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Abstract: As a naturally polycrystalline material, Yellow River ice exhibits complex mechanical prop-
erties that are closely related to its internal microstructure. To study the micromechanical properties
of this ice, the geometrically representative volume element (RVE) and a method for determining
it are proposed. By observing and quantifying trends in the microstructural characteristics of the
granular ice, a micro-numerical model of Yellow River ice is established. Based on the calculations
and analyses of randomness and similarity across model samples, the dimensions of a geometric
RVE of granular ice in the Yellow River are quantitatively determined. The research shows that the
geometric representation of Yellow River granular ice is 20–24 times larger than the average grain of
Yellow River granular ice. These results provide a technique to accurately study, at a microscopic
level, the relationship between the material properties of each phase and their macromechanical
response. It also provides a theoretical basis for studying the fracture failure mechanism of Yellow
River ice at multiple scales.

Keywords: ice; RVE; microstructure; Yellow River

1. Introduction

River ice is a composite material with microscopic components that contain all of the
structural properties of ice, such as the type, density, bubbles, and impurities [1]. Due to the
different geographical environments, hydrometeorology, and other conditions of ice, the
micro-components of ice also demonstrate differences [2]. The macroscopic properties of
river ice are a reflection of its microstructural changes. These changes affect the macroscopic
properties of the ice, such as temperature and density, which also affect the mechanical
fracture properties [3]. Therefore, the fracture mechanism of river ice cannot be fully
understood from the macroscopic view. It is thus necessary to quantify a representative
volume element (RVE) of river ice’s microstructure to provide a basis and reference for the
analysis of the fracture process of the macroscopic ice cover. For an RVE of ice to effectively
capture the underlying physics, it must represent not only the microstructure but also
the material and performance of the river ice; therein, the macro- and microstudy of ice’s
material fracture performance in the Yellow River can be reconciled.

The concept of RVE was first proposed by Hill [4] in 1963 and then continuously im-
proved by Hashin [5], Trusov [6], Ostoja-Starzewsk [7], Trias [8], and others. RVE has been
applied to the study of ceramics [9], soil [10,11], metals [12], concrete [13], polymers [14],
and other materials, but there are few reports on the research of an RVE of ice. As reported
previously, there are three main methods to determine an RVE: The first is an analytical
method based on the effective modulus, which obtains the smallest representative size
(approximately 2–3 times the characteristic size). For example, Drugan [15] used a nonlocal
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constitutive equation to determine the representative size of the effective modulus of com-
posite materials. The representative size was approximately twice the particle size of the
reinforcement phase. Kerner [16] proposed a generalized self-consistent model, which was
improved by Christensen and Lo [17] in 1979 and extended to the case of multiple inclusions
by Herve and Zaoui [18] in 1993. Pensee et al. [19] found that the representative size was
within three times the characteristic size. The second method is a numerical method based
on the equivalent modulus [20,21], which obtains a representative size that is relatively
dispersed due to size-dependent changes in the material properties (ranging from 5 to
50 times the characteristic scale) [22,23]. Previous reports [24–26] show different results for
different representative materials. Compared to those reports, Kanit [27] derived the size
of the representative voxel satisfying statistical uniformity and the number of numerical
realization samples with a certain accuracy. The third method is an observation-based
method including graphical analysis. Romero and Masad [28] studied the representative
size of asphalt concrete by combining image analysis technology and test results. Graham
and Yang [29] studied the distribution characteristics of the second phase in the alloy with
an image analysis method. Al Raoush [30] studied the representative volume elements of
natural sand samples through X-ray photography technology.

These reports show that methods of determining a representative body can be divided
according to the determination strategy. Because the microstructure of river ice is com-
plex, it is difficult to derive an analytical expression for its strength, while experimental
observation makes it difficult to match the microstructure with the results of macromechan-
ical tests. Thus, we deem numerical simulation to be the most effective approach. This
study focuses on the microstructural characteristics of Yellow River ice. A micro-numerical
model of Yellow River ice is constructed, and the geometric representative size of the
microstructure of Yellow River ice is quantitatively analyzed based on the definition of
geometric representation.

The research results in this paper bridge mesoscale and macroscopic research on
river ice and provide methodological support for studying the macroscopic mechanical
properties of river ice. The strength-based RVE of river ice can be determined based on
the established geometric RVE of river ice to realize the transition from microscopic to
macroscopic. Then, through homogenization, the geometric RVE of river ice can be used to
generate a macroscopic model of river ice, which provides support for in-depth analysis of
the fracture and failure of river ice.

2. Geometric Characteristics of Yellow River Ice’s Microstructure

Due to the complexity of geography and climate, ice exhibits different formation
processes in different regions, affecting the crystal types and the distribution of impurities
in the ice. To study the microscopic structure of the Yellow River ice, ice samples in typical
river sections were selected during the freezing period to observe their microstructures,
including the type and size of ice crystals and the sediment and bubble contents.

2.1. Observation of the Ice Microstructure of the Yellow River

The differences in the microstructural characteristics of Yellow River ice depend on
the thermal and hydraulic conditions of the Yellow River ice’s growth. The annual average
freezing period of the Yellow River is from early December to late March of the following
year. Considering the local temperature changes, ice samples were taken in February. For
many years, in Inner Mongolia, the Toudaoguai River section of the Yellow River has often
been the first section to freeze. The Yellow River’s central station for ice monitoring is
located there, and it is also the section where ice samples were collected for this study. The
Toudaoguai River Station is located at 111◦04′ E and 40◦16′ N. A map of the river section
is shown in Figure 1. The frozen scene of the Toudaoguai Hydrological Station and the
collected ice sample are shown in Figure 2. Due to the influence of upstream reservoir
regulation, the river discharge varied between 200 m3/s and 400 m3/s during the initial
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freezing period and between 600 m3/s and 800 m3/s during the stable freezing period. The
peak river discharge can reach 1000 m3/s in the ice break-up period.
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Figure 2. Frozen scene of the Toudaoguai Hydrological Station section of the Inner Mongolia reaches
of the Yellow River: (a) Toudaoguai Hydrological Station section; (b) ice sample collected from the
Toudaoguai Hydrological Station section.

2.2. Experimental Design

To ensure the representativeness of the collected river ice, 13 samples were collected
at different locations using electric drills, electric saws, steel rulers, and other tools. The
samples were transported to a low-temperature laboratory. The specific sample collection
method and principle can be found in reference [31]. In a low-temperature test room, the
ice samples were cut every 8 cm from the direction perpendicular to the spindle and were
processed into ice sheets with a thickness of less than 1 mm by manual grinding. Horizontal
crystal sheets and vertical crystal sheets were obtained. The ice sheet samples for the ice
microstructure test are shown in Figure 3.
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The universal stage was the primary piece of equipment for observation and testing.
In a dark, opaque environment below −5 ◦C, the position of the polarizer was adjusted,
river ice crystal flakes were placed sequentially on the observation platform, the ice crystals
were imaged under an orthogonal polarizer, and the crystal type and crystal size were
determined. The crystal types were mainly divided into granular ice and columnar ice.
The crystal size is discussed in detail in Section 2.4.1. Then, images were recorded without
an orthogonal polarizer to determine the distribution and size of the bubbles in the ice.
The scale of both crystal and bubble pictures was 10 cm. The ice microstructure map
obtained from the experiment was imported into MATLAB, and the built-in digital image
package was used for preprocessing. Then, the Canny algorithm was used to extract and
record the microscopic unit scale of the ice. This algorithm is an edge detection algorithm
that has strong resistance to noise and can effectively extract the boundaries of ice crystal
images [32]. The sediment content in the ice was mainly calculated by calculating the ratio
of the sediment mass after drying to the ice mass before drying.

2.3. Ice Grain Image Processing

The following is an example of the ice grain image process of extracting ice grain
boundaries based on the MATLAB digital image processing method. The original ice images
are shown in Figure 4a, and there exist a large number of non-grain parts in the images. To
facilitate subsequent digital image processing, the maximum inscribed rectangle of the ice
images was divided based on the original images, and the actual length corresponding to
the images was recorded to facilitate subsequent image conversion. Due to the complex
computation and operation of color images during image processing, the images were
converted into grayscale after recording, as shown in Figure 4b. At this time, there remained
some noise in the ice images, which affected the results of boundary extraction. Therefore,
the median filtering method was selected for noise reduction processing of the ice grain
images. The median filtering method is a nonlinear digital filter technique, which is often
used to remove noise from images or other signals. The design idea is to check the sampling
in the input signal and determine whether it represents the signal; this function is achieved
with an observation window composed of odd sampling [33]. When performing filtering
and removing noise, it is necessary to select an appropriate neighborhood. If the selected
neighborhood is relatively small, some large-area noise cannot be removed. If the selected
neighborhood is too large, it leads to image distortion and obscure grain boundaries. Finally,
a neighborhood of 24 pixels was selected for filtering, as shown in Figure 4c.
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After the ice grain image preprocessing was completed, the Canny operator was
used to extract the boundaries of the ice images. When the images are segmented, it is
necessary to select appropriate parameters to minimize the phenomenon of redundant and
missing boundaries. If the extracted boundary image still contains missing or redundant
boundaries, it is necessary to further correct the boundary images. First, discontinuous
boundaries were automatically connected and processed. The boundary images are black
and white images, and the broken boundary edge pixel points exist in nine pixel points
centered on the boundary pixel points. Only one direction of the pixel is the same as the
edge pixel, and all pixel points in other directions are black. By observing the characteristics,
broken boundary points in the images can be detected and detection can be performed
within a range of 7 × 7 pixels around the boundary point. In this case, if there exist other
boundary points, they are connected with those already considered. After connecting the
redundant boundaries, they were removed using Photoshop software. Then, the connected
regions were assigned different gray values with MATLAB. The number of pixel points
corresponding to each gray value was used as the pixel area of the ice grain, and the
number of pixel points connecting the boundary region was used as the pixel perimeter of
the ice grain.

2.4. Analysis of Observation Results
2.4.1. Ice Crystal Size Distribution

When observing the horizontal and vertical sections of river ice, the average density
of ice in the Yellow River ranged from 0.77 g/cm3 to 0.99 g/cm3. The ice crystal types
were identified and mainly divided into granular and columnar ice. This study focuses
on the analysis of granular ice of the Yellow River, and the size distribution of ice crystals
is analyzed according to two working conditions: the direction parallel to the C-axis
(i.e., the ice crystal growth direction), and the direction perpendicular to the C-axis. In
the direction parallel to the C-axis, the crystal structure of the cross-section of granular ice
changed little; the distribution of the equivalent diameter (i.e., the diameter of ice crystals
described by the equivalent circle diameter equal to the ice crystal area) of ice grains in the
direction perpendicular to the C-axis is shown in Figure 5. In the vertical C-axis direction,
the equivalent diameter of granular ice varied from 0.05 mm to 15 mm, and different ice
grain sizes exhibited different proportions within a single sample. Many ice grains had
an equivalent diameter of 2–3 mm—specifically, 25.4% of the grains. At diameters greater
than 3 mm, the number of ice grains decreased with increasing equivalent diameter. There
were few ice grains with large particles of granular ice: the proportion of ice grains with
equivalent diameters greater than 10 mm was only 2.4% of the total count.
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2.4.2. Bubble Distribution

As a common impurity in river ice, bubbles significantly influence the physical prop-
erties and fracture mechanics of river ice. The bubble shape in Yellow River ice is shown in
Figure 6, which shows that the bubbles in the granular ice are mainly spherical. Using the
same processing method as for the ice crystal images, images of bubbles were processed
in natural light; the statistical results of bubbles’ content and equivalent diameter in the
ice are shown in Figure 7, which shows that the equivalent diameter of bubbles in ice
remains constant at approximately 0.225 mm with increasing depth. However, there is a
clear change in the bubble content at different depths.
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On the surface, the bubble content increases to 8.5% of the volume. With the growth
of the ice layer, the bubble content gradually decreases, and the minimum content is only
1%. According to the analysis of the hydraulic change characteristics of the Yellow River,
there are many bubbles on the surface, mainly because the water surface is subject to wind,
waves, and other phenomena, resulting in a large amount of air being drawn into the water
body that cannot be discharged before the temperature suddenly drops and the water
freezes. However, with increasing depth, the bubbles in the ice mainly originate from trace
gases that are not removed from the water.
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2.4.3. Sediment Distribution

Due to the special basin characteristics of the Yellow River, much sediment is carried
in the river, resulting in Yellow River ice containing not only bubbles but also sediment
impurities. In fact, this is a typical characteristic of Yellow River ice. To analyze the
influence of sediment content in Yellow River ice, the sediment content in the river ice
at different locations was measured with specific gravity in a drying oven. At first, the
ice samples were melted, filtered, and dried, and then the weight of the dry sediment
was measured, so that the sediment content per unit volume of the ice sample could be
calculated. Figure 8 shows that the sediment content in the river ice gradually decreases
with increasing depth, but the sediment content in different ice layers changes little and
fluctuates around 0.5 kg/m3.
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3. Microscopic Numerical Model of Yellow River Ice
3.1. Model Building Method

Due to the random shapes of river ice crystals, the Tyson polygon method (Voronoi
algorithm) was used to randomly construct ice crystals and to simulate the crystal struc-
ture of river ice. This method constructs continuous polygons comprising perpendicular
bisectors connecting two adjacent point segments. The distance from any point to the
control points is less than the distance from other polygon control points within a Tyson
polygon [34]. The Voronoi algorithm is widely used in the analysis of rock, metals, foam,
and other materials due to its special mode of data processing. In the river ice model, the
Voronoi polygon more closely resembles actual ice crystals; that is, the Voronoi algorithm
can intuitively reveal the complex microgeometric information in river ice.

To match the size and contents of the ice crystal model to observations, and to ensure
the random distribution of the size and coordinate position of the river ice microstructure,
the corresponding particle flow is generated through the particle flow code (PFC) based
on river ice observations. Thus, the area occupied by polygons with different equivalent
particle sizes in the Voronoi diagram is controlled while the coordinates of the particle
centers are calculated.

The PFC studies the mechanical properties and material behaviors from the micro-
scopic perspective. The particles in the PFC are rigid, but overlapping mechanical re-
lationships are allowed to simulate the contact force between particles. The mechanical
relationship between particles adopts Newton’s second law, and the contact failure between
particles can take the form of shear and opening. The main fields of PFC application include
civil engineering, mining engineering, material engineering, etc.

The specific steps for generating the ice grain model were as follows:
(1) In the PFC software, a two-dimensional plane was established as the Yellow River

ice model surface, and its size and location were determined.
(2) Based on the particle size distribution results of ice crystals in the Yellow River

ice observation experiment, the particle size of ice grains and their corresponding area
contents were determined.

(3) Taking the particle size as the diameter, the corresponding particle flow was
generated (as shown in Figure 9), and the coordinates of each center were calculated,
output as the seed points, and imported into MATLAB.

(4) A planar space was constructed that conformed to the size of the Yellow River ice
in MATLAB; according to the Delaunay algorithm, Delaunay triangles were constructed.

(5) The Delaunay triangles were sorted and the centers of their circumscribed circles
were determined.

(6) The centers of the circles were connected in order.
(7) To distinguish different ice crystals, different polygons were given different colors

to represent different ice grains (as shown in Figure 10).
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Figure 10. Yellow River ice crystal model.

3.2. Selection of Microscopic Parameters

The microstructural parameters of river ice mainly include the shape, contents, and
distribution of its microscopic components. According to the established microscopic
river ice model, a random particle flow model was established based on the contents
(i.e., proportion of area) of ice grains with different equivalent particle sizes, and the
proportions of ice crystals with different sizes were adjusted by the particle flow generated
with the PFC. The selected content results of river ice are shown in Figure 11.
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3.3. Simulation Analysis Results
3.3.1. Model Similarity Analysis

The model test size was 300 mm × 300 mm, with a side length of approximately
40 times the average grain size of Yellow River granular ice. A comparison between the
generated river ice sample model and the results of the physical experiment is shown in
Figure 12. This comparison between the observed microstructural parameters of Yellow
River ice and the microstructural parameters of the model is shown in Table 1, which shows
that the established river ice model has a high similarity with the river ice samples. This
provides support for the effectiveness and feasibility of the ice model, as well as guarantees
for further analyzing the geometric RVE of the river ice microstructure.
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Figure 12. Comparison between the simulated ice and the ice samples: (a) Typical sample chart of
Yellow River ice observation. (b) Chart of the Yellow River ice simulation results.

Table 1. Comparison between the test and simulation results of the area contents of different grain sizes.

Grain Size
(mm)

Test Results
(Area Percentage)

Simulated Results
(Area Percentage)

1 0.2 0.052
2 4.98 4.345
3 11.21 14.354
4 13.5 19.001
5 12.88 17.761

6 9.83 13.751
7 9.03 10.941
8 7.34 6.988
9 6.11 5.721
10 6.71 4.15
11 5.87 1.519
12 4.31 1.124
13 3.23 0.127

>14 4.80 0.166

Equivalent grain size 6.903 5.5877

3.3.2. Model Randomness Analysis

To verify the influence of randomness in the numerical ice model, five microscopic
numerical sample models of Yellow River ice with the same size were generated. The
results of the grain size distribution curves of the generated random samples are shown
in Figure 13. There are no significant differences in the area content curves of the river ice
grain size. Therefore, this method can establish a microscopic sample model of river ice
based on statistical similarity.
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4. Geometric Representative Volume Element of River Ice

At the microscopic level, river ice is a heterogeneous material composed of many
ice crystals with different shapes and sizes. The RVE, as a bridging technique connect-
ing the macro- and microscales, plays a key role in the homogenization of random and
heterogeneous microstructures.

4.1. Definition of Geometric RVE

According to the definition of RVE by Hill [4] and Starzewski [7], the geometric RVE is
very small relative to the macrogeometric scale and is set as ε (0 < ε << 1). The unit contains
sufficient microstructure. The material comprises many representative periodic units with
periodic physical characteristics, which is shown in Figure 14:

F(x + ny) = F(x) (1)
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Assume that x is the macroscale coordinate and y is the microscale coordinate. On
the macroscale, the physical properties of the materials change with the change in x, and
the coordinate y can characterize the transformation of the materials from heterogeneity to
homogeneity on the microscopic level. The ratio of the true length of the unit vector on
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the micro-coordinate of the heterogeneous material to the unit vector on the macroscopic
coordinate is ε.

y =
x
ε

(2)

On the macroscale, the change in the micro-variables of heterogeneous materials is
relatively smooth with the change in x; ε is the relative ratio of the macroscale to the
microscale, and 1/ε is a magnification factor for the representative unit to be magnified to
the macroscale, which is shown in Figure 14.

To determine the size of the geometric RVE, statistical methods were used to calculate
statistics on the changes in river ice microstructure variables with the change in grain size.
Different sizes of samples were intercepted from the whole domain, and the RVE value was
studied based on the geometric quantity fLi(xi) of each volume element and the geometric
quantity f (x) of the whole domain. Here, the subscript Li represents the volume element
size. When the geometric quantity in the calculation domain conforms to Formula (3), it
can be considered to conform to the RVE size.

f (x)− fLi(xi)
∑ f (xi)

≤ ε (3)

The method of using the geometric RVE to describe heterogeneous ice in the Yellow
River is based on the statistical characteristics of microstructure. A smaller model was used
to approximate the characteristics of the overall model. Therefore, after the microscopic
samples of the Yellow River ice were generated at random, the overall sample of the Yellow
River ice was divided into different subdomains according to the ice grain size. The change
effects of grain size, distribution, and geometric shape of different subdomains on the river
ice were statistically analyzed, and the geometric RVE of Yellow River ice was studied in
combination with numerical analysis. The specific definition of the river ice’s geometric
RVE is as follows:

(1) The macroscale river ice can be obtained by repeated superposition of the RVE.
(2) The microstructural variables of the RVE tend to be consistent with the values cor-

responding to the overall material, i.e., there is a volume element that satisfies Formula (3)
when it is arbitrarily removed from the overall sample.

(3) The structural variable is not affected by the randomness of the ice sample, such
that the variation coefficient of the microstructural variable is less than the allowable error.

An ice sample model that satisfies point (2) as stated above is regarded as a stable
scale based on the random error of the ice sample, which is recorded as L1. The ice sample
model satisfying point (3) is regarded as the stability scale based on the overall similarity,
which is recorded as L2. The ice sample model satisfying both points (2) and (3) is regarded
as the geometric RVE size of the river ice.

4.2. Determination Method of Geometric RVE

The geometric RVE of the simulated microstructure of river ice was determined by
quantifying the real material characteristic variables, such as grain shape and size, crystal
orientation, and area content. Then, the microstructure of the river ice was simulated so
that the material measurement would be statistically similar to the real experimental mi-
crostructure. Finally, the calculation samples of the generated micromodel were intercepted.
Therefore, the process of determining the geometric RVE of the river ice was divided into
three steps: the selection of statistical variables, the selection of calculation samples, and
the determination of the geometric RVE size.

4.2.1. Selection of Statistical Variables

To ensure the rationality of the geometric RVE size, appropriate microstructural
variables were selected to study their variation with the river ice size. Because the main load-
bearing component of river ice at the microscale is ice crystals, the grain size, distribution,
and spatial orientation of ice crystals can be selected as the statistical variables of the
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geometric RVE of the microstructure. However, according to the observations of river ice’s
microstructure, granular ice is composed of various homogeneous materials, so the pore
size parameters of ice grains—namely, average pore size and relative error—were selected
as the statistical variables of the microstructure of the geometric RVE of river ice. The
microstructural variables were thus defined as follows:

(1) Average grain size: the weighted average value of the river ice area within each
grain size range in the river ice sample, as shown in the following formula:

d =
∑n

i=1 nidi

∑ ni
(4)

d—average grain size;
di—equivalent grain size of group i;
ni—percentage grain size in the total area.
(2) Relative error: the percentage of the difference between the average grain size of

the calculated ice sample and the average grain size of the overall ice sample, as shown in
the following formula:

δ =
di − d

d
× 100% (5)

δ—relative error;
di—equivalent grain size of group i;
d—overall average grain size.

4.2.2. Selection of Calculation Samples

The specific intercept method of the calculated ice sample is shown in Figure 15.
In any numerical sample of sufficient size, based on different regional points (i.e., cor-
ners, edge center points, center points, and random points), the maximum grain size is
regarded as the starting size, and the multiple of the maximum grain size is successively
increased. The square size was selected as the calculation sample, from small to large. By
selecting appropriate calculation samples, statistical analysis was conducted on the rules
of the microstructural variables of the calculation samples to determine the size of the
geometric RVE.

Crystals 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 15. Schematic diagram for calculating sample interception. 

4.2.3. Process of Determining the Geometric RVE 
Based on the definition of the geometric RVE of river ice’s microstructure, numerical 

simulations were used to randomly generate the numerical model of river ice. Based on 
the results of microscale tests, the distribution of microscale structural variables was 
extracted, the river ice numerical model was constructed, the overall sample was 
intercepted based on different regional points, and the distribution of each microscale 
variable in the calculation sample was statistically analyzed. The specific steps were as 
follows: 

(1) The type and size of ice grains were identified by photographing under the 
polarizer of the universal stage, and the microstructural variables of the ice were 
determined by image processing. 

(2) The Voronoi algorithm was used to discretize a two-dimensional plane with a 
suitable size based on the test results to establish a two-dimensional river ice micro-
numerical model. 

(3) A number of random sample models were generated for each group of 
parameters, which were taken as the overall samples of river ice. The whole sample was 
intercepted to obtain the microstructural variables in different calculation sample sizes. 

(4) The changes in microstructural variables were statistically analyzed with the 
change in sample size. 

(5) According to Formula (3), the stability scale of the sample was determined based 
on randomness, which was recorded as L1. 

(6) According to Formula (3), the stability scale was determined based on the overall 
similarity, which was recorded as L2. 

(7) The larger of L1 and L2 was determined as the minimum sample size necessary to 
meet the uniformity requirements. 

4.3. Geometric RVE Results of River Ice 
4.3.1. Effect of Entire Ice Sample Size 

To analyze the size effect of random samples, random samples of river ice with sizes 
of 15 times, 25 times, 30 times, 40 times, and 70 times the average grain size were 
generated. The statistical trend of the microstructural variables in each entire sample was 
analyzed. The results are shown in Figure 16. E1–E5 are expressed as the change in the 
average grain size with the overall size when the overall sample size is 15 to 70 times the 
average grain size. The influence of the entire sample size of river ice on the river ice grain 

Figure 15. Schematic diagram for calculating sample interception.

4.2.3. Process of Determining the Geometric RVE

Based on the definition of the geometric RVE of river ice’s microstructure, numerical
simulations were used to randomly generate the numerical model of river ice. Based on the
results of microscale tests, the distribution of microscale structural variables was extracted,
the river ice numerical model was constructed, the overall sample was intercepted based on
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different regional points, and the distribution of each microscale variable in the calculation
sample was statistically analyzed. The specific steps were as follows:

(1) The type and size of ice grains were identified by photographing under the polarizer
of the universal stage, and the microstructural variables of the ice were determined by
image processing.

(2) The Voronoi algorithm was used to discretize a two-dimensional plane with a suitable
size based on the test results to establish a two-dimensional river ice micro-numerical model.

(3) A number of random sample models were generated for each group of parameters,
which were taken as the overall samples of river ice. The whole sample was intercepted to
obtain the microstructural variables in different calculation sample sizes.

(4) The changes in microstructural variables were statistically analyzed with the change
in sample size.

(5) According to Formula (3), the stability scale of the sample was determined based
on randomness, which was recorded as L1.

(6) According to Formula (3), the stability scale was determined based on the overall
similarity, which was recorded as L2.

(7) The larger of L1 and L2 was determined as the minimum sample size necessary to
meet the uniformity requirements.

4.3. Geometric RVE Results of River Ice
4.3.1. Effect of Entire Ice Sample Size

To analyze the size effect of random samples, random samples of river ice with sizes
of 15 times, 25 times, 30 times, 40 times, and 70 times the average grain size were generated.
The statistical trend of the microstructural variables in each entire sample was analyzed.
The results are shown in Figure 16. E1–E5 are expressed as the change in the average
grain size with the overall size when the overall sample size is 15 to 70 times the average
grain size. The influence of the entire sample size of river ice on the river ice grain size
distribution is shown in Figure 17, where F1–F5 represent the river ice grain size distribution
in different samples.

Figures 16 and 17 show that the trends of the microstructural variables of the overall
samples with different sizes are inconsistent. The difference in area content between
different sizes of river ice is small. When the overall size is less than 300 mm, the average
grain size difference of the ice grains is large, up to approximately 4 mm. When the overall
size of the river ice is larger than 300 mm, the average grain size tends to be constant
at approximately 11 mm. Therefore, when the geometric characteristics of the river ice
microstructure are studied, the largest possible overall sample should be selected, and the
minimum size should be no less than 30 times the average grain size.
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4.3.2. Randomness Analysis of Ice Samples

The definition of the geometric RVE indicates that the determination of the geometric
RVE should account for the randomness of the ice sample and the overall similarity of
the RVE. In this section, a random overall sample of river ice with a grain size of less
than 15 mm was selected for analysis of random delivery. The overall sample size was
40 times the average grain size; that is, the overall sample size was 300 mm × 300 mm. The
calculation samples of different sizes were obtained according to the interception method
described in Section 4.2. The geometric RVE size of the Yellow River granular ice was
analyzed, and the size of the stability scale was estimated according to an accuracy of 5%.

According to the determination method described in Section 4.2, the change in the
microstructural variables in each calculation sample size was statistically analyzed. Cal-
culation samples of the same size were selected from different samples based on different
points, from small to large. Figure 18 shows the trend in the coefficient of variation of the
average grain size of different samples with the calculated sample size for a given overall
sample size.
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The change in the coefficient of variation with the calculated sample sizes shows
that the coefficient of variation decreases gradually with the increase in the number of
calculation samples. According to the definition of the geometric RVE, and considering
the error accuracy of 5% as a standard, the overall similarity stability scale based on the
average grain size of river ice is 140 mm (approximately 20 times the average grain size),
which is recorded as L1.
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4.3.3. Overall Similarity Analysis

The relative error of the equivalent grain size between different calculation sample
sizes and the entire sample was analyzed. Based on the increase in the calculated sample
size, the relative error between the calculated samples and the overall sample is shown in
Figure 19. Figure 19a–e show the interception results of five samples based on different
interception points.
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The change in the relative error is different across different simulation samples. When
the calculated sample size is small, the relative error of the average grain size is large. How-
ever, with the increase in the calculated sample size, the relative error tends to gradually
decrease. When the calculated sample sizes of samples 1, 3, and 4 are 133 mm, 119 mm,
and 77 mm, respectively, the relative error decreases to below 0.05. With the increase in the
calculated sample size, the relative error decreases gradually. However, the average errors
of samples 2 and 5 show an upward trend when the sample size is 98 mm and 70 mm,
respectively, and gradually decrease after 168 mm and 147 mm, respectively, where they
remain below 0.05. According to the definition of the geometric RVE, the larger calculation
sample is selected as the overall similarity stability scale, so the overall similarity size L2 of
the Yellow River granular ice is 168 mm (approximately 24 times the average grain size).

The RVE needs to simultaneously meet the requirements of random error stability
and overall similarity stability. The microstructural analysis of the 300 mm whole river
ice sample shows that the stability scale of randomness is smaller than that of the overall
similarity. Therefore, the size of the geometric RVE of the Yellow River granular ice is
24 times the average grain size.

5. Conclusions

Yellow River granular ice was sampled, observed, and analyzed. The features of the
Yellow River granular ice’s microstructure were summarized. A random sample model
of the Yellow River granular ice was established based on statistical similarity. The size
of the geometric RVE of the river ice was determined. The heterogeneity of the river ice
was studied. Based on these results, a reference for understanding the fracture mechanical
properties of the Yellow River ice was provided. At the same time, these results also have
important practical significance for promoting the prediction of the river ice break-up
period and ice disaster prevention. The main conclusions are as follows:

(1) In the plane perpendicular to the C-axis, ice crystals, bubbles, and sediments are
randomly distributed. While there are many ice crystals of granular ice, the equivalent
grain size is small and mainly concentrated between 2 mm and 3 mm. With increasing
depth, the crystal structure of the cross-section of the granular ice shows little change, and
the bubble content in the ice shows a decreasing trend.

(2) After observing the microstructure of river ice, the Voronoi algorithm was used to
establish a numerical sampling of river ice according to the distribution characteristics of
its microscopic components. The resulting distribution of microscopic components in the
numerical sample model was compared with the experimental observation results. The
comparison showed that the grain size distribution of the river ice numerical sample model
is more consistent with the experimental statistical results.

(3) The concept of the geometric RVE was introduced to describe the microstructure of
Yellow River ice. A method for determining the RVE was developed. The average grain size
and relative error of ice crystals were selected as the microscopic variables to statistically
evaluate the size of the geometric RVE of the microstructure of river ice. Accordingly, the
size of the RVE was determined to be approximately 20–24 times the average grain size.

(4) It is feasible to extract the geometric RVE of river ice based on the geometric
characteristics of the microstructure of river ice. The results of this research provide a
theoretical basis for establishing strength-based RVE and macroscopic models of Yellow
River ice.
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