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Abstract: The preparation of YBCO superconducting films by using metal organic chemical deposition
(MOD) involves low-temperature pyrolysis and high-temperature treatment. The former process
generally requires the introduction of water vapor and other gases. The study on pyrolysis in a low
vacuum environment and non-carrier gas atmosphere has never been reported. In this work, we
explored a low vacuum pyrolysis scheme with simple Argon gas decompression and a carrier-free
atmosphere. The effects of heating rate on the microstructure of pyrolysis films were investigated, and
the high-temperature treatment temperature (Th) was also optimized. Compared with conventional
pyrolysis, the present low-vacuum pyrolysis does not employ the flowing dry or wet gases, facilitating
the internal gas release during film decomposition. More importantly, the efficiency was greatly
improved with reduced pyrolysis time. The obtained film surface is free of CuO particle, which
leads to a lower roughness. We also investigated the effect of Th on the final YBCO film texture
and superconductivity. As Th increased from 810 ◦C to 815 ◦C, the BaCuO2 phase decreased with
enhanced c-axis orientation being evident by XRD and Raman spectra. As a result, the critical current
density (Jc) increased from 0.38 MA/cm2 to 1.2 MA/cm2 (77 K, self-field).

Keywords: FF-MOD; low vacuum; YBCO film; epitaxial growth; critical current density

1. Introduction

High-temperature superconducting REBa2Cu3Oy (REBCO, RE = Y, Gd, etc.) coated
conductors play a crucial role in power transmission and nuclear fusion reactors due to their
high operating temperature and current-carrying capacity in the field [1,2]. The existing
preparation methods mainly include pulsed laser deposition (PLD) [3], chemical vapor
deposition (CVD) [4], reactive co-evaporation deposition (RCE) [5], and metal organic
chemical deposition (MOD) [6–8]. Fluorine-free metal organic chemical deposition (FF-
MOD) became the current trend owing to its environmental friendliness, low overall cost,
and high growth rate [9]. The preparation process consists of low-temperature pyrolysis
and high-temperature treatment [8]. The reported pyrolysis processes were carried out at
normal pressure with a continuous flow of dry or wet gases, such as Ar, O2, the mixture
of N2 and O2 [2]. This process is related to the pyrolysis reaction between acetate and
organic thickeners. The University of Tokyo reported the pyrolysis of precursor films at
atmospheric pressure (500 ◦C, 120 min). Later, Southwest Jiao tong University reported the
conventional pyrolysis at a lower ramp rate of 0.5 ◦C/min at atmospheric pressure [10].
Recently, the Barcelona team proposed liquid-assisted ultrafast growth of superconducting
films derived from chemical solutions (TLAG), which significantly improved the growth
rate of superconducting layers through fast liquid-phase assisted growth [9]. Unfortunately,
vacuum fast is only present in high-temperature growth, while the preparation stays
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complicated with excessive time. Table 1 summarizes the characteristics of different research
institutions in the low-temperature pyrolysis stage [9–17].

Table 1. Technical characteristics of different research institutions in low-temperature pyrolysis using
by FF-MOD.

Institution.
/Year Substrate Flowing

Gas

Pressure
in Tube
Furnace

Heating
Rate

(◦C/min)

Temperature
Range
(◦C)

Total Pyrolysis
Time
(min)

Southwest Jiaotong
University

/2015
LaAlO3

Humid O2 + Ar
mixture

Atmospheric
pressure 0.5 110–500 >720

(con)

University of Tokyo
/2014 SiTro3 Humid O2

Atmospheric
pressure —— 500–500 120

Tokyo Metropolitan
University

/2020
LaAlO3 Air Atmospheric

pressure —— 600–600 30

Technical University of
Denmark

/2015
LaAlO3 Humid O2

Atmospheric
pressure 10 20–450 43

Shanghai Jiao Tong
University

/2021
CeO2 Humid O2

Atmospheric
pressure 10 100–500 40

University of Barcelona
/2020 LaAlO3 Humid O2

Atmospheric
pressure 3 240–500 >120

This paper first applied low-vacuum technology in the stage of low-temperature
pyrolysis. By simply depressurizing the air to 5 Pa, low vacuum pyrolysis films different
from the normal pressure pyrolysis films were obtained, avoiding the use of pyrolysis
gases and greatly reducing the time. On this basis, the high-temperature treatment (Th)
was optimized to achieve good epitaxial growth of YBCO superconducting layers.

2. Materials and Methods

The precursor solution was prepared by dissolving Y(CH3COO)3·4H2O (99.9%),
Cu(CH3COO)2·H2O (99.9%) and Ba(CH3COO)2 (99.8%) in propionic acid (CH3CH2COOH,
99.9%) according to the stoichiometric ratio n(Y):n(Ba):n(Cu) = 1.3:2:3.6. After magnetic
stirring at 60 ◦C for 5 h, organic thickener PVB (polyvinylpyrrolidone, 99.7%) was added to
the solution. Then, continuously magnetically stirred at 40 ◦C for 24 h to obtain the final
YBCO precursor solution (1.5 mol/L), which was used to prepare superconducting films
(100–150 nm thick).

The decomposition process of the metal-organic precursors was determined by dif-
ferential thermal/thermogravimetric analysis (DTA/TGA) of the dried powders. X-ray
diffraction (XRD, Bruker-D2) was applied to characterize the phase composition. The sur-
face microstructure and phase purity of the films were characterized by scanning electron
microscopy (SEM, HITACHI-SU5000) equipped with energy dispersive spectroscopy (EDS,
HITACHI-SU5000), atomic force microscopy (AFM, Bruker Dimension Edge), and Raman
spectroscopy (Raman, RENISHAW-INVIA). The four-point probe method was used in the
superconducting transition characteristics (Tc, Temperature range: 273 K–4 K). The Jc were
determined with the Jc -Scan method (Jc -Scan, THEVA, 77 K, self-field).

3. Results
3.1. DTA/TGA Analysis of the Precursor Materials

The DTA/TGA of three acetates and PVB is shown in Figure 1. The atmosphere and
protective gas of TGA/DTA analysis are argon gas, with flow rates of 10 mL/min and
20 mL/min, respectively. The chemical Equations (1) and (2) represent the loss of crystal
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water that occurred in Y(CH3COO)3·4H2O (135 ◦C) and Cu(CH3COO)2·H2O (170 ◦C)
before 200 ◦C.

Y(CH3COO)3·4H2O→ Y(CH3COO)3 + H2O ↑ (1)

Cu(CH3COO)2·H2O→ Cu(CH3COO)2 + H2O ↑ (2)
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Figure 1. DTA/TGA of three acetates and PVB in argon gas at the heating rate of 20 ◦C/min.
(A) Mixture of Ba(CH3COO)2 and Cu(CH3COO)2·H2O; (B) Y(CH3COO)3·4H2O and PVB. The solid
line is DSC, the dotted line is TG.

The decomposition reactions of Cu (CH3COO)2 (284 ◦C), Y(CH3COO)3 (398 ◦C),
Ba(CH3COO)2 (460 ◦C) and PVB (375 ◦C) are shown in Equations (3)–(6), respectively
(Figure 1A,B).

Cu(CH3COO)2 → CuO + CO2 ↑ + H2O ↑ (3)

Y(CH3COO)3 → Y2O3+ CO2 ↑ + H2O ↑ (4)

Ba(CH3COO)2 → BaCO3+ CO2 ↑ + H2O ↑ (5)
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PVB→ CO2↑ + H2O ↑ (6)

The final composition of the precursor film are CuO, Y2O3 and BaCO3 [18–20]. During
the high-temperature treatment, BaCuO is generated at 680 ◦C in a mixture of N2 and
O2 [13,21]. It was found that the mixture of Ba(CH3COO)2 and Cu(CH3COO)2 thermally
decomposed at 700 ◦C and were nonreactive in their products (Figure 1A). In this study,
the pyrolysis temperature was increased to 600 ◦C, leading to more complete pyrolysis.

Wet films were prepared on LAO single crystal substrates by spin coating (3500 r/min,
20 s). Then, they were placed in an infrared drying oven (110–135 ◦C, 20 min, 2% humidity)
to obtain propionic acid-free sol-gel films, which hindered the generation of cracks.

The low-vacuum pyrolysis was carried out in a tube furnace connected to a mechanical
vacuum pump. The pressure in the tube furnace stayed at 5 Pa after argon cleaning
(Supplementary Figure S1). No more gas was introduced until the end of the pyrolysis. As
illustrated in Figure 2A, pyrolysis was accomplished by heating to 600 ◦C at a constant
rate of 10–25 ◦C/min. In the stage of high-temperature treatment, a mixture of N2 and
O2 (200 ppm) was introduced at 400 mL/min to restore normal pressure. Meanwhile, the
temperature was increased to 810 ◦C or 815 ◦C at 20 ◦C/min. The process lasted for 30 min
before cooling down naturally. At 600 ◦C, O2 was introduced (400 mL/min) and kept at
450 ◦C for 60 min to compensate for the previous oxygen consumption. YBCO transformed
from tetragonal phase to orthogonal phase while having superconducting properties. A
conventional atmospheric pressure pyrolysis scheme requiring flowing Argon gas is shown
in Figure 2B. This paper proposed a low-vacuum pyrolysis scheme and investigated the
surface microstructure of the pyrolysis film. With the optimized heat treatment temperature,
YBCO superconducting films with good epitaxial growth were successfully prepared.

Crystals 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

Wet films were prepared on LAO single crystal substrates by spin coating (3500 
r/min, 20 s). Then, they were placed in an infrared drying oven (110–135 °C, 20 min, 2% 
humidity) to obtain propionic acid-free sol-gel films, which hindered the generation of 
cracks.  

The low-vacuum pyrolysis was carried out in a tube furnace connected to a mechan-
ical vacuum pump. The pressure in the tube furnace stayed at 5 Pa after argon cleaning 
(Supplementary Figure S1). No more gas was introduced until the end of the pyrolysis. 
As illustrated in Figure 2A, pyrolysis was accomplished by heating to 600 °C at a constant 
rate of 10–25 °C/min. In the stage of high-temperature treatment, a mixture of N2 and O2 
(200 ppm) was introduced at 400 mL/min to restore normal pressure. Meanwhile, the tem-
perature was increased to 810 °C or 815 °C at 20 °C/min. The process lasted for 30 min 
before cooling down naturally. At 600 °C, O2 was introduced (400 mL/min) and kept at 
450 °C for 60 min to compensate for the previous oxygen consumption. YBCO trans-
formed from tetragonal phase to orthogonal phase while having superconducting prop-
erties. A conventional atmospheric pressure pyrolysis scheme requiring flowing Argon 
gas is shown in Figure 2B. This paper proposed a low-vacuum pyrolysis scheme and in-
vestigated the surface microstructure of the pyrolysis film. With the optimized heat treat-
ment temperature, YBCO superconducting films with good epitaxial growth were suc-
cessfully prepared. 

 
Figure 2. (A) Heating profile of low-vacuum pyrolysis YBCO film, (B) conventional film by FF-
MOD. 

3.2. Characteristics of the Low-Vacuum Precursor Films 
The X-ray diffraction patterns of low-vacuum pyrolysis film shown in Figure 3 ex-

hibit similar weak peaks of BaCO3 regardless of the heating rate. In comparison, the con-
ventional film shows stronger peaks of BaCO3 and CuO, probably because the grain 
growth was promoted by a longer pyrolysis time [22]. In LAO substrate, the peaks of CuO 
and Y2O3 may be covered by the intense peaks of LAO substrate or BaCO3, CuO and Y2O3 
exist as smaller amorphous particles in a low vacuum environment. 

Figure 2. (A) Heating profile of low-vacuum pyrolysis YBCO film, (B) conventional film by FF-MOD.

3.2. Characteristics of the Low-Vacuum Precursor Films

The X-ray diffraction patterns of low-vacuum pyrolysis film shown in Figure 3 exhibit
similar weak peaks of BaCO3 regardless of the heating rate. In comparison, the conventional
film shows stronger peaks of BaCO3 and CuO, probably because the grain growth was
promoted by a longer pyrolysis time [22]. In LAO substrate, the peaks of CuO and Y2O3
may be covered by the intense peaks of LAO substrate or BaCO3, CuO and Y2O3 exist as
smaller amorphous particles in a low vacuum environment.
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Figure 3. The θ–2θ X-ray diffraction patterns of low-vacuum pyrolysis film, conventional film (Con)
and LaAlO3 substrate. The heating rates are indicated on the right side.

Figure 4 shows the representative secondary electron images of low-vacuum films
and conventional film. As the heating rate increases from 10 ◦C/min to 15 ◦C/min, the
vanished folds lead to a smoother surface (Figure 4A, Supplementary Figure S2). Besides,
large amount of particles with smaller sizes appear on the surface. Comparing the samples
at 15 ◦C/min and 20 ◦C/min, the two surfaces show similar morphology. We continued
to increase the heating rate to 25 ◦C/min, and an extremely rough surface was obtained
(Figure 4B). In contrast, the surface of the conventional film shows a morphology without
cracks and cavities but with large particles (Figure 4C). In the low-vacuum pyrolysis
process, the decomposition of organic matter inside the film generates a large amount of
H2O and CO2, which are likely to diffuse by pressure difference and temperature rise.
Pyrolysis is promoted due to the quickly released stress inside the film [17,18]. The heating
rates of 15 ◦C/min and 20 ◦C/min may be more favorable for the diffusion of gases,
therefore obtaining better surface morphology. Samples for subsequent tests were prepared
at 15 ◦C/min.
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Secondary electron images of conventional pyrolysis films: (C) 0.5 ◦C/min. The elemental proportions
of red circle and red box in Figure (5B,5D).

To investigate the surface morphology of low-vacuum film (15 ◦C/min) and con-
ventional film, elemental distribution analysis and surface particle size distribution were
performed. As illustrated in Figure 5A, about 76.5% of the particles in the low-vacuum
film were less than 50 nm, and 10.9% of the particles were 50-100 nm. The EDS analysis
suggests similar ratios of elements in granular and non-granular regions (Figure 5B). Com-
pared with low-vacuum film, about 22.9% of the particles in the conventional film were
300–500 nm, and 3.1% of the particles reached 500–600 nm (Figure 5C). The EDS analysis
shows obvious difference in elemental proportions between granular and non-granular
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regions in conventional film (Figure 5D). According to the studies, the particles in the
granular region with 19.3% of Cu and very little Ba, Y should be CuO [13,22]. Notably,
the smaller particles on the surface of the low-vacuum film are not CuO. The elemental
distribution is more consistent throughout the pyrolysis film, which may facilitate the
formation of YBCO superconducting film.
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and non-granular regions. (C) Statistical histograms of surface particle size for conventional pyrolysis
film (0.5 ◦C/min), (D) elemental proportions of surface granular and non-granular regions.

During the pyrolysis process, the simultaneous presence of large mass loss and mul-
tiple decomposition reactions lead to more than 50% volume shrinkage and release of
inhomogeneous strain, thus affecting the film roughness. We compared the AFM images
of low-vacuum film and conventional film to investigate the possible reasons for the dif-
ference in roughness (Figure 6A,C). The surface roughness Rq of the low-vacuum film is
14.8 nm, much smaller than the 29.3 nm of conventional film. The corresponding height
profiles along the diagonal are shown (Figure 6B,D). It was found that the presence of a few
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particles increased the roughness of the low-vacuum film. One of the possible explanations
for the difference in roughness is that the short pyrolysis time of low-vacuum film limits
the growth of film particles. Besides, gases generated by the internal decomposition of the
film and inhomogeneous strain are easily released under a low vacuum.
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3.3. Optimization of High-Temperature Heat Treatment

The secondary electron images of YBCO films obtained by high-temperature treatment
of low-vacuum films and conventional film are shown in Figure 7. The high-temperature
treatment temperature Th of 810 ◦C leads to a relatively rough film surface, having pores and
dendritic grains with apparent boundaries (Figure 7A). The composition of the dendrites
was analyzed by EDS spectrum (Supplementary Figure S3A). It shows a relatively high and
close proportion of Ba and Cu elements, indicating grains are probably BaCuO2 [9]. These
grains are mostly generated in the early stage of YBCO epitaxial growth and incomplete
reaction [14]. When Th was 815 ◦C, a smoother film with a few cavities and particles
on the surface was obtained (Figure 7B). A certain amount of C element appears in the
EDS spectrum of the particles but is unseen in the other two samples, which suggests the
particles as an impurity phase (Supplementary Figure S3B). In contrast, there are more
particles on the surface of conventional YBCO film (Figure 7C). After analyzing the ratio of
elements, we considered the particles are BaCuO2 (Supplementary Figure S3C).
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The θ-2θ X-ray diffraction patterns of YBCO films show (00l) characteristic peaks
besides LaAlO3 single crystal substrate peaks, which indicates that the films are c-axis
woven YBCO superconducting films in Figure 8. As Th increased from 810 ◦C to 815 ◦C, the
impurity BaCuO2 phase was eliminated while (00l) peaks were enhanced, showing similar
peak shapes to conventional films (Figure 8A). Then, we compared the peak intensity
of (005) (Figure 8B). The film heat-treated at 815 ◦C has a higher diffraction intensity
compared to 810 ◦C (similar thickness), suggesting a stronger c-axis grain arrangement
orientation. The temperature increase may convert the randomly oriented YBCO grains to
c-axis orientation, and the remaining Ba-Cu-O liquid phase was involved in the generation
of YBCO phase [14,21].
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Raman spectra were conducted to investigate the growth orientation of YBCO films
(Figure 9). The O(2,3) anisotropic vibration-related peak in the Cu-O plane of the film is
at 340 cm−1, which represents the c-axis out-of-plane growth of the film [23]. The peak
associated with the top oxygen atom O(4) vibration is at 500 m−1, standing for the growth
in the a-axis [24]. As the temperature increased to 815 ◦C, the peak of BaCuO2 weakened
significantly, and O(2,3) peak was much stronger than O(4). We concluded that 815 ◦C was
more favorable for an a-c biaxial weave with c-axis dominant growth. Also, the increase in
temperature improved the homogeneity of the YBCO phase.
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Figure 9. Raman spectra of low-vacuum pyrolysis films after high-temperature treatment.

The superconducting transition characteristics curves of the samples at 815 ◦C are
shown in Figure 10. At 815 ◦C, Tc and the transition width of YBCO superconducting film
are 89.2 K and 1.4 K, respectively. The above results demonstrate a purer superconducting
phase has been achieved at 815 ◦C (Supplementary Figure S3) [21].
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Figure 10. Superconducting transition characteristics (T-R curve) of low-vacuum pyrolysis film after
815 ◦C treatment. The inset is a partial enlargement of the T-R curve.

Finally, the Jc-Scan was used in the transport measurement in 77 K, self-field (Figure 11).
When Th was raised from 810 ◦C to 815 ◦C, Jc increased from 0.38 MA/cm2 to 1.21 MA/cm2,
and the inset shows close Jc in most areas. The above results are probably due to the
significantly enhanced epitaxial growth and phase homogeneity of YBCO film.
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4. Conclusions

This work explored a method for low-vacuum pyrolysis of YBCO superconducting
film with high Jc. DTA/TGA analysis demonstrated that complete pyrolysis could be
achieved by modulating the Y, Ba, and Cu acetate sol with a thickening agent and heating
up to 600 ◦C. Low-vacuum pyrolysis of the wet film was accomplished by simple Ar gas
depressurization, heating to 600 ◦C at the rates of 10–25 ◦C/min without introducing any
carrier gas. Compared with 25 ◦C/min, the analysis of secondary electron images and
EDS spectra demonstrate that the films were better pyrolyzed at 15 ◦C/min or 20 ◦C/min.
The conventional film surface are mainly CuO particles between 150 nm and 350 nm. In
contrast, the low-vacuum pyrolysis film suppresses the particle size of generally less than
50 nm, thanks to the greatly reduced pyrolysis time reduced greatly. The polycrystalline
particles show close elemental ratios to the amorphous regions, which may facilitate the
homogenization of the film and the generation of the YBCO phase. By increasing Th
from 810 ◦C to 815 ◦C, epitaxial growth and phase homogeneity of the YBCO film were
improved. As a result, Jc increased to 1.21 MA/cm2. The above results indicate that
simple Ar gas decompression has successfully achieved efficient pyrolysis in a low vacuum
environment. Low-vacuum pyrolysis film exhibits good epitaxial growth of YBCO with
high critical current density. It is obvious to improve the manufacturing efficiency of YBCO
coated conductors due to the simplified pyrolysis without any carrier gas applied, as well
as the reduced time cost. Note that the stoichiometric ratio for the studied samples is
n(Y):n(Ba):n(Cu) = 1.3:2:3.6. It is believed that the microstructure and the superconducting
performance may be improved after optimizing the stoichiometric ratio.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12060812/s1, Figure S1: The preparation process of YBCO
film. Figure S2: SEM images of low vacuum pyrolysis films: (A) 10 ◦C/min; (B) 20 ◦C/min. Figure S3:
EDS analysis of surface particles obtained from low vacuum pyrolysis films treated at (A) 810 ◦C and
(B) 815 ◦C for 30 min, respectively. (C) EDS analysis of surface particles obtained from conventional
film treated at 810 ◦C for 1 h. Figure S4: The photo of the four-point probe method.
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