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Abstract: Sn58Bi solder is considered a promising lead-free solder that meets the performance
requirements, with the advantages of good wettability and low cost. However, the low melting point
characteristic of Sn58Bi poses a serious threat to the high-temperature reliability of electronic products.
In this study, Sn58Bi solder alloy based on nickel (Ni) functionalization was successfully synthesized,
and the effect of a small amount of Ni on creep properties and hardness of Cu/Sn58Bi/Cu micro solder
joints at different temperatures (25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C) was investigated using a nanoindentation
method. The results indicate that the nanoindentation depth of micro solder joints exhibits a non-
monotonic trend with increasing Ni content at different temperatures, and the slope of the indentation
stage curve decreases at 100 ◦C, showing that the micro solder joints undergo high levels of softening.
According to the observation of indentation morphology, Ni doping can reduce the indentation area
and accumulation around the indentation, especially at 75 ◦C and 100 ◦C. In addition, due to the
severe creep phenomenon at 100 ◦C, the indentation hardness rapidly decreases. The indentation
hardness values of micro solder joints of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-
0.2Ni/Cu at 100 ◦C are 14.67 ± 2.00 MPa, 21.05 ± 2.00 MPa, and 20.13 ± 2.10 MPa, respectively.
Nevertheless, under the same temperature test conditions, the addition of Ni elements can improve
the high-temperature creep resistance and hardness of Cu/Sn58Bi/Cu micro solder joints.

Keywords: micro solder joint; nanoindentation; creep property; hardness; high temperature

1. Introduction

With the development of science and technology, the industry not only has higher
requirements for the reliability of assembly and packaging, but also has requirements for
the assembly temperature of products [1]. It is hoped that alloy solder with a liquidus
temperature lower than 200 ◦C will be able to be used to complete the assembly under
low-soldering-temperature conditions. Sn58Bi solder alloy has become a promising lead-
free solder due to its many advantages, such as good wettability, low melting point, and
low cost [2–4]. However, it is a matter of concern that SnBi eutectic solder has some
disadvantages, like low ductility, poor drop resistance, and fatigue characteristics [5–8].
In addition, Sn58Bi solder also causes electro-migration and thermal migration during
use [9,10].

To improve the performance of Sn58Bi lead-free solder, a large amount of research
based on experimental approaches has been proposed; for example, nanoparticles, metal
compounds, and trace elements were added to Sn58Bi lead-free solder [11–15]. Jeong et al. [16]
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studied the effects of different Ag nanoparticle (Ag-NP) content on the interface reaction
and mechanical properties of Sn58Bi solder joints. The addition of an appropriate amount
of Ag-NPs inhibits the growth of the interfacial intermetallic compound (IMC) and reduces
the brittle fracture of the interface. However, excessive addition of Ag-NPs will degrade
the mechanical properties of the solder joints. Yang et al. [17] added CuZnAl particles
with a mass fraction of 0~0.4 wt.% in Sn58Bi solder, and found that the addition of an
appropriate amount of CuZnAl particles significantly improved the wettability of Sn58Bi
solder. When adding 0.1~0.2 wt.% CuZnAl particles, the microstructure of Sn58Bi solder is
significantly refined, and the growth of the interfacing intermetallic compound (IMC) can
also be inhibited. Qsa et al. [2] studied the interfacial reaction and mechanical properties
of Sn58Bi-xCr (x = 0, 0.1, 0.2, and 0.3 wt.%) solder joints. The research found that the
microstructure of Sn58Bi composite solder joints was obviously refined with 0.2 wt.% Cr,
and the tensile properties were better than other alloy components after isothermal aging
treatment at 100 ◦C. Meanwhile, the average thickness of the IMC became thinner with the
increase of Cr content.

The addition of Ni can significantly suppress the coarsening phenomenon of the mi-
crostructure and achieve the goal of improving the mechanical properties of solders [6,17–20].
Kanlayasiri et al. [21] studied the effect of Ni on the physical properties of Sn58Bi solder and
the interfacial reaction between the solder with copper substrate. The research indicated
that the addition of Ni can refine the microstructure of the solder and produce Ni3Sn4
compounds in the solder. When the content of Ni is 0.1 wt.%, the tensile strength of the
solder can be improved. Yang et al. [22] found that during the solid-state aging process,
Ni can reduce the coefficient of thermal expansion (CTE) and improve the microstructure
of SnBi solder, leading to an increase in the elastic modulus, tensile strength, and yield
strength of SnBi solder. Fleshman et al. [23] investigated the relationship between different
Ni contents and shear properties before and after aging in Sn-1.2Ag-0.5Cu-xNi (SAC1205-
xNi) (wt.%; x = 0, 0.05, 0.1)/OSP Cu solder joints. The results of the slow shear test
showed that compared with SAC1205/OSP Cu solder joints, both SAC1205-0.05Ni/OSP
Cu and SAC1205-0.1Ni/OSP Cu solder joints exhibited a 9% increase in peak force before
aging. Compared with solder joints without Ni after aging, the peak forces of SAC1205-
0.05Ni/OSP Cu and SAC1205-1Ni/OSP Cu solder joints were increased by 10% and 12%,
respectively. They also pointed out that in advanced electronic packaging, solder joints
with a small amount of Ni doping tend to exhibit better mechanical reliability before and
after aging. Cao et al. [24] found that adding 0.05 wt.% Ni to the Sn2.5Ag0.7Cu0.1RE/Cu
solder joints can inhibit the growth of IMC and reduce the roughness and average thickness
of the interface IMC layer under the thermal cycling load. It was found that 0.05 wt.%
Ni also can be improve the shear strength of the Sn2.5Ag0.7Cu0.1RE/Cu solder joints. In
addition, Ni can significantly reduce the growth of Cu3Sn during soldering and thermal
aging [25].

Based on the achievement above, the addition of Ni elements has significantly im-
proved the mechanical properties of Sn58Bi solder at room temperature, but few stud-
ies have paid attention to the influence of Ni content on the service performance of
Cu/Sn58Bi/Cu micro solder joints at high temperatures. Due to the fact that high-
temperature creep deformation and failure of micro solder joints can more effectively
predict the strain trend and fracture life than high-temperature strength, studying the effect
of trace Ni addition on the high-temperature service performance of Cu/Sn58Bi/Cu micro
solder joints and improving the creep resistance of Cu/Sn58Bi/Cu micro solder joints are
of great significance for improving the reliability of electronic products.

In this work, combining the low cost and excellent performance of Ni, the Sn58Bi-xNi
(x = 0, 0.1, 0.2 wt.%) solders were firstly prepared by metal smelting. In order to fully
understand the effect of Ni addition on the high-temperature mechanical behavior of
Cu/Sn58Bi/Cu micro solder joints, Cu/Sn58Bi-xNi/Cu micro solder joints were prepared
by classical reflow soldering method. Finally, based on the advantages of nanoindentation
technology, which can minimize damage to the specimen and accurately evaluate the
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mechanical properties of the microstructure, the high-temperature creep performance
and hardness of Cu/Sn58Bi-xNi/Cu micro solder joints were studied. Furthermore, the
indentation morphology of Cu/Sn58Bi-xNi/Cu micro solder joints at different temperatures
was also observed and analyzed using the scanning electron microscopy (SEM) method,
and some important conclusions were obtained. It is hoped that this effort can contribute
to the further development of the microelectronic packaging field.

2. Materials and Methods

In this research, Sn58Bi-xNi solder was obtained by smelting pure metals Sn, Bi, and
Ni with a purity of 99.99%, where x is 0, 0.1, and 0.2 wt.%. The melting temperatures of
Sn58Bi-xNi solder alloys were measured by differential scanning calorimetry (DSC) under
the condition that the heating rate and cooling rate were 10 ◦C/min and N2 was introduced
for protection [26]. The 400 µm solder balls were obtained through cutting, remelting, and
selection processes. The printed circuit board was a custom-made FR-4 substrate with
copper pads of 310 µm in diameter and 70 µm in thickness [27]. The surface of the printed
circuit board was treated with an organic solder protectant. The solder balls were soldered
to the copper pads on the FR-4 substrate after two soldering sessions using R340C reflow
soldering. According to the melting point of Sn58Bi-xNi, the peak soldering temperature
was set to 180 ◦C. The samples for indentation creep and hardness were polished to mirror-
like and scratch-free after soldering. The sample preparation process of Cu/Sn58Bi-xNi/Cu
micro solder joints is shown in Figure 1. The reflow temperature process curve is shown in
Figure 2.
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Creep is a slow, continuous, and irreversible deformation that occurs under constant
temperature, load, and long-term action, often intensifying with increasing temperature.
Hardness is the resistance to local deformation and one of the important indexes to evaluate
the mechanical properties of materials. In the indentation test, the indentation hardness
HIT can be expressed by Formula (1) as [28]

HIT =
Fmax

Ac
(1)

where Fmax is the indentation testing maximum load, Ac is the projected area of indenter
contact surface. For a 115◦ Berkovich-type indenter, Ac can be described as [28,29]

Ac = 24.56h2
c (2)

where hc is the depth of contact of the test specimen, and hc can be represented as [28,29]

hc = hmax − ε(hmax − hr) (3)

where ε is the shape correction factor of the indenter, which depends on the geometry of
the indenter, and ε = 0.75; hmax is the maximum indentation depth; hr is the intersection of
the tangent at the maximum load and the displacement axis during unloading.

The indentation creep and hardness of Cu/Sn58Bi-xNi/Cu micro solder joints under
high temperatures were tested using a Shimadzu DUH-211S ultra-micro dynamic hardness
tester, for which the indenter is a 115◦ Berkovich type. A self-designed micro heating device
was installed on the indentation tester to realize the test at different temperatures. The
schematic diagram of the micro heating table is shown in Figure 3. The test temperatures
were 25 ◦C, 50 ◦C, 75 ◦C, and 100 ◦C, respectively. The Sn58Bi alloy has a stable microstruc-
ture at 80 ◦C, but when the temperature exceeds 100 ◦C, the Bi phase will grow abnormally,
resulting in poor performance of the alloy [30]. Therefore, the test maximum temperature
of the test was 100 ◦C. The indentation testing maximum load was 20 mN, and the loading
rate and unloading rate were both 5 mN/s. In order to obtain steady-state creep data,
the holding time of the creep test was set to 600 s, continuing for 60 s at 90% of each test
unloading to correct thermal drift. For this study, υ of Sn58Bi solder was considered to be
0.343 [31]. In each indentation process, the indentation space was larger than three times the
indentation size in order to avert the adjacent indentation stress field influence [32]. Under
each temperature test condition, more than ten independent indentations were tested. SEM
was used to observe the microstructures of solder alloys and the indentation morphology
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of micro solder joints at different temperatures. The flow chart of the experimental process
is shown in Figure 4.
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3. Results and Discussion
3.1. Indentation Load–Depth Curves versus Different Temperatures

Figure 5 illustrates the indentation load verses depth curves of Cu/Sn58Bi-xNi/Cu
micro solder joints at different temperatures. It can be seen that the indentation curves of
Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu micro solder joints move
to the right during the loading stage. The initial indentation depth of Cu/Sn58Bi-0.1Ni/Cu
micro solder joints at 25 ◦C, 50 ◦C, 75 ◦C, and 100 ◦C are 1.50 ± 0.01 µm, 1.59 ± 0.02 µm,
2.05 ± 0.13 µm, and 3.47 ± 0.18 µm, respectively. The results indicate that the initial
indentation depth increases with the increase of temperature. In nanoindentation testing,
the depth recorded at each load increment is usually the sum of the depths generated by
the material’s elastic–plastic and creep properties. During the holding stage, the platform
length of the load–depth curve increases gradually, indicating that the creep depth increases
with increasing temperature under the same load. In the unloading stage, the slope of
the unloading curve is very large at test temperatures of 25 ◦C and 50 ◦C, and decreases
at the high temperature, especially at 100 ◦C. The unloading curves of the load-depth



Crystals 2024, 14, 269 6 of 14

under different temperatures showed significant permanent deformation and insignificant
elastic recovery for the three types of micro solder joints at 25 ◦C and 50 ◦C. However,
elastic recovery was observed at 75 ◦C, and was more significant at 100 ◦C. The initial
indentation depths of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu
micro solder joints at 100 ◦C are 3.88 ± 0.30 µm, 3.47 ± 0.18 µm, and 3.83 ± 0.26 µm,
respectively, and the slope of the indentation stage curve decreases, indicating that the
micro solder joints undergo high softening. The minimum initial indentation depth of
Cu/Sn58Bi-0.1Ni/Cu shows that it has the strongest resistance to high-temperature plastic
deformation. In addition, the indentation depths of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu,
and Cu/Sn58Bi-0.2Ni/Cu micro solder joints increase from 3.02 ± 0.03 µm, 2.33 ± 0.02 µm,
and 2.86 ± 0.02 µm at 25 ◦C to 7.45 ± 0.42 µm, 6.22 ± 0.28 µm, and 6.36 ± 0.25 µm at
100 ◦C, respectively. Among them, the indentation depth of Cu/Sn58Bi/Cu micro solder
joints varies the most with temperature. Addition of an appropriate amount of Ni element
to Cu/Sn58Bi/Cu micro solder joints can prevent the increase of indentation depth under
the same indentation load.
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Figure 5. Indentation load–depth curves of micro solder joints at different temperatures
(a) Cu/Sn58Bi/Cu, (b) Cu/Sn58Bi-0.1Ni/Cu, and (c) Cu/Sn58Bi-0.2Ni/Cu.

3.2. Creep Displacement with Different Temperatures

In the process of creep, creep displacement is also one of the useful metrics to com-
prehensively assess the creep behavior of a material [33]. Under each temperature test, a
constant loading rate was adopted and then the constant loading was maintained for 600 s
to study the creep deformation as a function of time. A curve of the creep displacement
against holding time was obtained under different temperatures, as shown in Figure 6. At
the beginning of creep, creep displacement increases rapidly. With the increase of creep
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time, creep displacement increases slowly and enters the steady-state creep stage. The creep
displacement values of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu
micro solder joints are 4.39 ± 0.30 µm, 2.36 ± 0.24 µm, and 3.11 ± 0.26 µm at 75 ◦C, respec-
tively. By comparison, the addition of Ni elements in the micro solder joints exhibits smaller
creep displacement at high temperatures and a better creep resistance. Research has shown
that Ni can refine the microstructure in the solder alloy, and Ni3Sn4 IMC particles formed
in the alloy; therefore, it can increase the resistance to dislocation, which improves the creep
properties [34–36]. In addition, it can be seen from Figure 6 that the creep displacement
increases with the increase of temperature. This is because in the high temperature inden-
tation stress field, the diffusion and movement of atoms or the movement of dislocations
are enhanced, resulting in a decrease in grain boundary strength. The microstructures of
Sn58Bi-xNi solder alloys with different mass fractions of Ni elements by SEM are shown
in Figure 7. The gray bright zone is the mainly Bi-rich phase, and the darkly pigmented
zone is the mainly Sn-rich phase. From Figure 7, it can be seen that the addition of Ni
element reduces the number of Bi-rich dendrites, plays a role in refining the grains, and is
manifested as an increase in the number of grain boundaries per unit area. Furthermore,
due to the addition of Ni elements, Ni reacts with Sn to form compounds, and more grain
boundaries exist in the soldering alloy [21], which can improve the creep resistance of
Cu/Sn58Bi/Cu micro solder joints at high temperatures. Creep continues to occur with
the passage of time and the increase of temperature, leading to a decrease in the ability of
micro solder joints to resist creep deformation at high temperatures.
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Figure 6. Holding time–creep displacement curves of micro solder joints at different temperatures
(a) Cu/Sn58Bi/Cu, (b) Cu/Sn58Bi-0.1Ni/Cu, and (c) Cu/Sn58Bi-0.2Ni/Cu.
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3.3. Influence of Temperature on Indentation Morphology

In nanoindentation testing, the indentation morphology can reflect the plastic defor-
mation of solder alloy [37]. The indentation morphologies of Cu/Sn58Bi/Cu, Cu/Sn58Bi-
0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu micro solder joints at different temperatures are
presented in Figures 8–10. From Figures 8–10, it can be clearly seen that the indentation size
of the three types of micro solder joints increases continuously with the increase of temper-
ature. The higher the temperature, the greater the energy provided by thermal activation,
and the more vacancies generated, making the movement of dislocations easier. Solder is
more prone to produce creep deformation during the load-holding stage. Therefore, the
increase in temperature gradually increases the degree of creep deformation of the solder,
manifested as the size of the indentation increasing with the increase of temperature. In
addition, at higher temperatures, the solder softens, and the stress below the indenter is
released in a plastic deformation manner in a short period of time, resulting in an increase in
the size of the indentation. This result is similar to the research of Fan et al. [32]. Under the
same temperature conditions, Ni doping can reduce the indentation area. The indentation
size of Cu/Sn58Bi-0.1Ni/Cu is the smallest among the three types of micro solder joints,
and its high-temperature creep resistance is the best.
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Figure 8. SEM image of indentations made on Cu/Sn58Bi/Cu micro solder joints at different
temperatures (arrows indicate accumulation around the indentation): (a) 25 ◦C, (b) 50 ◦C, (c) 75 ◦C,
and (d) 100◦C.
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Figure 9. SEM image of indentations made on Cu/Sn58Bi-0.1Ni/Cu micro solder joints at different
temperatures (arrows indicate accumulation around the indentation): (a) 25 ◦C, (b) 50 ◦C, (c) 75 ◦C,
and (d) 100 ◦C.
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Figure 10. SEM image of indentations made on Cu/Sn58Bi-0.2Ni/Cu micro solder joints at different
temperatures (arrows indicate accumulation around the indentation): (a) 25 ◦C, (b) 50 ◦C, (c) 75 ◦C,
and (d) 100 ◦C.

It can be observed from Figures 8–10 that there is an accumulation phenomenon
around the indentations (arrows indicate accumulation around the indentation, circles
represent the area of influence around the indentation), mainly caused by the plastic flow
of the solder. For some materials, especially some low-strain-hardening solder, a large
number of dislocations are generated near the indenter during the indentation test [32].
Due to the movement of dislocations, plastic deformation occurs in the solder below the
indenter. Through the movement of the indenter, part of the solder is pushed out to the
side of the indenter and forms accumulation phenomenon, which makes the projected
contact area larger than the cross-sectional area of the indenter [38]. Especially at 75 ◦C and
100 ◦C, as the temperature increases, the size of the indentation gradually increases, and the
accumulation degree and influence area around the indentation gradually increase. Li and
Warren [39] proposed that the highly concentrated indentation stress field in the sample
material leads to a chemical potential gradient, resulting in thermally activated atomic
diffusion flux flowing from the region below the indentation to the sample surface and
along the interface between the indentation and the sample. The higher the temperature,
the larger the thermally activated atomic diffusion flux, and the more obvious the accumu-
lation phenomenon on the indentation surface. Under the same experimental conditions,
combining Figures 8–10, Ni doping can reduce the indentation area and accumulation
phenomenon around the indentation.

The microstructure, after adding different Ni contents, can also be observed from
Figures 8–10. In Figure 8, Sn58Bi is composed of an eutectic structure, where the dark
phase and bright phase are Sn- and Bi-rich phases, respectively. After adding Ni to Sn58Bi
solder, Ni reacts with Sn to form Ni-Sn intermetallic compound in the solder [21,25,34].
When the addition of Ni is 0.1 wt.%, Ni can provide more nucleation particles for the
Sn-rich phase precipitated first, forming intermetallic compound Ni3Sn4, and refining the
microstructure. The presence of a moderate amount of Ni3Sn4 in solder joints can also
improve the creep resistance at high temperatures. When the addition of Ni is 0.2 wt.%,
the fine granular new products in the microstructure of the solder begin to aggregate and
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grow, while the aggregated Ni3Sn4 cannot effectively inhibit grain growth, resulting in a
coarser microstructure of the solder and reduced high-temperature creep resistance. This
result is consistent with the research of Shen et al. [40], whereby the creep resistance of
Sn58Bi composite solder first increases and then decreases with the increase of Ni content,
confirming that Ni could improve the microstructure of Sn58Bi solder, which results in the
creep resistance being reinforced.

3.4. Indentation Hardness at Different Temperatures

According to the indentation load–depth curves in Figure 5 and Formulas (1)–(3),
the HIT values of Cu/Sn58Bi/Cu, Cu/Sn58Bi-0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu micro
solder joints were obtained at different temperatures. The variation of indentation creep
hardness with temperature for the three types of micro solder joints is shown in Figure 11.
As can be seen from Figure 11, the addition of a small amount of Ni elements can appro-
priately improve the indentation hardness of Cu/Sn58Bi/Cu micro solder joints. This is
consistent with the research results of Yang et al. [22] and Shen et al. [40]. Yang et al. [22]
used a nanoindentation method to test the hardness of Sn58Bi, SN58Bi-0.5Ni, and Sn58bi-
1Ni solder alloys. The results show that the hardness of solder alloys increases with the
increase of Ni content and decreases with the extension of aging time. Shen et al. [40]
investigated the effect of nano-Ni particles on the hardness of 42% Sn-58%Bi using the
indentation method. The results indicate that the hardness of 42% Sn-58%Bi alloy steadily
increases with the increase of nano-Ni concentration. The hardening effect of metal alloys
not only comes from the hard IMC phase, but also from the strengthening of the matrix
alloy due to the refinement of the microstructure. Due to differences in experimental
conditions, equipment, the state of the solder alloys, and the state and content of the rein-
forcing phase, the measured hardness values may vary. However, the research findings are
similar, indicating that the addition of Ni can improve the hardness of Sn58Bi solder alloy.
Nevertheless, the indentation hardness is correlated with temperature. The indentation
hardness of three types of micro solder joints decreases with the increase of temperature.
The indentation hardness values of micro solder joints of Cu/Sn58Bi/Cu, Cu/Sn58Bi-
0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu at 100 ◦C are 14.67 ± 2.00 MPa, 21.05 ± 2.00 MPa,
and 20.13 ± 2.10 MPa, respectively. This was mainly due to the ions in the micro solder
joints absorbing heat energy during the heating process and reaching a larger amplitude
equilibrium state, the higher temperature leads to softening of the micro solder joints,
increasing the indentation depth and reducing the indentation hardness [41].
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In addition, the melting points of the three types of solders tested by DSC are 139.90 ◦C,
140.18 ◦C, and 139.27 ◦C, respectively, as shown in Figure 12. According to the comparison
temperature T (the ratio of working temperature to melting point temperature Tmelt),
a good indicator of dislocation migration rate is provided. The evaluation of material
creep characteristics usually involves four key parameters: loading stress, experimental
temperature, creep rate in the steady-state stage, and failure time. When the comparison
temperature is within the temperature range of 0.3 Tmelt < T < 0.9 Tmelt, it belongs to the
creep caused by dislocation migration [42]. Under experimental conditions of 100 ◦C,
the calculated comparative temperatures T of the three type solders are 0.715, 0.713, and
0.718, respectively, resulting in creep deformation caused by dislocation migration. Creep
deformation at high temperatures is also an important reason for the decrease in mechanical
properties of materials.
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Figure 12. DSC test curves of Sn58Bi, Sn58Bi-0.1Ni, and Sn58Bi-0.2Ni solder.

4. Conclusions

In this work, the influence of Ni addition on indentation creep and hardness of
Cu/Sn58Bi-xNi/Cu micro solder joints at high temperatures has been investigated. The
following conclusions can be drawn:

(1) Under the same experimental conditions, the initial indentation depth and creep
displacement of Cu/Sn58Bi/Cu micro solder joints can be reduced by adding a small
amount of Ni elements. The creep displacement values of Cu/Sn58Bi/Cu, Cu/Sn58Bi-
0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu micro solder joints at 75 ◦C were 4.39 ± 0.30 µm,
2.36 ± 0.24 µm and 3.11 ± 0.26 µm, respectively. Among the three types of micro solder
joints, Cu/Sn58Bi-0.1Ni/Cu exhibited the best creep resistance at high temperatures.

(2) According to the observation of the indentation morphology at different tempera-
tures, it was found that there was accumulation around the indentation, especially
at 75 ◦C and 100 ◦C. Compared with Cu/Sn58Bi/Cu micro solder joints, Cu/Sn58Bi-
0.1Ni/Cu and Cu/Sn58Bi-0.2Ni/Cu had smaller indentation areas and less accu-
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mulation around the indentation. Ni doping can reduce the indentation area and
accumulation phenomenon around the indentation.

(3) The indentation hardness values of micro solder joints of Cu/Sn58Bi/Cu, Cu/Sn58Bi-
0.1Ni/Cu, and Cu/Sn58Bi-0.2Ni/Cu at 100 ◦C were 14.67 ± 2.00 MPa, 21.05 ± 2.00 MPa,
and 20.13 ± 2.10 MPa, respectively. Due to the melting points of the three types
of solder alloys, which were 139.90 ◦C, 140.18 ◦C, and 139.27 ◦C, respectively, the
solder softened during indentation testing at 100 ◦C, resulting in a sharp decrease in
creep hardness.
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