscopic properties of Nd:YAP
under cryogenic temperatures, an interesting zero-thermal-expansion phenomenon has
been observed around 180 K, which could significantly suppress wavefront distortion in
high-power lasers [8]. Furthermore, authors have investigated the laser performance of
an a-cut rod of Nd:YAP crystal as the gain medium for zero thermal expansion around
180 K. The study encompassed laser performance across a temperature range from 80 to
290 K. At the critical temperature of zero thermal expansion (180 K), the authors achieved
maximum output power with minimal threshold pump power and the highest optical-
to-optical conversion efficiency. Additionally, a reduction in both thermal lensing and
wavefront distortion effects was achieved without the need for an additional optical correc-
tion system. These findings present innovative solutions for generating high-power and
high-beam-quality lasers using zero thermal expansion gain materials, such as Nd:YAP
crystals. The aforementioned investigations underscore the significance of research on
Nd:YAP crystals [14]. Although there are a lot of experimental studies on Nd3+-doped
YAP crystals, the new characteristics and the specific influence of impurity ions on the
system remain unclear. To the best of our knowledge, there are few systematic studies
on the microstructural, electronic, and mechanical properties of Nd3+-doped YAP at the
atomic level.

In this study, we investigated the microstructure of both pure and Nd3+-doped YAP
by performing first-principles calculations. Additionally, based on the obtained structure,
we calculated and analyzed the band structure and density of states to gain deeper insights
into the electronic properties. In order to provide a better description of the electronic
structure of Nd-doped YAP, we conducted further calculations using the LDA+U method
(including spin–orbit effects) for comparison. Furthermore, we also calculated the mechani-
cal properties of the Nd3+-doped YAP system. The elastic constants Cij, elastic moduli (B,
G, E), Pugh’s ratio, Poisson’s ratio, hardness, and elastic anisotropy were investigated. The
present results provide an essential understanding of rare-earth ion-doped lasing materials.
Our study can serve as a foundational data source for investigations into material perfor-
mance, especially for the application of Nd:YAP in solid-state laser systems. The structure
of this paper is outlined as follows: Section 2 delineates the computational materials and
methods employed. In Section 3, an analysis of the derived structural, electronic, and
mechanical properties is presented. Lastly, a summary and conclusion are provided.
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2. Materials and Methods

YAP possesses a distorted perovskite structure belonging to the orthorhombic Pbnm
space group, with lattice parameters of a = 5.180 Å, b = 5.330 Å, c = 7.375 Å, and α = β =
γ = 90◦ [15]. The conventional unit cell of YAP contains four AlO6 octahedra formula units.
The Al ions are located in the center of the AlO6 and Y ions occupy the holes between them.

To investigate the influence of Nd ions on the microstructure and material properties
of YAP crystals, we constructed a 2 × 2 × 1 supercell with up to 80 atoms, of which one
Y3+ ion was replaced by Nd3+. The concentration of Nd3+ was equal to 6.25%, which was
close to the experimental data reported by Basavalingu et al. [16]. In the crystal lattice, the
Nd3+ ion possessed similar electronic configurations and radius to Y3+ and could naturally
incorporate into the YAP host matrix and easily substitute the position of Y3+ [17]. The
structure of Nd:YAP is illustrated in Figure 1. The Nd3+ impurity was surrounded by eight
O2− and constituted a [NdO8]13− local structure.
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Figure 1. The structure of 2 × 2 × 1 supercell of YAP with Nd3+ ion substituted for Y3+ ion. Nd
dopant is shown as a green ball and the blue, yellow, and red spheres represent Y, Al, and O
atoms, respectively.

Our calculations were performed with the Cambridge Serial Total Energy Package
(CASTEP) code, which is based on the plane–wave pseudo-potential density functional
theory method [18]. A large number of successful simulations, spanning surface chemistry,
bond structure, density of states, and optical properties, have been accomplished through
the utilization of the CASTEP code. This computational tool finds applicability in the
domains of solid physics, materials science, chemistry, and chemical engineering and offers
the potential for cost savings and expedited development cycles compared to experimental
approaches. The exchange–correlation effects were treated within the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) function [19]. Y-4d15s2,
Al-3s23p1, O-2s22p4, and Nd-4f45s25p66s2 were treated as atomic valence electrons; the
other states were kept frozen as core and semi-core states. Through the convergence
tests, a cut-off energy of 500 eV with fine Monkhorst–Pack k meshes was adopted. The
convergences of the energy, maximum force tolerance, maximum atomic displacement, and
maximum stress component were 2 × 10−5 eV/atom, 0.05 eV/Å, 0.002 Å, and 0.1 GPa,
respectively. To ensure that our modeling could reproduce the basic crystal parameters
of ideal, pure YAP and Nd-doped YAP, the computer simulation started with complete
geometry optimization.
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3. Results and Discussion
3.1. Structure

Before property calculations, geometry optimization was necessary to obtain fully
stable structures of both YAP and Nd:YAP. The obtained lattice parameters of pure YAP and
Nd:YAP are summarized in Table 1, together with the experimental and theoretical results.

With the incorporation of the Nd3+ impurity ion, Nd:YAP exhibited slight structural
distortions, and the lattice volume experienced a certain degree of expansion. This phe-
nomenon could be ascribed to the larger atomic radius of Nd3+ (0.98 Å) compared to that of
Y3+ (0.90 Å) [20]. The calculated lattice parameters were overvalued compared to the exper-
imental lattice parameter, which was attributed to the use of the PBE functional. However,
it is noteworthy that the deviation between the experimental and our theoretical values
was below 2%, justifying the rationality of our calculation scheme and chosen parameters.

Table 1. The lattice constants (a, b, c) and cell volume (V) of the optimized YAP and Nd:YAP compared
with experimental data.

Structure Source a (Å) b (Å) c (Å) V (Å3)

YAP

This work 5.216 5.400 7.440 209.538
Exp. [21] 5.180 5.330 7.375 203.619
Cal. [22] 5.210 5.359 7.427 207.365
Cal. [15] 5.310 5.413 7.537 216.636

Nd:YAP
This work 5.229 5.401 7.449 210.334
Exp. [16] 5.162 5.353 7.391 204.229

To further clarify the structure of the Nd3+-doped YAP crystal, we also simulated the
X-ray diffraction (XRD) patterns of pure YAP and Nd:YAP theoretically. X-ray diffraction
(XRD) analysis is a methodology that leverages the diffraction phenomenon of X-rays in
crystalline materials for the purpose of elucidating material structures. Widely employed,
this technique plays a pivotal role in exploring intricate crystal structures across diverse
systems. The calculated results are shown in Figure 2, together with the available exper-
imental result of pure YAP [16]. The simulated XRD spectra of Nd:YAP are shown as a
red line and the black and blue lines represent pure YAP and the available experimental
result of pure YAP (JCPDF#70-1677), respectively. Taking into account the distribution of
relative intensities, the simulated spectra in the 2θ range from 20 to 70◦ exhibited overall
good agreement with the available experimental data, thus affirming the accuracy of our
simulation. Our simulated XRD spectra for Nd:YAP can serve as valuable guidelines for
future experimental syntheses.

3.2. Electronic Properties

Electronic band structure and density of states (DOS) often provide sufficient infor-
mation for a comprehensive characterization of a material’s electronic properties. The
calculated band structures for pure YAP and Nd:YAP are depicted in Figure 3. Our primary
focus was on the distribution of energy bands near the Fermi energy level. The most notable
distinction, in comparison to pure YAP, lay in the presence of occupied states near the Fermi
level. It was concluded that the incorporation of the Nd3+ ion into the YAP host crystal led
to a narrowing of the band gap. Notably, Ju M. et al. observed analogous outcomes in the
Nd:Y2O3 and Cr:YAP systems [23,24]. The calculated indirect band gap of YAP was 5.7 eV,
demonstrating reasonable agreement with earlier first-principles calculations [25]; yet, it
remained lower than the experimental value of 7.1 eV [26]. Such a discrepancy between
theory and experiment is expected when the density functional theory method is used.
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For a comprehensive understanding of the electronic properties, we additionally
calculate the partial DOS for YAP and Nd:YAP. The influence of each atom on the entire
density of states could be seen from the partial DOS. Figure 4 shows the calculated partial
density of states of YAP and Nd:YAP, offering a visual representation of the partial DOS
for the two materials. In YAP, O and Y atoms played a decisive role in the band structure
near the Fermi level, and the band gap width was mainly determined by the O-2p and
Y-4d states. The valence band of YAP came from the O-2p state, with a small amount
of Y-4d state mixed with Al-3s and Al-3p states. The conduction band above the Fermi
level was mainly dominated by the Y-4d state, which had a significant impact on the
properties of YAP. Compared to pure YAP, the density of states of Nd:YAP could be divided
into three parts near the Fermi energy level, which were mainly contributed to by the
O-2p, Nd-4f, and Y-4d states. The O-2p states played a major role below the Fermi level,
whereas the conduction band was mainly formed by the Y-4d states, and the Al atom had a
weak contribution near the Fermi energy level. It is noteworthy that a new peak emerged
above the Fermi energy level, originating from the Nd-4f states. Therefore, the band gap
narrowing feature could be ascribed to the Nd3+ dopant ion in YAP. This narrowing of
the band gap was indicative of changes in the electronic structure that may have led to
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enhanced optical or electrical properties in Nd:YAP, making it a potentially useful material
for various applications. Overall, the detailed analysis of the partial DOS provided valuable
insights into the electronic properties of YAP and Nd:YAP, laying the foundation for further
explorations of their potential applications.
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Electronic transitions significantly impact the optical properties of materials. More-
over, the absorption spectrum and refractive index of Nd:YAP play a crucial role in laser
applications. Based on the calculated electronic band structure, we also conducted a pre-
liminary study of the optical properties of YAP materials before and after doping. The
calculated results are presented in Figure 5, where a scissor operator of 1.4 eV was used to
eliminate the difference between the theoretical and experimental gap values. The main
function of the scissor operator was to adjust the theoretically calculated bandgap value to
be consistent with the experimental value, without changing the detailed characteristics of
the energy band.

Figure 5a clearly shows that in Nd:YAP, a distinct optical absorption band emerged
at approximately 2.5 eV. Notably, a small absorption peak also appeared at 1.5 eV, which
was in excellent agreement with the pump source wavelength of 803 nm in Nd:YAP.
The absorption band of the YAP materials from ultraviolet to infrared expanded with
the incorporation of Nd3+ ions. This phenomenon was attributed to the doping of rare-
earth ions in the host crystals. Figure 5b illustrates that the refractive index of Nd:YAP
exhibited an increase in comparison to pure YAP. The calculated refractive index of Nd:YAP
was 1.955 (@1064 nm), demonstrating close agreement with the experimental value of
1.929 (@1064 nm) [2] and affirming the high accuracy of our calculations. This led to the
conclusion that the alterations in the optical properties were intricately linked to the 4f
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states of the Nd3+ ions. Our current findings offer valuable insights into the trends of
optical properties within the Nd:YAP system.
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(b) refractive index in the (1 0 0) direction.

However, the standard density functional theory calculations using the GGA method
may not have accurately described the strongly correlated 4f electrons of Nd atoms. In
order to provide a better description of the electronic structure of Nd-doped YAP, the
band structures and the total DOS of Nd:YAP were further calculated using the LDA+U
method (including spin–orbit effects). The U value of Nd has been determined to be 6 eV
by Herbst [27].

Figure 6 shows the calculated electronic band structures and total DOS of Nd:YAP
obtained by the LDA+U method, including spin–orbit effects, and the Fermi level is
indicated by the dotted line. The results suggest a gap value of 4.1 eV for Nd3+-doped YAP,
exerting a substantial influence on the narrowing of the band gap. Similar behaviors also
have been observed in the aforementioned Nd:Y2O3 and Cr:YAP systems [23,24].
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Figure 6. The (a) calculated band structure and (b) total DOS of Nd:YAP using LDA+U method
(including spin–orbit effects). The Fermi level is indicated by the dotted line.

Through a comparative analysis employing the GGA+PBE and LDA+U methods,
an investigation into the electronic properties, including band structure and density of
states, was conducted. However, there was not any available information on band gap
values for Nd:YAP in the literature to be compared with our obtained results. Thus,
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we hope that our theoretical results will provide more available information for further
experimental investigations.

3.3. Mechanical Properties

The investigation of the mechanical properties of materials, including elastic constants,
modulus, Poisson’s ratio, and hardness, holds immense importance for the industrial
utilization of materials, particularly in the realm of lasers. For this purpose, we conducted
a comprehensive investigation into the mechanical properties of Nd3+ ion-doped YAP.

As we know, the elastic constant (Cij) determines the stiffness of a crystal against an
externally applied strain. In our study, based on the general Hooke’s law, the elastic constant
was obtained by employing the strain–stress method. The orthc crysorhombital possesses
nine independent elastic constants, denoted as C11, C22, C33, C12, C13, C23, C44, C55, and C66.
Additional constants can be determined by symmetry relationships: C12 = C21, C13 = C31,
and C23 = C32; the rest are set to zero [28]. Before considering the elastic properties, the Born
mechanical stability of these systems should be examined. Mechanical stability criteria for
the orthorhombic phase are given by the below [28]:

C11 > 0, C11C22 > C2
12,

C11C22C33+2C12C13C23 − C11C2
23 − C22C2

13 − C33C2
12 > 0,

C44 > 0, C55 > 0, C66 > 0.
(1)

The computed elastic constants Cij for YAP and Nd:YAP at zero temperature and
zero pressure are presented in Table 2, alongside additional YAP calculations [15]. The
obtained elastic constants satisfied the mechanical stability criteria and indicated that our
computational models were mechanically stable.

Table 2. Calculated elastic constants Cij of YAP and Nd:YAP.

Structure Source C11 C22 C33 C12 C13 C23 C44 C55 C66

YAP
This work 322.6 273.1 322.9 110.7 120.0 115.8 148.7 135.4 94.1
Cal. [15] 337.0 192.7 285.5 90.4 136.0 99.3 147.7 140.3 80.8

Nd:YAP This work 324.1 273.8 294.8 96.7 108.1 104.4 141.9 123.3 84.7

Compared with single-crystal elastic constants, polycrystalline elastic properties such
as bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio usually have higher
practical value in the field of lasers. Further, the Voigt–Reuss–Hill approximation can be
employed [29], which is often used to calculate the elastic moduli of polycrystals. Relying
on the calculated elastic constants, we determined the bulk modulus B, shear modulus
G, and Young’s modulus E. In addition to the aforementioned moduli, Pugh’s ratio and
Poisson’s ratio can serve as evaluation indices to characterize the mechanical properties
of materials. Pugh’s ratio, defined as the ratio of bulk modulus B to shear modulus G
(B/G), reflects the ductile or brittle behavior of solid materials and is closely tied to the
material’s subsequent processing performance. In general, a B/G ratio exceeding 1.75
indicates ductility, whereas a lower ratio suggests brittle behavior. Similarly, a Poisson’s
ratio exceeding 0.26 signifies ductility, while a lower value suggests brittleness.

From Table 3, it can be observed that the computed bulk modulus value for YAP was
178.4 GPa, in close agreement with the practical measurements of 188 GPa and 192 GPa [15],
suggesting that both YAP and Nd:YAP exhibited brittle characteristics. Furthermore, the
bulk modulus (B), shear modulus (G), Young’s modulus (E), Pugh’s ratio, Poisson’s ratio,
and hardness of Nd:YAP slightly decreased compared to pure YAP. Consequently, it was
inferred that the introduction of Nd atoms into YAP diminished the mechanical properties
of the material to some extent. In the absence of existing reports on the mechanical
properties of Nd:YAP, the findings presented herein can serve as valuable references for
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subsequent calculations and experiments, particularly within the realms of laser crystal
manufacturing and laser system design.

Table 3. Calculated bulk modulus B, shear modulus G, Young’s modulus E (expressed in Gpa),
Pugh’s ratio, Poisson’s ratio, and hardness for YAP and Nd:YAP.

Structure Source B G E Pugh’s Ratio Poisson’s Ratio Hardness

YAP

This work 178.4 111.4 276.5 1.60 0.242 15.14
Cal. [15] 156.7 100.9 249.2 1.55 0.235 -
Exp. [30] 188 - - - - -
Exp. [31] 192 - - - - -

Nd:YAP This work 167.5 106.8 264.3 1.57 0.237 15.07

Figure 7 depicts the calculated directional dependence of Young’s modulus on the
XY, XZ, and YZ planes in YAP and Nd:YAP crystals [32], indicating subtle anisotropy in
both systems. For isotropic systems, the surface should be spherical, and the deviation
from the sphere represents the degree of elastic anisotropy. The universal elastic anisotropy
index [33] decreased from 0.23 for YAP to 0.20 for Nd:YAP, indicating an enhancement in
elastic isotropy upon the incorporation of Nd atoms into YAP. Given the absence of reports
on the elastic constants and polycrystalline elastic properties of Nd:YAP, our results can
serve as a reference for future investigations.
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4. Conclusions

In summary, we present a theoretical investigation of the microstructural, electronic,
and mechanical characteristics of Nd3+-doped YAP crystals using first-principles calcula-
tions. Through a comparative analysis employing the GGA+PBE and LDA+U methods, an
investigation into the electronic properties, including band structure and density of states,
was conducted. The computed results reveal the presence of an impurity band near the
Fermi level, attributed to the 4f orbital of the Nd3+ ion. This provides clear evidence that
the presence of Nd3+ impurity ions induces a narrowing of the band gap. The calculated
absorption coefficient spectrum and refractive index of Nd:YAP exhibited close concor-
dance with the experimental values, thereby affirming the high precision and accuracy of
our calculations. This leads to the conclusion that the alterations in optical properties are



Crystals 2024, 14, 293 10 of 11

intricately linked to the 4f states of Nd3+ ions. Furthermore, through an analysis of the
mechanical properties of pure YAP and Nd:YAP, the elastic constants Cij, elastic moduli (B,
G, E), Pugh’s ratio, Poisson’s ratio, hardness, and elastic anisotropy were investigated. It
was observed that the incorporation of Nd3+ atoms moderately diminished the mechan-
ical characteristics of YAP. The universal elastic anisotropy index decreased for Nd:YAP,
indicating an enhancement in elastic isotropy upon the incorporation of Nd atoms into
YAP. These investigations underscore the significance of comprehending the relationship
between structural, electronic, and mechanical behavior in the field of materials design
and engineering. We hope that our findings will furnish valuable insights for the design of
future Nd:YAP lasers, particularly within the realms of laser crystal manufacturing and
laser system design.
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