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Abstract: Directed energy deposition (DED) stands as a key process in metal additive manufacturing
(AM) and offers the unique capability of creating functionally graded materials (FGMs). FGMs
have garnered significant interest in high-value industries by advantages such as performance
optimization, reducing material defects, and resolving joining issues. However, post-processing
remains a crucial step, indicating a need for further research to understand the machinability of FGMs.
This paper focuses on the characteristics analysis of fabricating and machining an FGM based on
stainless steel 316L (SAE 316L) and Inconel 718. The FGM was fabricated by starting with SAE 316L
at 100 wt.% and adjusting the composition ratio by incrementally increasing Inconel 718 by 20 wt.%
while simultaneously decreasing SAE 316L. Following the FGM fabrication, microstructure and
mechanical properties were comprehensively analyzed by hardness testing, optical microstructure
measurements, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). To investigate the
post-processing aspects, end-milling experiments were conducted using two distinct milling methods
(upward and downward milling) and machining paths (from SAE 316L towards Inconel 718, and
vice versa). The mean cutting force peaked at 148.4 N in upward milling and dipped to 70.5 N in
downward milling, and tool wear measurements further provided insights into the optimal milling
direction when working with an FGM of SAE 316L and Inconel 718.

Keywords: directed energy deposition; functionally graded material; microstructure analysis;
microhardness testing; post-machining

1. Introduction

Additive manufacturing (AM) is a technology that is used to fabricate a product in a
layer-by-layer fashion, using resin, polymer, and metal materials, which is advantageous for
complex designs [1–5]. Particularly, directed energy deposition (DED), one of representative
metal AM processes, is a process in which a metal powder or wire is deposited on another
material with a high-energy heat source such as laser, electron beam, plasma, and so on.
Consequently, metal structures are fabricated by melting and solidification, which makes
it possible to manufacture high-density and high-strength products [6,7]. Furthermore,
compared to the powder bed fusion (PBF) process, DED offers a greater level of flexibility,
particularly in handling a wide range of materials and reduced size constraints, and can be
applied to pre-existing parts. This enables effective utilization of DED for the production or
repair of parts with intricate geometries. The most notable advantage of the DED process
is the ability to create functionally graded materials (FGMs) by combining two or more
materials in variable proportions.

An FGM is a heterogeneous composite manufactured by a gradual change in the
composition of dissimilar materials to compensate for catastrophic defects resulting from
abrupt changes in the thermal/physical properties at the interface and differences in the
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mechanical properties of the metal materials. A gradual change in the composition of
dissimilar metals in such an FGM allows the microstructure to compensate for corrosion
and cracking caused by dissimilar metal bonds. Therefore, due to such compensation,
FGMs can be utilized in a variety of industries, such as automotive, nuclear power, and
aerospace sectors. In response to the demand for such materials, functionally graded
additive manufacturing (FGAM), which fabricates FGMs using metal AM, has recently
gained attention [8–10].

The fabrication of FGMs has been studied using a variety of difficult-to-cut mate-
rials to obtain unique properties, with a focus on their microstructure and mechanical
properties [11–13]. The fabrication of FGMs using FGAM, particularly with stainless steel
and Inconel alloys, has garnered significant attention due to their potential applications
in high-value industries. These alloys have exceptional mechanical and chemical prop-
erties, such as resilience in high-temperature hazard environments, corrosion resistance,
and superior strength [14]. Generally, to evaluate the quality and integrity of deposited
layers, researchers have assessed the correlation between the microstructure and measured
mechanical properties [15,16]. This method provided insight into whether the parts were
deposited without defects and addressed specific challenges such as galvanic corrosion or
stress fractures that can arise from the differences in thermal expansion coefficients during
direct joining or welding between stainless steel and Inconel alloys. Su et al. fabricated an
FGM using SAE 316L and Inconel 718 alloy in three different composition ratios through
laser metal deposition (LMD). Microscopy, EDS, XRD, and tensile tests were applied to
examine the microstructure, phase evolution, and mechanical properties of FGMs [17].
In a similar study, Zhang et al. performed a microstructural analysis showing that the
intermediate section between SAE 316L and Inconel 625 was layered without defects. They
also analyzed fracture morphology using tensile tests [18]. Rodrigues et al. utilized a dual-
wire arc AM method instead of powder-based AM to fabricate an FGM with continuous
compositional transition between stainless steel 316L and Inconel 625. Through this system,
they observed smooth microstructural transition and analyzed the correlation between
microstructures and mechanical properties by producing four different specimens: 100% of
each material, a direct interface composite, and an FGM [19]. Similarly, Yu et al. evaluated
the mechanical properties of an FGM fabricated from the same materials in both vertical
and horizontal directions and analyzed their correlation with the microstructure [20]. Based
on the microstructural analysis and mechanical property measurements to verity that the
FGM was properly fabricated, Kim et al. also fabricated an FGM using SAE 316L and In-
conel 718, which varied in steps of 10 wt.% for each layer, and analyzed the microstructural
and mechanical properties of the layers with critical pores and fractures [21]. Based on the
dual-wire arc AM system, Li et al. analyzed cracks in an FGM and solve the crack issue by
process parameter optimization [22]. Yang et al. fabricated nongraded, 25% graded, and
10% graded FGMs. Using SEM imaging, they identified cracks not only at the interface
of the nongraded sample but also at specific mixing ratios in the graded samples. Their
analysis revealed that the cracks were caused by the differences in the coefficient of thermal
expansion and precipitation of components such as Nb and Mo [23]. Additionally, from the
perspective of predicting microstructures through a thermodynamic model, Carroll et al.
produced an FGM by progressively increasing and decreasing the composition ratio of
4% using SAE 304L and Inconel 625 alloys. After depositing the FGM, the microstructure,
chemical composition, phase composition, and microhardness were analyzed using the
CALculation of PHAse Diagrams (CALPHAD) method, and the composition variation
area was predicted [24]. Previous studies not only validated the proper gradual formation
of FGMs through microstructural analysis but also assessed the absence of defects at the
interface. Furthermore, by analyzing the differences in the mechanical properties between
the wrought material and the deposited material, the potential for practical application in
industry was verified.

In the meantime, to apply the FGMs in industry, machining is essential for improving
surface roughness and dimensional accuracy after the DED part fabrication. To fulfill these
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requirements, the machinability of each material, such as cutting force and tool life, must
be initially assessed [25–27]. Likewise, the machinability of the graded sections in the FGM
part should also be thoroughly analyzed. However, there are few studies on the experi-
mental analysis on characteristics of the post-machining of deposited FGMs. Oyelola et al.
investigated the machining characteristics of functionally graded Ti6Al4V/WC components
consisting of a metal matrix composite (MMC) region and a single alloy region produced by
a turning process. According to material variations of the functionally graded components,
the cutting force, tool wear, and surface integrity were analyzed [28]. Levano Blanch et al.
fabricated a special billet from four different titanium alloys, and face-turning was per-
formed to collect the cutting force across diffusion bonds. Based on the cutting force and
microstructure of diffusion bonds between titanium alloys, the machinability of titanium
alloys was analyzed for application in the aerospace industry [29]. Compared to the turn-
ing process, the milling process is more suitable for ensuring the surface roughness and
precision of the deposited FGM. In research geared towards analyzing the machinability
of FGMs for the milling process, Wang et al. fabricated an FGM based on stainless steel
304L and Inconel 625 through a 25% increment–decrement approach and using a 4-flute
cemented carbide tool. The tool wear was analyzed based on two objectives, minimum
milling force and surface roughness, which led to the selection of an appropriate machining
strategy [30]. However, given the various strategies available, such as the sequence of
material processing and the specific milling method, further research is needed to explore
the best strategy for FGM machining.

Considering the recent research trends in FGMs, such as the potential significance of
FGMs for high-value industries grows, there has been active research to characterize FGMs
in terms of their microstructure and mechanical properties. Nonetheless, despite the crucial
nature of post-machining for enhancing surface quality and dimensional accuracy, there
has been limited investigation into FGMs’ machining characteristics.

In this study, an FGM composed of SAE 316L and Inconel 718 with a progressively
varying composition ratio was additively manufactured in a hybrid DED machine tool, and
its microstructures, mechanical properties, and machining characteristics were experimen-
tally investigated. In more detail, after making the FGM specimens, their microstructural
and mechanical properties were investigated experimentally. Then, a series of milling
experiments were conducted, and cutting force and tool wear analyses were performed in
accordance with milling directions and milling passes.

2. DED for FGM Experiments
2.1. Powders

For the fabrication of the FGM, gas-atomized SAE 316L powder (MetCoclad 316L-Si,
Oerlikon Metco, Pfäffikon, Switzerland) and Inconel 718 powder (MetCoclad 718, Oerlikon
Metco, Pfäffikon, Switzerland) were selected. Due to its high yield and tensile strengths,
corrosion resistance, and weldability, austenitic stainless steel SAE 316L has been used
in a variety of subtractive and additive manufacturing processes [31]. The austenitic
nickel–chromium-based superalloy, Inconel 718, which is resistant to thermal oxidation and
corrosion, has typically been used as an additive manufacturing material in high-value-
added industries [32]. In addition, AISI 1045 carbon steel was chosen as the substrate for
the DED process, and the constituents of the powders and substrate are listed in Table 1.
The dimensions of the SAE 316L powder ranged between 44 and 106 µm, and those of the
Inconel 718 powder ranged between 45 and 90 µm, as confirmed by the supplier’s data.

Table 1. The material constituents of powders and substrate.

Element (wt.%) Fe Ni Cr Mn Si C Mo Nb Ti Others

SAE 316L powder Bal. 12 17 2.3 2.3 0.03 - - - ≤0.5
Inconel 718 powder 18 Bal. 19 - - - 3 5 1 ≤1.0
AISI 1045 substrate Bal. - - - 0.7 0.45 - - - -



Crystals 2023, 13, 1491 4 of 17

2.2. Experimental Testbed

As shown in Figure 1, the experimental testbed for the DED and mechanical machining
processes was constructed by retrofitting a four-axis CNC machine tool (DH-400-2Z, Harim
Machinery, Anyang, Korea). A single-mode fiber laser (RFL-C750, Wuhan Raycus Fiber
Laser Technologies) was connected to the DED head attached on the z-axis of the CNC
machine tool in this testbed. The laser beam’s diameter and wavelength were 3 mm and
1080 nm, respectively, and the distance between the DED head and substrate was set to
10 mm. In addition, the powders were supplied through a powder feeder (GTV Powder
Feeder RF, GTV, Luckenbach, Germany) that was installed coaxially with the DED head,
and argon was chosen as the delivering and shielding gas to supply metal powder to a
melt pool and prevent oxidation of the DED parts during the process. During the process,
a laser chiller (YRC-2000, Yescool, Bucheon, Korea) cools the DED head to continuously
maintain the inner temperature to prevent fault occurrence and unbalanced deposition
layer formation due to overheating. Lastly, the high-frequency spindle installed on the
w-axis can perform the mechanical machining of the DED parts.
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Figure 1. Experimental testbed for DED and machining processes.

2.3. Experimental Design and Conditions

As mentioned previously, two metallic powders, SAE 316L and Inconel 718, were
deposited to produce a 6-layer FGM part with a graded structure using the DED process.
For each layer, the weight composition ratios of SAE 316L and Inconel 718 were changed
by 20 wt.%, from 0 wt.% to 100 wt.%, to produce the FGM part. Figure 2a is a schematic
diagram of the FGM component with the composition ratios that change progressively for
each layer.
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Figure 2. (a) Schematic diagram of the compositional ratios of each layer of the FGM and photos of
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Following a series of preliminary tests with extensive FGM fabrication and a defect
analysis of specimens, it was determined that 300 W for laser power and 465 mm/min
for scanning speed were the optimal DED process parameters without any defects. As a
stacking technique, an orthogonal zigzag toolpath was employed to slightly enlarge each
layer to compensate for excessive stacking during acceleration and deceleration sections.
The DED experimental conditions are summarized in Table 2, and Figure 2b,c show photos
of the deposited FGM part. The total height of the FGM part was designed to be 30 mm, and
the height of each layer was 5 mm. After the FGM part fabrication, the part was sectioned
using wire electrical discharge machining (EDM) for analysis. The sectioned specimen for
the analysis can be seen in Figure 2d.

Table 2. The experimental conditions of DED process for FGM part fabrication.

Composition
Percentage

(wt.%)

Laser
Power (W)

Scanning
Speed

(mm/min)

Mass Flow Rate
of Powder

(g/min)

Flow Rate of
Delivery

Gas (L/min)

Flow Rate of
Shielding

Gas (L/min)

DED Head
Distance to

Substrate (mm)

Overlap
(%)

20 300 465 10 14 14 10 31

3. Metallographic Characteristics
3.1. Compositions

In order to verify the compositional variations in the FGM part, 5 × 5 mm specimens
were cut from each of the six layers using wire EDM. An energy-dispersive X-ray spec-
troscopy (EDS) analysis was then performed on each specimen at three specific depths
of 1 mm, 2.5 mm, and 4 mm, using a scanning electron microscope (SEM) apparatus
(SNE-4500M, SEC, Suwon, Korea), and those SEM images with EDS results for these mea-
surements can be seen in Figure 3. At each of these three depths, horizontal measurements
were repeated three times, resulting in a total of nine analyses for each layer. The average
values of these analyses are presented in Figure 4.

As shown in Figure 4, the FGM was fabricated through six layers, transitioning from
100 wt.% SAE 316L in Figure 4a to 100 wt.% Inconel 718 in Figure 4f. Specifically, Figure 4b
shows a composition of 80 wt.% SAE 316L and 20 wt.% Inconel 718. With each successive
layer, the composition of SAE 316L decreased by 20 wt.% while that of Inconel 718 increased
by the same amount. Correspondingly, the Fe content progressively diminished from the
initial value of 60 wt.% in the SAE 316L 100 wt.% layer to 17–18 wt.% in the Inconel
718 100 wt.% layer, which can be confirmed by the typical Inconel 718 Fe ratio in Table 1.
Conversely, the Ni composition rises, starting from the 12 wt.% inherent in SAE 316L and
incrementally increasing with the enhanced content of Inconel 718. These compositional
shifts can be clearly observed in Figure 4. The niobium equivalent, which has a big impact
on the formation of the secondary phase in Inconel 718, was also seen to gradually rise
as the composition ratio of Inconel 718 rose. Thus, the composition analysis confirmed
that the FGM part was properly deposited, as were the ratios of the metal elements in the
layered structure.
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3.2. Microstructure

The microstructure of the FGM part was investigated through a metallographic analy-
sis using a microscope. To prepare for the microscope examination, the FGM specimens
were sectioned layer by layer using wire EDM. The cut surfaces were then polished and
subjected to etching. The appropriate etching times varied for each layer: 8 min for SAE
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316L 100 wt.%, 16 min for Inconel 718 100 wt.%, and an additional 2 min of etching time
for every 20 wt.% increase in Inconel 718 content. Following the ASTM E407 standard,
100×magnification images of each layer were captured using the microscope, and these
images are presented in Figure 5.
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For the layer of 100 wt.% of SAE 316L, δ-ferrite dendritic structures can be observed,
as shown in Figure 5a, which may be a result of rapid cooling during the DED process. In
addition, as seen in Figure 5b, which shows the layer of 80 wt.% for SAE 316L and 20 wt.%
for Inconel 718, the addition of Inconel 718 results in the formation of equiaxed grains and
the complete disappearance of ferrite dendritic structures. This may be due to the slower
cooling rate caused by the residual heat in the layer that was previously deposited.

Additionally, equiaxed austenite grain structures are preserved when the Inconel
718 component ratio is between 40 and 60 wt.%. However, the boundaries of austenitic
grains begin to disintegrate when the Inconel 718 component ratio reaches 80 wt.%. At a
100 wt.% Inconel 718 component ratio, only irregularly shaped Laves phase precipitates
are observed, as illustrated in Figure 5e,f. This phenomenon is likely attributable to the
increasing levels of nickel and niobium equivalents as the Inconel 718 component ratio rises.
As indicated by the EDS analysis results presented previously in Figure 4, the increase
in nickel and niobium equivalents leads to the precipitation of the γ′′ (NiNb) secondary
phase within the pre-existing austenitic grains, thereby disrupting the austenitic grain
boundaries [33].

To explain the experimental results empirically, the Schaeffler diagram was selected.
The Schaeffler diagram is well-known for its ability to predict phase transitions in weld
metal microstructures using the nickel and chromium equivalents of ferrous alloys [34].
It serves as a tool for anticipating or comparing the microstructure of molten alloys and
stainless steel. Equations (1) and (2) outline the procedures for calculating the chromium
and nickel equivalents needed for the analysis using the Schaeffler diagram.

Chromium equivalent = %Cr + 1.5%Si + 0.5%Nb (wt.%) (1)

Nickel equivalent = %Ni + 30%C + 0.5%Mn (wt.%) (2)
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The positions of each layer in the FGM parts on the Schaeffler diagram, based on
varying composition ratios, can be confirmed in Figure 6 using the calculations from
Equations (1) and (2). The data predict a complete austenite phase for areas with an Inconel
718 composition ratio of 20 wt.% or higher [35]. This aligns with the earlier metallographic
microscope observations in Figure 5, which showed the formation of δ-ferrite structures
with dendritic phases in the areas with a SAE 316L 100 wt.% composition. Additionally, as
the Inconel 718 component ratio increases, these δ-ferrite structures with dendritic phases
disappear, giving way to newly formed equiaxed austenite grain structures. This transition
is attributed to both a slower cooling rate and an increase in the Inconel 718 component
ratio, and it was confirmed that the results of the Schaeffler diagram predictions align with
the actual measured microstructures in Figure 5.
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An X-ray diffraction (XRD, Empyrean, Malvern Panalytical, Malvern, UK) analysis
was also performed. The XRD results for all six layers of the FGM part can be seen in
Figure 7. Prior to analyzing the FGM via XRD, it is essential to understand the characteristic
XRD profiles of typical SAE 316L and Inconel 718. In the case of 100 wt.% SAE 316L,
an austenitic stainless steel, a notable peak is observed that corresponds to the austenite
phase. This peak arises due to the stabilizing influence of nickel, an element that allows the
material to maintain an austenitic structure with carbon dissolved in the face-centered cubic
(FCC) γ-Fe structure. A body-centered cubic (BCC) δ-ferrite structure is also present at room
temperature [36]. Similarly, Inconel 718 features secondary phases such as γ′ (Ni[Al,Ti]), γ′′

(NiNb), and δ (NiNb) on the basis of its nickel-based FCC austenite (γ) structure. Among
these, the γ′′ phase serves as the primary strengthening phase to improve the strength
of the material, whereas the γ′ phase acts as a secondary strengthening phase, and the δ

phase is precipitated along the grain boundary from the γ′′ phase. Notably, rapid cooling
of molten Inconel 718 can lead to the precipitation of the Laves phase (NiNb, FeNb), which
is characterized by high hardness and can cause cracks in the alloy [37].
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Based on the characteristic XRD profiles of typical SAE 316L and Inconel 718, the
correlation between the previously analyzed microstructure, Schaeffler diagram results
of the FGM part, and measured XRD results were examined. As shown in Figure 7, the
analysis results can be categorized into two groups. The first group includes SAE 316L
100 wt.% and SAE 316L 80 wt.% mixed with Inconel 718 20 wt.% and shown in Figure 7a,b.
The second group comprises the remaining composition ratio area.

In the first group, the XRD spectrum of the SAE 316L 80 wt.% mixed with Inconel
718 20 wt.% area exhibited a peak intensity around 40 degrees that was 28.57% higher
compared to SAE 316L 100 wt.%. This peak was attributed to the austenite microstructure,
corroborating both the microstructural analysis in Figure 5a,b and Schaeffler diagram in
Figure 6 that indicate a fully austenitic phase in the SAE 316L 80 wt.% mixed with Inconel
718 20 wt.% region.

On the other hand, the XRD spectrum of the SAE 316L 60 wt.% mixed with Inconel
718 40 wt.% area revealed a rapid decline in the peak intensity around 40 degrees and an
increase in intensity around 50 degrees. This change is ascribed to the formation of the γ′

(Ni[Al,Ti]) phase, one of the austenitic secondary phases. It suggests that increasing nickel
content induces the appearance of additional secondary phases alongside the existing
complete austenite phase, as evidenced in Figure 5c.

Finally, although the peak intensity around 40 degrees initially decreased sharply,
it gradually increased again up to Inconel 718 100 wt.%, resulting in a 159.65% increase
compared to the region with Inconel 718 40 wt.%, as can be seen in Figure 7d–f. This
resurgence in intensity is interpreted as the γ′′ phase also contributing to this peak. Thus,
the elevated peak intensity corresponds to the microstructural analysis showing that
higher Inconel 718 content leads to excessive precipitation of the γ′′ phase, resulting in the
dissolution of the austenite grains.

3.3. Mechanical Properties

After the microstructure analysis of the FGM part, a mechanical property analysis
was carried out for each region and transitional boundary of the gradual variation area.
Hardness measurements were taken at 1 mm intervals, ranging from the SAE 316L 100 wt.%
area to the Inconel 718 100 wt.% area on the opposite side of the deposited FGM specimen
that was cut for the microstructure analysis as shown in Figure 2d. Micro-Vickers hardness
tests were performed in accordance with ASTM E384 standards. To ensure reliability, each
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measurement was repeated four times using a 100 g load and a 10 s holding time. The
average values are presented in Figure 8.

As shown in Figure 8a,b, a slight decrease in hardness was observed, where SAE 316L
100 wt.% changed to SAE 316L 80 wt.% mixed with Inconel 718 20 wt.%. This drop in
hardness is related to the microstructural change from a high-hardness dendritic δ-ferrite
structure to an equiaxed austenite grain, as shown in Figure 5a,b. Additionally, while
forming a refined microstructure, the secondary phase segregation observable in Figure 5c
enhances the material’s strength at grain boundaries. Thus, the measured hardness in-
creased in the case of SAE 316L 60 wt.% and Inconel 718 40 wt.% in general, as shown in
Figure 8c. However, in some areas, it precipitates excessively, weakening the boundaries.
Such results can be correlated with the significant hardness fluctuation seen in Figure 8c
for that layer. In addition, as seen in Figure 8d–f, the hardness values appeared to sta-
bilize, showing only a minor fluctuation trend in the cases of higher Inconel 718 (60, 80,
and 100 wt%) compositions. These stable hardness values can be related to the constant
niobium (Nb) equivalent values, as depicted in Figure 4, which significantly influence the
precipitation of the Laves phase.
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4. Machining Characteristics
4.1. Milling Experiments

A series of milling experiments for the FGM parts were conducted using the machin-
ing spindle of the experimental testbed given in Figure 1. To investigate the machining
characteristics of the FGM part, the milling method and path were considered. For the
milling method, both upward and downward milling processes were considered, as well
as the cutting direction from SAE 316L to Inconel 718, and vice versa, for the milling path.

To ensure the reliability of the experiments, 60 passes were conducted twice under
identical conditions for each test case. Two FGM specimens were prepared using wire
EDM to smooth the surface and remove the oxide layers. A 2-flute end mill with a 6 mm
diameter (2HCEG060150S06, Jjtools, Seoul, Korea) was used for the milling processes. Each
specimen underwent 15 passes along a 30 mm milling path, featuring an axial depth of cut
at 0.3 mm and a radial depth of cut at 0.6 mm, making for a total cut length of 450 mm.

The experimental conditions are summarized in Table 3, and four experimental cases
were sorted out, as can be seen in Table 4. In addition, the schematic diagram illustrating
the milling methods and paths is given in Figure 9a, and the photos of the milled surfaces
of four experimental cases are shown in Figure 9b.
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Table 3. Experimental conditions for the milling processes.

Spindle Speed 1 (RPM) Feed Rate 2 (mm/min) Feed per Tooth 3 (mm/Tooth)

5305 955 0.09
1 Measured machine tool’s spindle rotational speed, 2 Speed at which a tool progresses during machining,
3 Distance a tool advances for each rotation of a cutting tooth during machining.

Table 4. Experimental cases for the milling processes.

Case Milling Method Milling Path

Case 1 Downward milling SAE 316L→ Inconel 718
Case 2 Downward milling Inconel 718→ SAE 316L
Case 3 Upward milling SAE 316L→ Inconel 718
Case 4 Upward milling Inconel 718→ SAE 316L
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Moreover, a signal acquisition system was configured to collect cutting force during
the FGM milling process. A tool dynamometer (9257B, Kistler, Winterthur, Switzerland)
and a signal amplifier (5167A81DK, Kistler, Winterthur, Switzerland) were used for milling
force measurement, with calibration conducted using weights before data acquisition. The
data were collected at a sampling rate of 2500 Hz during the first 15 passes of 60 passes,
and approximately 4700 sampled values were collected for each milling pass. To ana-
lyze the variations in the milling force according to the changes in the material’s char-
acteristics and properties, the entire milling force signal of each pass in x-direction and
y-direction, as depicted in Figure 9, was divided into 335 regions based on 14 signals col-
lected per tool rotation for downsampling. The overall milling force signal was calculated by
Equation (3) of 14 values, and the milling force signals are depicted in Figure 10. By using
the overall milling force signals, both the average milling force for the entire process and
the average milling force for each pass were calculated to provide insights into the FGM
machining process.

F =
√

F2
x + F2

y (3)
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4.2. Cutting Force

The analysis of the measured milling force revealed a trend that aligns with changes
in material properties during the milling process, as illustrated in Figure 10. Specifically, in
cases 2 and 4—where the milling direction was from the relatively high-hardness Inconel
718 towards SAE 316L—the milling force decreased as the process advanced. Conversely,
in cases 1 and 3, a gradual increase in milling force was observed. Additionally, the milling
force signals obtained through upward milling displayed a pronounced peak in the entry
region, as can be seen in Figure 10c,d. This phenomenon was attributed to the coinciding
directions of tool feed and milling rotation, which resulted in a significant impact force
during the initial phase.

In addition, the average milling force was calculated over a total of 15 repeated milling
passes for each case twice, as depicted in Figure 11. This revealed significant differences
in both milling methods and milling paths, and it was observed that upward milling
generated greater force than downward milling. The consistency between two repeated
trials in each experimental case validates the reproducibility of the results.

To delve deeper into the variations in the milling force, data were collected for each of
the 15 milling passes, as displayed in Figure 12. In the case of upward milling from SAE
316L to Inconel 718, as the number of milling cycles increased, so did the milling force.
However, when milling from Inconel 718 to SAE 316L, relatively constant milling forces
were observed. In the case of downward milling, neither the milling path nor the number
of milling paths had a significant effect, indicating a stable milling process by maintaining
a relatively constant milling force throughout the process.
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4.3. Tool Wear

During the FGM milling process, the tool wear pattern that occurs as the milling
process progresses can be observed in Figure 13a, and the quantified results of tool wear
can also be found in Figure 13b. Tool wear is generally more severe in upward milling
than in downward milling, and these results are consistent with the milling force measure-
ment results in Figure 11, showing a significant difference between upward milling and
downward milling methods.

As shown in Figure 13a, the most severe tool wear was observed in case 3 when the
upward milling process progressed from SAE 316L to Inconel 718. In this case, as shown in
Figure 12, the milling force increased considerably as the number of passes increased, and
tool fracture occurred after 60 milling passes, as shown in Figure 13b.

A comparative analysis of the FGM milling experiment results indicates significant
variances in machinability depending on the milling path during the upward FGM milling
process. The difference in milling mechanism arises from the variations in material strength,
which manifest during upward milling of the FGM. Specifically, the impact force is applied
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differently to SAE 316L 100 wt.% and Inconel 718 100 wt.% areas, depending on the
milling path chosen. Starting the milling process in the SAE 316L area can result in tool
damage due to strong impact forces, leading to a considerable increase in milling force as
a consequence of tool wear, as depicted in Figure 13a case 3. On the other hand, starting
in the Inconel 718 area, which has gummy behavior and leads to adhesive wear, presents
a different challenge: irregular Laves phases, as depicted in Figure 5f, can precipitate
within the material, resulting in cracks and reduced impact strength, thereby leading to
material fragmentation. As a consequence, despite the higher microhardness of Inconel
718 compared to SAE 316L, tool damage occurs less frequently when milling starts in the
Inconel 718 area. This reduced tool damage, as can be observed in Figure 12, ensures that
even with repeated milling processes, a consistent cutting force is maintained when starting
from the Inconel 718 area compared to when starting from the SAE 316L area.
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5. Conclusions

In this study, an FGM composed of SAE 316L and Inconel 718 was fabricated using the
DED process. This process, which employs a high-energy heat source and metal melting,
fabricates parts with high density and strength. After fabrication, the FGM specimens were
subjected to microstructural and mechanical property analyses. Subsequently, machining
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characteristics, such as tool wear and milling force, were examined during the milling
process of the FGM.

The microstructure and mechanical properties of the FGM consisting of SAE 316L and
Inconel 718 were studied using metallographic microscopy, SEM/EDS and XRD analyses,
complemented by microhardness measurements. The SEM/EDS analysis, conducted from
the SAE 316L deposited region to the Inconel 718 region, showed a gradual increase in
the Ni component from an initial 11.0 wt.% to 49.8 wt.%. Additionally, Nb, a significant
influence component of secondary phase formation in the Inconel 718 alloy, also exhibited
an increase of about 4 times in the 100 wt.% Inconel 718 region compared to its initial
content. These observations confirm that the FGM was successfully deposited using the two
materials. Furthermore, the microstructure and XRD results indicated a phase transition in
the microstructure with changing material composition. Specifically, the δ-ferrite dendritic
structure seen in pure SAE 316L disappeared, being replaced by a complete austenite phase
as Inconel 718 was added. With increasing Inconel content, the austenite grains started
disintegrating due to the secondary phase growth, revealing a microstructure dominated by
Laves and γ′′ phases. These observations were consistent with the microhardness values,
which transitioned from an initial 250 Hv to 290 Hv, a 16% increase in hardness.

The optimal milling strategy for the FGM of SAE 316L and Inconel 718 was determined
to be downward milling from SAE 316L towards Inconel 718. This decision was based on a
minimum average cutting force of 72.335 N (48.8% of the maximum cutting force value)
and an average wear distance of 42.320 µm during 60 milling passes. This post-processing
strategy ensures the deposited FGM’s suitability for high-temperature environments, such
as turbine blades and combustion chambers in the aerospace industry, and for pipelines in
the chemical and petroleum refining industries that operate under high temperatures and
corrosive conditions.
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