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Abstract: Preparation and properties of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics are
investigated. La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics are prepared by a traditional
two-step solid-state reaction method in air. La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 single-phase powders are
synthesized by calcining the mixed oxides at 1000 ◦C for 20 h. The high-entropy ceramics are sintered
at 1350–1650 ◦C in a muffle furnace for 4 h by using the above powders. The phase compositions of
the high-entropy ceramics at different temperatures are characterized by X-ray diffraction (XRD) with
Cu Kα radiation. A field-emission scanning electron microscope with energy-dispersive spectroscopy
(EDS) is used to observe the microstructures and analyze the elemental distributions. The hardness
and dielectric properties are measured and discussed.

Keywords: La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 ; perovskite; high-entropy ceramics; hardness;
dielectric properties

1. Introduction

High-entropy materials, one of the most influential concepts in material science in
the past ten years, refer to multicomponent solid solutions formed by five or more com-
ponents [1]. The first high-entropy ceramic, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with regular
Fm-3m rock-salt structure, was reported by Rost et al. in 2015 [2]. Since then, a series
of high-entropy ceramics, including high-entropy oxide ceramics with fluorite [3–6],
perovskite [7–9], spinel structures [10,11] and so on, as well as nonoxide high-entropy ce-
ramics, such as borides [12–14], carbides [15–18], nitrides [19], and silicides [20,21], have
been synthesized. Among them, perovskite-structure high-entropy oxides have excellent
physical properties for applications in many different fields [7–9]. For example, they can
be used as cathode materials for solid-oxide fuel cells (SOFCs) [22,23], dielectrics [24,25],
and ferroelectric and multiferroic materials [26–28].

Lanthanum chromate (LaCrO3) has a typical perovskite crystal structure, good chem-
ical resistance, and chemical and physical stability at high temperature, but its sintering
properties are poor [29,30]. In the current research reports, most of them improve the
sintering and high-temperature properties of LaCrO3 ceramics by doping the A and B
sites and adding sintering aids [31–34]. For example, Ga et al. and Luo et al. [35,36]
prepared highly stable composite negative-temperature coefficient (NTC) ceramics by in-
troducing perovskite (LaCrO3) into certain spinel oxides. Therefore, in this study when
designing perovskite-type high-entropy oxides, the active transition metal elements Cr,
Mn, Fe, Co, and Ni with close ionic radii were selected for the B site. Theoretically, the
highest configurational entropy is obtained for some materials when all the elements
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in a sublattice have the same atomic fraction [21,37]. In 2021, Guo et al. [38] reported
that La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskite high-entropy powders prepared by the
coprecipitation and combined with calcination method presented good rate properties for
the application in supercapacitors. Vladimir et al. [39] reported that La(Cr0.2Mn0.2Fe0.2
Co0.2Ni0.2)O3 perovskite high-entropy ceramics sintered at 1300 ◦C for 10 h in air showed a
single phase with a perovskite-like structure. It also exhibited good DC conductivities at
room temperature for the application in SOFC. At high temperatures, the transition metal
ions exhibit a variety of oxidation states, accompanied by a variety of charge dispropor-
tionation, such as Mn4+ + Ni2+ → Mn3+ + Ni3+ [40]. However, there are few reports on
the microstructure and dielectric properties of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskite
high-entropy ceramics prepared at higher temperatures (>1300 ◦C).

In this study, La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskite high-entropy ceramics were
prepared at high temperatures of 1350–1650 ◦C. Next, phase composition and the mi-
crostructure of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskite high-entropy ceramics sintered
at different temperatures were investigated. Finally, the density, hardness, and dielectric
properties of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics were analyzed.

2. Materials and Methods

In this work, La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics were prepared
by a typical two-step solid-state method using the analytical-grade metal oxides La2O3
(AR, ≥99.0%), Cr2O3 (AR, ≥99.0%), Co2O3 (AR, ≥99.0%), Fe2O3 (AR, ≥99.0%), MnO2
(AR, ≥99.0%), and Ni2O3 (AR, ≥99.0%) as raw materials. Firstly, oxide powders were
weighed according to the stoichiometric ratio of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 and then
ball-milled with alcohol and agate balls in a planetary mill for 12 h. Then, the slurry was
dried and passed through a 150 µm sieve. The above powder mixture was pressed into a
disc and then calcined at 900–1200 ◦C in a muffle furnace (KSL-1700X, Kejing Company,
Hefei, China) for 20 h in air. The synthesized disc was then crushed, pulverized, ball-milled,
and passed through a 150 µm sieve again to obtain homogeneous powders. The ceramic
discs of 10 mm in diameter and 2 mm in thickness were pressed at 25 MPa with 3 wt%
polyvinyl acetate (PVA) as binder. The green bodies were sintered at 1350–1650 ◦C for 4 h
with a heating rate of 5 ◦C·min−1 and cooled naturally.

The phase compositions of the synthesized powders and sintered high-entropy ce-
ramics were analyzed by a high-solution X-ray diffraction (XRD) (Bruker D8 Advance,
CuKα target with λ = 0.15418 nm, (Bruker, Karlsruhe, Germany). The morphology and
element distribution of the powders and morphology of the high-entropy ceramics were
characterized by SEM and EDS (FEI Quanta 250 FEG microscope and EDS detector). The
particle size and the distribution of the powders were calculated using Image-Pro software.
The apparent porosity and bulk density of high-entropy ceramics were obtained according
to the Archimedes method. The theoretical density of high-entropy ceramics was calculated
based on the lattice parameters obtained from XRD patterns and the molecular weight of the
stoichiometric ratio of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3. The relative density was calculated
by dividing the measured sample bulk density by the theoretical density. The HV-2000
A micro-Vickers hardness tester (Shanghai Qinming, Shanghai, China) was employed to
characterize the hardness of the high-entropy ceramics. The peak load was 19.61 N, and
the pressure was maintained for 10 s. Temperature-dependent dielectric properties, at a
frequency of 10 kHz of high-entropy ceramics with silver-pasted electrodes, were measured
with an Agilent 4980A LCR meter when the samples were heated from 20 ◦C to 150 ◦C at a
rate of 2 ◦C·min−1.

3. Results
3.1. Phase Composition and Microstructural Analysis

Figure 1 shows XRD patterns of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy powders
calcined at different temperatures. It can be seen that the prepared high-entropy powders
are consistent with the orthorhombic perovskite structure with the space group Pnma (62),
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and no additional peaks are observed in any of the prepared samples. The diffraction peaks
match well with JCPDS # 89–0478 of pure LaCrO3 at room temperature [41]. It shows that
the solid-state reaction at 1000 ◦C for 20 h provides sufficient time for atomic diffusion, thus
forming a highly symmetrical perovskite phase-disordered solid solution [42]. According
to the relationship between Gibbs free energy (∆Gmix) and temperature, ∆Gmix decreases
with increasing temperature, which stabilizes the high-entropy system. Therefore, 1000 ◦C is
determined as an appropriate temperature for calcining powders in the first step. Additionally,
the high sintering activity of the powders obtained at 1000 ◦C facilitates the formation of
dense bulk ceramics at a higher sintering temperature.
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For perovskite oxides, Goldschmidt [43] proposed in 1926 that the “tolerance factor”
can be used to predict the single phase of perovskite, which can be calculated using
Equation (1):

t =
RA + RO√
2(RB + RO)

(1)

where RA and RB are the ionic radii of the cation at A site and B site, respectively, and RO is
the radius of the oxygen ion. In the case of multiple cations at a specific site, an average
of the ionic radii is considered [7]. In an ideal case, t ≈ 1 is perhaps a necessary but not
sufficient condition for the formation of a cubic structure; when t > 1.0, a tetragonal or
hexagonal structure may be formed [44]; and when t < 1.0, an orthorhombic or rhombohe-
dral structure may be formed, especially for systems with smaller A-site cations or bigger
B-site cations [45]. The oxidation state, coordination number (CN), and corresponding
cation radius (rc) [45] of each element of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy
ceramic are shown in Table 1. It can be seen from Table 1 that t ≈ 0.966, and a single-phase
perovskite high-entropy ceramic material can be formed. This is consistent with the conclu-
sion reported by Jiang et al. [7], that stable, single-phase perovskite high-entropy ceramics
are formed when t ≈ 1. The slightly smaller t value may be due to lattice distortion caused
by the combination of various elements in the high-entropy material.
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Table 1. Oxidation state, coordination number (CN), and corresponding cationic radius (rc) (data
from Shannon).

Element Oxidation CN rc (Å)

La +3 XII 1.36
Cr +3 VI 0.615
Co +3 VI 0.545
Fe +3 VI 0.55
Mn +4 VI 0.53
Ni +3 VI 0.56
O −2 VI 1.40

Figure 2 shows SEM images of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 powders calcined
at different temperatures. It can be seen that the grain size increases obviously with the
increase in calcination temperature. The powders calcined at 900 ◦C have poor dispersibility
and form small grain agglomerates due to the small grain size. The grain size of the powders
calcined at 1000 ◦C increases slightly, and there is no obvious agglomeration. Compared
with Figure 2a, the grain-size distribution is relatively more uniform, and the grain size is in
the range of 200–400 nm. When calcination temperature increases to 1100 ◦C and 1200 ◦C,
the grain size of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 powders increases obviously, showing a
large agglomeration state. In addition, a wider particle-size distribution can be found.
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distribution of the powders calcined at different temperatures).

The XRD results of the crystal structure of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-
entropy ceramics are shown in Figure 3. It can be seen that the diffraction peaks of
La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics sintered at 1350 ◦C and 1400 ◦C
correspond well to the standard card of LaCrO3 (JCPDS # 89-0478). When sintering tem-
peratures increase to 1450 ◦C and 1500 ◦C, a small amount of the second-phase LaMnO3
appears. When the sintering temperature is 1550 ◦C, in addition to the presence of the
second-phase LaMnO3, the chromium-containing oxides start to volatilize and the peaks
contain some mixed peaks of chromium oxide and cobalt oxides, such as CrO2 and Co3O4.
When the sintering temperature further increases to 1600 ◦C, the LaMnO3 peak disappears
and new peaks of CrO3 appear. When the sintering temperature reaches 1650 ◦C, the
diffraction peaks match well with the standard card, while the peaks shift to the right
slightly. This may be due to the formation of the transient liquid phase by doping Co at a
high temperature (1650 ◦C), which promotes sintering [46].
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temperatures.

Figure 4 shows SEM images of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics
sintered at different temperatures. The results show that a relatively dense microstruc-
ture is obtained with a grain size of about 1.6 µm when La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3
high-entropy ceramic is sintered at 1350 ◦C. To further verify the uniformity of element
distribution, La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics sintered at 1350 ◦C
are analyzed with EDS. As shown in Figure 5a, all six elements are uniformly distributed
without any element segregation or aggregation. The atomic ratios obtained by semiquanti-
tative elemental analysis, which are almost equal to the designed perovskite composition,
indicate that there is no obvious composition change during the sintering process. Based
on the analysis results, the atomic fractions of each element are shown in Figure 5b. It can
be seen from the inset that the ratio of atom and mass of the five elements is about 5%, and
the variation is ±0.5%. The atomic and mass fractions of the five elements are extremely
close, providing further evidence for the equiatomic composition of Cr3+, Mn4+, Fe3+, Co3+,
and Ni3+ at the B site (ABO3). When the sintering temperature is 1350 ◦C, it can be seen
that the grain size of the high-entropy ceramics is relatively small. When the sintering
temperature increases to 1400–1450 ◦C, some pores appear and the density decreases in the
microstructure of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics. The grain size
increases from 1.6 µm to about 2.6 µm. When the sintering temperatures are higher than
1500 ◦C (1500–1600 ◦C), the second phase (small white particles) first precipitates at the
grain boundary and then precipitates along the surface, which is consistent with the XRD
results. Moreover, there are no obvious pores observed in SEM images and the grain size
further increases from 8.6 µm to 17.4 µm. The grain size of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3
high-entropy ceramics grows significantly with a clear grain boundary and the grains are
closely adjacent to each other.
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When the sintering temperature reaches 1650 ◦C (Figure 6), pores and liquid phases
can be found in La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics through the local
magnification of the SEM images. When the temperature reaches 1650 ◦C, the volatilization
of Cr in the ceramic matrix leads to the formation of pores, and the doping of Co forms a
transient liquid phase to promote sintering [47].
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Figure 6. SEM images of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics sintered at 1650 ◦C.

3.2. Density, Apparent Porosity, and Hardness

Figure 7 shows the relative density, apparent porosity, and hardness of La(Cr0.2Mn0.2
Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics sintered at different temperatures. It can be seen
that when sintering temperature is 1350 ◦C, the relative density is 93.0%, apparent porosity
is 2.2%, and the hardness is 14.7 GPa. When the sintering temperature is 1400 ◦C, relative
density decreases to the minimum (88.4%), apparent porosity increases to the maximum
(5.6%), and the hardness is 14.4 GPa. When the sintering temperature increases to 1450 ◦C,
the hardness reaches the minimum of 13.2 GPa. When the sintering temperature increases
from 1450 ◦C to 1500 ◦C, the relative density increases from 88.7% to 96.8%, an increase
of 8.1%. When the sintering temperature is 1500–1600 ◦C, the relative densities of high-
entropy ceramics increase continuously. When the sintering temperature is 1600 ◦C, the
relative density reaches the maximum of 99.5% and the porosity reaches the minimum of
1.0%. When the sintering temperature continues to increase from 1600 ◦C to 1650 ◦C, the
relative density decreases to 92.1%. The change law of apparent porosity is just the opposite.
The hardness values first decrease and then increase. When the sintering temperature is
1650 ◦C, the hardness value reaches the maximum of 18.7 GPa.
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3.3. Dielectric Properties

The temperature dependence of dielectric constant and dielectric loss of La(Cr0.2Mn0.2
Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics sintered at different temperatures are shown in
Figure 8, respectively. It can be seen that La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ce-
ramics have a giant dielectric constant, which is significantly larger than that of pure LaCrO3
ceramics (the dielectric constant is about 1500 when the test temperature is 40 ◦C [40]). The
higher dielectric constant may be obtained by the lattice distortion, which is often caused by
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multielement doping [37,48]. In the low-frequency region, the dipole orientation polarization
is the main reason for the higher dielectric constant, while in the high-frequency region, the
dipole cannot be alternating with the electric field. With a further increase in frequency, the
dipole oscillation induces polarization to stop and the partial spin polarization induced by
the elemental solid solution produces the higher dielectric constant [49–51]. The dielectric
constant increases with the increase in the test temperature, which is consistent with the results
reported by Boudad et al. [52] and Coşkun et al. [53] on the dielectric properties of doped
LaCrO3. The increased dielectric constant should be attributed to strong effects of the hopping
of small polarons and carriers at the grain boundary, especially for the doping system [52,53].
The dielectric constant of the sample sintered at 1350 ◦C increases rapidly with the increase in
the test temperature. In addition, when the test temperature is 20–120 ◦C, the dielectric loss
increases continuously, and when the test temperature is higher than 120 ◦C, the dielectric loss
shows a decreasing trend. For the samples sintered at 1400–1550 ◦C, the dielectric constant
increases with the increase in sintering temperature, which is consistent with the increasing
trend of relative density in Figure 7. The dielectric loss shows a different increase trend with
the increase in test temperature. This is due to the presence of many point defects (such
as vacancies, substituted atoms, and interstitial atoms) in multielement, high-entropy solid
solutions that can act as polarization centers and as local stresses caused by lattice disorder
that can suppress dipole reorientation under alternating electric fields, thereby increasing the
dielectric loss in the material [54–57]. When the sintering temperature is further increased to
1600 ◦C, the dielectric constant of the samples is significantly lower than those of high-entropy
ceramics sintered at 1500 ◦C and 1550 ◦C at the same test temperature, which may be related
to the jumping of oxygen vacancies due to the volatilization of elements, such as Cr and Co in
the second phase of the sample. It affects the consistency of the ceramic matrix, which is also
one of the factors affecting the dielectric constant. This is consistent with the results of XRD
and SEM testing.
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4. Conclusions

The phase composition, microstructure, hardness, and dielectric properties of La(Cr0.2
Mn0.2Fe0.2Co0.2Ni0.2)O3 perovskite high-entropy ceramics prepared through a two-step
solid-state reaction technique were investigated. When the sintering temperatures were
1350 ◦C and 1400 ◦C, the phase of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramic
presented a pure, single-perovskite structure. The relative density reached 93.0% and
88.4%, and the hardness reached 14.7 GPa and 14.4 GPa, respectively. When the sintering
temperature increased to 1450–1600 ◦C, the pure perovskite structure became unstable
and the second-phase precipitates appeared in the XRD and SEM results. When the
sintering temperature increased to the range of 1450–1600 ◦C, the relative density and
hardness of the high-entropy ceramics increased with the increase in sintering temper-
ature. Furthermore, the dielectric constant increased with the increase in test tempera-
ture, showing excellent mechanical and dielectric properties. These results indicate that



Crystals 2022, 12, 1756 9 of 11

La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramic is a potential dielectric material that
can be utilized at high temperatures.
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