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Abstract: For dielectric energy storage materials, high polarization and high breakdown strengths are
a long-standing challenge. A modulating crystalline/amorphous phase structure strategy is proposed
by Mn-doping and annealing temperature to enhance the energy storage performance of pure BaTiO3

(BT) films. In this study, lead-free Mn-doped BT films were prepared on Pt/Ti/SiO2/Si substrates
via the sol-gel method, and the effects of the crystalline/amorphous phase ratio on polarization and
electric properties were analyzed. A small amount of Mn-doping in BT could reduce the annealing
temperature and enhance polarization with an Mn content of 8%. In addition, the energy storage
properties of BT-8%Mn films achieve the best energy storage performance in terms of energy density
and efficiency of 72.4 J/cm3 and 88.5% by changing the annealing temperature to 640 ◦C. BT-8%Mn
energy storage films also possess good stability over a wide temperature range of 20 ◦C–200 ◦C,
which demonstrates that crystalline/amorphous engineering is a simple and effective way to enhance
energy storage applications of dielectric films.

Keywords: energy storage; crystalline/amorphous; thin film; annealing temperatures

1. Introduction

Dielectric capacitors, as a passive component, are widely used in advanced electric
systems for energy storage and conversion, benefiting from high power densities, fast
charging/discharging speeds, and excellent temperature/cycling capabilities [1–3]. Com-
pared to other chemical power sources such as batteries and SOFCs (solid oxide fuel cells),
inorganic dielectric materials, especially thin films, have received more attention because
they exhibit high polarization characteristics [4,5]. However, the constricted relationship
between polarization and breakdown strength also hinders the enhancement of the energy
density of dielectric films. Therefore, there is a need to find a new way to break the current
dilemma, which is to achieve high energy density while also meeting the demands of
miniaturization and integration [6–8].

Barium titanate (BT) is a typical ferroelectric perovskite material and possesses the ad-
vantages of being lead-free, environmentally friendly, and having a high dielectric constant
(300~350) at room temperature [9]. However, the low withstand voltage (1000 kV/cm) and
high dielectric losses of pure BT films make it difficult to be applied [10,11].

In order to solve these problems, many strategies, such as interface engineering [12–14],
chemical doping [15,16], domain structure regulation [17,18], crystalline/amorphous
phase [19,20], etc., have been widely attempted. Among them, the crystalline/amorphous
phase is utilizing the different advantages of high polarization in the crystalline phase and
high breakdown strength in the amorphous phase to attain better energy storage proper-
ties [21,22]. For example, Yuyao Zhao et al. [23] prepared BT thin films on (100)-oriented
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conductive perovskite LaNiO3 substrates by magnetron sputtering at a low processing
temperature of 350 ◦C. Due to the existence of the LaNiO3 template layer, the (001)-oriented
sputtering growth of thin films was promoted, and perovskite BT thin films composed of
ultrafine columnar nanocrystals (the diameter of these nanocrystals can be controlled at
about 10 nm) were successfully prepared. These ultrafine columnar nanocrystals with a
small plane diameter and high filling density will cause highly limited and severely atten-
uated electric dipoles. This leads to stable and small remnant polarization and saturated
polarization at high applied field strength, resulting in ultra-high energy storage density
(135 ± 10 J/cm3) and efficiency (80% ± 4%) and good thermal stability and cycle stability
(2 × 108 charge-discharge cycles) at 150 ◦C~170 ◦C. In addition, the work of adding excess-
Ti source Bi(Mg0.5Ti0.5) O3-based films can achieve a high energy density of 126 J/cm3

utilizing the crystalline temperature difference of materials [24]. In addition, Xuewen Jiang
et al. [25] prepared 3% Mn-doped 0.94 BT-0.06 Bi (Zn0.5Zr0.5) O3 thin films by the sol-gel
method and also achieved a good energy density of 85 J/cm3 at a breakdown strength
of 4700 kV/cm by constructing hexagonal with high polarization and cubic polymorphic
domain structures at a low annealing temperature of 600 ◦C, where rapid annealing is used
(three layers of one annealing, a total of six layers). Mn ions can change between +2, +3, and
+4 oxidation states [26], making it possible to reduce the oxygen vacancies in the BT film
when it is doped as the acceptor element [27] (Mn′′Ti + V··O + 1

2 O2 → MnTi + OO ) [28], and
also to inhibit the partial reduction in Ti4+ to Ti3+, reducing oxygen vacancies to enhance
breakdown strength [29].

However, further research on hexagonal phase adjustments and their effect on polar-
ization is insufficient. Combined with the research results of Gyung Hyun Ryu et al. [30],
amorphous BT was prepared by pulsed laser deposition (PLD); in situ high-temperature
X-ray diffraction patterns showed that the hexagonal BT phase appeared earlier than the
cubic BT phase, and the electrical properties were improved by changing the annealing
process. Huihuang Xu et al. [20] prepared BaZr0.25Ti0.75O3 thin films by the sol-gel method.
The microstructure of the coexistence of the crystalline phase and the amorphous phase
was constructed by adjusting the annealing temperature. The goal of the crystalline phase
providing the polarization value and the amorphous phase providing the withstand voltage
value was achieved, and the high energy storage density of 60.8 J/cm3 was also achieved.
This shows that adjusting the annealing temperature is a direct method to adjust the phase
structure in the film. Therefore, the effectiveness of Mn-doping and annealing temperature
to adjust phase structure and polarization behavior on BT-based energy films needs to be
further explored.

In this work, the strategy of constructing a heterogeneous structure with the coexis-
tence of crystalline and amorphous phases in BT-based films by adjusting the annealing
temperature (560 ◦C, 600 ◦C, 640 ◦C, 680 ◦C, 720 ◦C) is proposed to improve the energy
storage density and efficiency. Meanwhile, the role of Mn-doping on oxygen vacancy
and crystallinity is investigated to lower the annealing temperature of BT films. Finally,
Mn-doped BT films were prepared on Pt/Ti/SiO2/Si substrates via the sol-gel method,
and the phase composition, microstructure, energy storage, and dielectric properties were
investigated. Energy density of 72.4 J/cm3 and efficiency of 88.5% are achieved at an
annealing temperature of 640 ◦C with 8% Mn-doping content.

2. Materials and Methods

In this study, Mn-doped BT films (BT-x%Mn films) were prepared on Pt/Ti/SiO2/Si
substrates using the sol-gel method. First, a precursor solution with a concentration of
0.2 mol/L was configured; barium acetate (Ba(CH3COO)2, 99.0%, Sinopharm Chemical
Reagent) and manganese acetate tetrahydrate (Mn(CH3COO)2·4H2O, 99.0%, Sinopharm
Chemical Reagent) were weighed using an electronic balance according to their stoichio-
metric ratio and dissolved in acetic acid (CH3COOH, 99.0%, Sinopharm Chemical Reagent)
and recorded as liquid A. Tetrabutyl titanate (Ti[OCH(CH3)2]4, 99.0%, Sinopharm Chem-
ical Reagent) was dissolved in 2-methoxyethanol (C3H8O2, 99.0%, Sinopharm Chemical
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Reagent), noted as liquid B. Liquid A and liquid B were mixed and then stirred for 12 h to
form a clear precursor solution. The precursor solution was filtered through a syringe filter
to obtain a pure solution and left to age for 24 h to obtain a stable solution.

The precursor solution was spin-coated on the substrate at 5000 rpm for 30 s. After
each coating, the film was heated at 200 ◦C to remove water and organic solvents, then at
350 ◦C and 450 ◦C, respectively, to make the films denser on the heating table in air, and
finally annealed by rapid thermal processing to obtain an Mn-doped BT thin film in an air
atmosphere. The platinum top electrode was deposited on the thin film with a diameter
of 0.2 mm by magnetron sputtering to measure its electrical properties. In addition, pure
BT films were prepared by the same preparation process and compared with doped films.
Due to the best energy storage performance of 8%Mn-BT film at 640 ◦C, the annealing
temperature of pure BT film is 640 ◦C.

The surface morphology of the Mn-doped BT films was measured using a scanning
electron microscope (SEM, Zeiss Ultra Plus, Oberkochen, Germany), and the relevant
parameters of the SEM equipment are as follows: secondary electron resolution: 1.0 nm
(15 kV), 1.2nm (1 kV); the spectrum resolution is better than 127 eV at Mn Kα. Electron
microscope magnification: 12~1,000,000×; analysis element range: 4 Be–94 Pu. The surface
roughness of the film and its changes are represented by the results of an atomic force
microscope (AFM, NanoscopeIV, VEECO, Lateral resolution: <0.2 nm, Santa Barbara, CA,
USA). The phase structure of Mn-doped BT films was studied by grazing incidence X-ray
diffraction (GI-XRD, PANalytical, Almelo, The Netherlands) with a diffraction angle of
20~60◦. The relevant parameters of the XRD equipment were: high-voltage generator
power of 4 kW; maximum high-voltage of 60 kV; the maximum anode current of 60 mA;
Cu target Kα radiation (λ = 1.54056 Å) was used. The dielectric constant and losses of
Mn-doped BT films were measured using an impedance analyzer (Agilent 4294, Santa
Clara, CA, USA). The polarization electric-field loops (P-E) of Mn-doped BT films were
measured at 1 kHz using a ferroelectric measuring system (CPE 1801, poly K, Philipsburg,
PA, USA). The elemental composition and elemental chemical states of the films were tested
using X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, American Thermo Fisher,
Waltham, MA, USA), and the parameters related to the XPS equipment are as follows: The
energy scanning range is 0~5000 eV; the energy range is 1~400 eV; the beam spot range is
20~900 µm; analysis of element range: all elements except He; the energy resolution is 0.45
eV; sensitivity is 1.0 Mcps @ 0.6 eV (650 µm beam spot); the imaging spatial resolution is
3 µm [31].

For nonlinear dielectrics with certain energy dissipation, such as ferroelectrics, re-
laxor ferroelectrics, and antiferroelectrics, the charging energy storage density (Wst), and
discharge energy storage density (Wrec) can be obtained by integrating the effective area
between the polarization axis and the polarization-electric field (P-E) charge-discharge
hysteresis loop curve. The charging energy storage density (Wst) and discharging energy
storage density (Wrec) of dielectric capacitors can be calculated by the following equations:

Wst =
∫ Pmax

0
EdP (1)

Wrec =
∫ Pmax

Pr
EdP (2)

In the formula, Wst is the charge energy storage density, Wrec is the discharge energy
storage density, E is the applied electric field strength, P is the polarization strength, Pmax is
the maximum polarization strength, and Pr is the residual polarization. In addition, the
use of high-speed switching circuits through the pulse discharge current (dynamic method)
has also proved to be another feasible method to measure the discharge energy storage
density of the medium.

In energy storage applications, the charge-discharge efficiency (η) of the device cannot
be ignored for dielectric capacitors. In general, in the process of discharge, the electrical
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energy stored in the capacitor will be lost. The value of the energy loss density, represented
by Wloss, is equal to the area of the P-E loop. Typically, the energy storage efficiency of a
capacitor can be calculated using the following equations:

η =
Wrec

Wst
=

Wrec

Wrec + Wloss
(3)

In the formula, Wst is the charge energy storage density, Wrec is the discharge energy
storage density, Wloss is the lost energy density, and η is the energy storage efficiency.

3. Results and Discussion

Figure 1a,b shows the GIXRD diagrams of pure BT film and BT-8% Mn film at different
annealing temperatures. As the annealing temperature increases, the diffraction peaks of
pure BT films appear until 720 ◦C. However, for the BT-8%Mn films, the diffraction peaks of
the perovskite phase appear at 680 ◦C, which demonstrates that Mn-doping could reduce
the annealing temperature to some degree. Figure 1c shows the Mn 2p XPS pattern and its
fitted curve in the BT-8%Mn film; the fitted peak at 641.3 eV corresponds to Mn2+. With
the increase in binding energy, the fitting peaks of Mn3+ and Mn4+ appear, which indicates
that there are multivalent Mn ions in the films [32]. Figure 1d shows the changes in the O
1s XPS before and after Mn-doping. The main peak around 530 eV is usually considered
to be lattice oxygen in the lattice. The additional shoulder peak around 531 eV could be
considered an oxygen vacancy after excluding other possibilities (such as carbonate [33]
or Al2O3 et al.) [34–36]. As there are no other miscellaneous oxides present in the thin
film sample and the reduction in the intensity of the shoulder peak in these O 1s after
Mn-doping, this shoulder peak represents the oxygen vacancy existence. It can be found
that the introduction of Mn ions reduces the oxygen vacancies in the film.

Figure 1e,f shows the breakdown strength, polarization, and energy storage properties
with different contents of Mn-doping, respectively. There is a tendency for the breakdown
strength and polarization to increase with the increase in Mn-doping content, and the
energy storage density also shows the same trend. The best performance of the films
with an energy storage density of 54.12 J/cm3 was achieved at 8% Mn-doping content, so
8% Mn-doping was chosen for the subsequent study of modulating the crystalline and
amorphous phases by annealing temperature.

Figure 2 shows the SEM images of BT-8%Mn films annealed at different temperatures.
It can be observed that the film surface is smooth and flat with only a very small number
of grains at low annealing temperatures (560 ◦C, 600 ◦C). As the annealing temperature
increases to 640 ◦C, an increase in the number and size of grains can be clearly observed.
When the annealing temperature reaches 720 ◦C, there are almost crystallized grains in
the film. This is because higher temperatures are beneficial for crystalline nucleation. As
the annealing temperature increases, the film shows a reduction in the amorphous phase
and an increase in the crystalline phase; this is consistent with the results in the GIXRD
diagrams. Figure 2f shows the fracture of the BT-8% Mn film annealed at 640 ◦C with a
thickness of approximately 200 nm.

Figure 3a–e shows the AFM images of the BT-8%Mn films annealed at different
temperatures. The change in color depth in the graph represents the fluctuation of the
surface [37]. At annealing temperatures of 560 ◦C, 600 ◦C, and 640 ◦C, bright spots can be
seen scattered on the surface of the films and tend to increase with increasing temperature.
These bright spots represent the grains in the film, but the film is still dominated by
amorphous phases, which is consistent with the absence of diffraction peaks observed in
GIXRD. On the contrary, when the annealing temperature is increased to 680 ◦C or 720 ◦C,
the uneven surface of the film is covered with interconnected grains, indicating that the film
is dominated by crystalline phases. The roughness of the film can reflect its crystallization
and is often expressed in terms of root mean square roughness (RMS). The RMS of the
films can be calculated by using nanoscope analysis software, as shown in Figure 3f. The
RMS at 560 ◦C, 600 ◦C, 640 ◦C, 680 ◦C, and 720 ◦C are 0.4 nm, 0.621 nm, 0.889 nm, 1.91 nm,
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and 2.34 nm, respectively. The trend in the RMS data show that roughness increases with
annealing temperature. At 560 ◦C, 600 ◦C, and 640 ◦C, a low RMS indicates low roughness,
flat surfaces, and amorphous dominance. As the annealing temperature increases to 680 ◦C
and 720 ◦C, the high RMS demonstrates the dominance of the crystalline phase. The
crystalline phase distribution situation in SEM is consistent with the change in roughness
of AFM, which demonstrates the change in the crystallization of the film.
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Figure 4 shows the EDS (Energy Dispersive Spectrometer) spectrum of BT-8% Mn
film, where Figure 4a is the total spectrum of all elements and the rest is the single element
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spectrum of the Ba, Ti, O, and Mn elements. It can be seen from the figure that the
distribution of each element covers the entire film evenly and that there is no agglomeration.
This also reflects the good film preparation process, and the sol-gel method makes it easy
to prepare a film with uniform distribution and good quality.
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(c) Ti; (d) O; (e) Mn.

Figure 5 shows the change in dielectric constant and dielectric loss for films at
103 Hz–106 Hz with different annealing temperatures. Usually, a high dielectric constant
means high crystallinity [38]. The low dielectric constant at low frequencies can be at-
tributed to the fact that the electric field changes slowly at low frequencies, and the response
of the dipole polarization mechanism that affects the dielectric constant can keep up with
the change in the electric field frequency, so the larger dielectric constant is highlighted.
On the contrary, at higher frequencies, most dipoles cannot keep up with the change of
the electric field, and the dipole orientation polarization is too late to respond, and the
contribution to the dielectric constant is reduced, so the dielectric constant will become
smaller [39]. At low annealing temperatures, the dielectric constant of the film is less than
50 due to the majority amorphous phase in the film. When the annealing temperature
reaches 680 ◦C, the dielectric constant is much higher than 50, indicating almost crystalline.
The trend of dielectric loss is the same as that of the dielectric constant. Both show a
tendency to increase with annealing temperature, which is consistent with what is seen in
the microstructure characterization.
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Figure 6 shows the temperature dependence of the dielectric constant and the dielectric
loss of BT-8% Mn thin films at different annealing temperatures. It can be seen from
Figure 6a that the dielectric constant of the film shows a slight increase with temperature
at low annealing temperatures (560 ◦C, 600 ◦C, 640 ◦C). This may be due to the fact that
as the test temperature increases, the dipole is activated by heat to respond more to the
polarization process and increase the dielectric constant. At high annealing temperatures
(680 ◦C, 720 ◦C), the dielectric constant first increases and then decreases with increasing
temperature. The change trend of dielectric loss is basically consistent with the dielectric
constant, as shown in Figure 6b. If the dielectric constant of BT-8% Mn film at 20 ◦C is
taken as the reference, the temperature stability of the dielectric constant of the film can be
expressed by the formula ∆ε = |ε − ε20◦C/ε20◦C| × 100%. The results show that the ∆ε of
all films is less than 15% from 20 ◦C to 200 ◦C, which indicates that BT-8% Mn has good
dielectric temperature stability.
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The P-E loop is an important parameter reflecting the energy storage performance of
the films. Figure 7a shows the P-E loop plots of the films at different annealing temperatures.
At low temperatures (560 ◦C, 600 ◦C, and 640 ◦C), the P-E loops are thin, indicating
excellent energy storage efficiency. As the annealing temperature increases, the P-E loop
becomes fatter and Pr increases, then the energy storage efficiency deteriorates sharply. The
formula for energy storage density W =

∫ Pmax
Pr

EdP [40] shows that the values of maximum
polarization (Pmax) and electric field strength (E) should be as large as possible in order
to obtain a high energy storage density. Figure 7b shows the Pmax and its corresponding
breakdown strength at different annealing temperatures, limited by the test instrument.
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The films prepared at 560 ◦C, 600 ◦C, and 640 ◦C did not break down, so the maximum
electric field strength that can be measured was selected as the breakdown strength. At
640 ◦C, the film obtains a high breakdown strength and a moderate Pmax, which collectively
reach the best value for the energy storage density. Figure 7c shows the I–V characteristic
curves of the BT-8%Mn films with different annealing temperatures at 0–495 kV/cm electric
field strength. It can be observed that the leakage current of the film at high annealing
temperatures (680 ◦C–720 ◦C) is much larger than at low temperatures (560 ◦C–640 ◦C), and
the current increases sharply with the increase in the electric field. The high leakage current
value not only leads to the low breakdown strength of the film [41], but also causes a sharp
decrease in its energy storage efficiency [42]. The trend of energy storage density and
energy storage efficiency with annealing temperature is shown in Figure 7d. The highest
energy storage density up to 72.4 J/cm3 is for the BT-8%Mn film annealed at 640 ◦C with
88.5% energy efficiency. The energy efficiency shows a decreasing trend with the increase in
annealing temperature, especially after 640 ◦C, which has a close relationship with crystal
phase increase.
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Temperature stability is an important parameter to measure the ability of film capaci-
tors to work properly when the environment changes. Figure 8 shows the variation of the
film energy storage performance with temperature (20 ◦C–200 ◦C) under an electric field
of 2489.96 kV/cm. It can be observed that the polarization value increases slightly, and
the energy storage efficiency decreases as the temperature increases. The energy storage
density fluctuates between 15.05 J/cm3 and 16.58 J/cm3, and the change rate is about 10%
as the test temperature of the film increases from 20 ◦C to 200 ◦C. Further, the energy storage
efficiency decreases from 92.28% to 69.23%. The cycle stability of the film characterizes
the change in performance of the film during the long-term charge and discharge process.
Through this performance, it can be judged whether the film has a good working life. The
cyclic stability of the film is shown in Figure 8c,d. During the charging/discharging cycles
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of 100–105, the polarization value, P-E loops’ shape, and energy storage performance of the
films did not change significantly. This indicates that the film has excellent cycle stability.
Excellent temperature and cycle stability enable the film to adapt to harsh conditions and
changing environments, and it has a better application prospect.
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The comparison of the energy-storage performances of BT-8%Mn thin films with other
thin films is shown in Figure 9 [43–51]. It can be seen that BT-8%Mn film has excellent energy
storage performance, making it a strong competitor with potential in future integrated
circuits for energy storage applications.

Crystals 2023, 13, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 9. Energy storage density and energy storage efficiency of this work compared with other 
thin films. 

4. Conclusions 
BT films were prepared on Pt/Ti/SiO2/Si substrates via the sol-gel method with a 

small amount of Mn-doping and changing the annealing temperature to adjust the crys-
talline/amorphous phase structures. Multiple methods, including XRD, SEM, AFM, and 
XPS, demonstrate that Mn could lower the crystallization temperature of BT films, facili-
tating the formation of an amorphous phase. The coexistence of crystalline/amorphous 
phases was successfully achieved and characterized by changing the annealing tempera-
ture and the excellent energy storage performances: energy density of 72.4 J/cm3 and effi-
ciency of 88.5% are achieved at an annealing temperature of 640 °C. After 105 charge-dis-
charge cycles at 2489.96 kV/cm electric field, the energy storage density and efficiency of 
the BT-8% Mn film annealed at 640 °C remain basically unchanged, and the change in 
energy storage density does not exceed 10% in the temperature range of 20 °C–200 °C. It 
has good cycle stability and temperature stability, which allows it to adapt to multiple 
charge-discharge cycles and changes in the working environment’s temperature. This 
work proves the effectiveness of constructing a crystalline/amorphous phase by chemical 
doping and changing the annealing temperature to improve the energy storage perfor-
mances, which could also be applied in other dielectric systems. 

Author Contributions: Material fabrication and property characterization, J.G. and D.L.; Writing—
original draft, J.G.; Writing—review and editing J.G., D.L., H.H., Q.G., H.X., M.C., Z.Y. and H.L. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Guangdong Basic and Applied Basic Research Foundation 
(No.2022B1515120041, No.2022A1515010073) and Major Program of the Natural Science Foundation 
of China (Grant No. 51790490). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. García, T.; Bartolo-Pérez, P.; de Posada, E.; Peña, J.L.; Villagrán-Muniz, M. Studies of pulsed laser deposition processes of Ba-

TiO3; Thin films. Surf. Coat. Technol. 2006, 201, 3621–3624. 
2. Li, D.; Zeng, X.; Li, Z.; Shen, Z.; Hao, H.; Luo, W.; Wang, X.; Song, F.; Wang, Z.; Li, Y. Progress and perspectives in dielectric 

energy storage ceramics. J. Adv. Ceram. 2021, 10, 675–703. 

Figure 9. Energy storage density and energy storage efficiency of this work compared with other thin films.



Crystals 2023, 13, 649 11 of 13

4. Conclusions

BT films were prepared on Pt/Ti/SiO2/Si substrates via the sol-gel method with a
small amount of Mn-doping and changing the annealing temperature to adjust the crys-
talline/amorphous phase structures. Multiple methods, including XRD, SEM, AFM, and
XPS, demonstrate that Mn could lower the crystallization temperature of BT films, facili-
tating the formation of an amorphous phase. The coexistence of crystalline/amorphous
phases was successfully achieved and characterized by changing the annealing temperature
and the excellent energy storage performances: energy density of 72.4 J/cm3 and efficiency
of 88.5% are achieved at an annealing temperature of 640 ◦C. After 105 charge-discharge
cycles at 2489.96 kV/cm electric field, the energy storage density and efficiency of the BT-8%
Mn film annealed at 640 ◦C remain basically unchanged, and the change in energy storage
density does not exceed 10% in the temperature range of 20 ◦C–200 ◦C. It has good cycle
stability and temperature stability, which allows it to adapt to multiple charge-discharge
cycles and changes in the working environment’s temperature. This work proves the effec-
tiveness of constructing a crystalline/amorphous phase by chemical doping and changing
the annealing temperature to improve the energy storage performances, which could also
be applied in other dielectric systems.
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