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Abstract: In this research, a vertical silicon nitride strip-loaded grating coupler on lithium niobate
thin film was proposed, designed, and simulated. In order to improve the coupling efficiency and
bandwidth, the parameters such as the SiO2 cladding layer thickness, grating period, duty cycle,
fiber position, and fiber angle were optimized and analyzed. The alignment tolerances of the grating
coupler parameters were also calculated. The maximum coupling efficiency and the −3 dB bandwidth
were optimized to 33.5% and 113 nm, respectively. In addition, the grating coupler exhibited a high
alignment tolerance.

Keywords: grating coupler; integrated optics; lithium niobate thin film; 3D-FDTD

1. Introduction

The emergence of lithium niobate on an insulator (LNOI) has greatly promoted the
development and progress of integrated optics devices [1,2]. The high refractive index con-
trast between LN and SiO2 in LNOI can shrink the photonic devices/circuits and enhance
the remarkable optical properties of LN [3–6]. Due to its extraordinary nonlinearity and
excellent electrooptical properties, LNOI can be used in a variety of expandable on-chip de-
vices to provide nonlinear wavelength conversion and high-speed optical modulation [7–9].
At present, it is very important to improve the coupling efficiency between an LNOI waveg-
uide and fiber. However, the mode mismatch between optical fiber mode and thin film
material makes direct alignment coupling inefficient. A grating coupler is an effective way
to solve the coupling problem between an LNOI waveguide and optical fiber [10–12]. A
grating coupler has many advantages, such as being able to be positioned anywhere on the
chip, a large alignment tolerance, and no requirement for end face polishing.

Silicon nitride (Si3N4) has a wide transparent spectrum and high compatibility with
the standard complementary metal oxide semiconductor technology [13,14]. It is diffi-
cult to etch directly on LN. However, this situation can be avoided by using Si3N4 strip
loading. Si3N4 strip-loaded LNOI can make use of the properties of Si3N4 and LN, lead-
ing to heterogeneous photonic devices. Various photonic devices have been reported in
Si3N4 strip-loaded LNOI, including a multiplexer [15], a micro-ring resonator [16], and an
electrooptic modulator [17]. A large bandwidth can be obtained by using Si3N4 grating
couplers, such as Si3N4-on-SOI grating couplers [18,19]. Modeling and simulation are
indispensable steps in preparing high-quality grating.

In this study, an Si3N4 strip-loaded grating coupler on LNOI was studied and simu-
lated based on the three-dimensional finite-difference time-domain method (3D-FDTD).
The important parameters affecting the coupling efficiency of the grating coupler, including
the grating period (Λ), duty cycle (DC = ω/Λ, where ω is the ridge width), the thickness
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of the SiO2 cladding layer (T), the fiber position x (distance between the grating edge and
the fiber core in the x-axis, Lx), the fiber position y (distance between the center line of
the grating and the fiber core in the y-axis, Ly), and the fiber angle (θ), were optimized,
which provided guidance for improving the coupling efficiency of the grating couplers.
The tolerance of the grating coupler was also carefully studied due to its great importance
for the practical implementation of such a device.

2. Device Design and Methods

The structure of the Si3N4 strip-loaded grating coupler on LNOI that was studied from
the top to bottom layers included a 0.3-µm-thick Si3N4 strip, a 0.5-µm-thick x-cut single-
crystal LN thin film, an amorphous SiO2 cladding layer, and an LN substrate. The cross-
sectional diagrams of the grating coupler are shown in Figure 1. The fiber fundamental
transverse electric mode (TE0) was used as the light source to simulate the coupling process
between the grating coupler and the optical fiber. Considering the single-mode operation,
the small mode effective area, the optical power in the LN thin film, and the bending loss,
the thickness of the Si3N4 strip-loaded grating coupler was selected as 0.3 µm [20], and
it was fully etched. The thickness of the LN film was set to 0.5 µm. The parameters Λ,
DC, T, Lx, Ly, and θ were varied to maximize the light coupling in the waveguide from the
single-mode fiber.
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Figure 1. (a) The structure diagram, and (b) schematic cross-section of an Si3N4 strip-loaded grating
coupler on LNOI.

The mechanism of the grating coupler is as follows: the light of a single-mode fiber was
coupled to the grating structure because of the diffraction effect of the grating coupler. When
the input field mode was matched to the waveguide mode, the light could be effectively
coupled from the single-mode fiber to the waveguide plane. The overlap integral between
the input field mode and the waveguide mode could be increased with the optimization of
the parameters of the grating coupler to reduce the mode mismatch between the waveguide
optical device and the single-mode fiber [21]. The coupling efficiency was defined as the
percentage of power converted from the source power to the waveguide plane.

After diffracting through the grating coupler, part of the beam from the fiber was
reflected back to the fiber, and part was scattered to the LN cladding. At the LN/SiO2
interface, part of the power was transmitted to the SiO2 cladding layer, and part of the
power was reflected upwards and transmitted to the grating through the LN cladding
layer again. The power was transmitted into the SiO2 cladding layer. At the SiO2/LN
interface, part of the power that was lost was transmitted into the LN substrate, and part
of the power was reflected and propagated upward through the SiO2 cladding to the LN
cladding layer. Based on the commercial software Lumerical FDTD Solutions (Version:
8. 9.1584, ANSYS Inc., South Pittsburg, PA, USA) [22], the 3D-FDTD method under the
condition of mess accuracy of 10 ppw (the number of mesh points per wavelength) was
used for simulation and optimization, and the perfectly matched layer (PML) boundary
conditions were used to absorb the light emitted from the simulation area. For the FDTD
solutions [23], based on the solution of the vector three-dimensional Maxwell equations, the



Crystals 2022, 12, 70 3 of 9

FDTD method was used to grid the space step-by-step in time based on the time-domain
signal to obtain the steady-state continuous wave, resulting in a wide band, and the unique
material model could accurately describe the dispersion characteristics of the material in
a wide band with embedded high speed. A high-performance computing engine could
be used to obtain wide band multiwavelength results in one calculation, simulate any
three-dimensional shape, and provide an accurate dispersion material model. For the
PML [22], due to the limitations of the computer memory capacity and the calculation
speed, the FDTD calculation could only be carried out in a limited area. In order to simulate
the propagation process of an ultrasonic wave in a larger area, it was necessary to set
the absorption boundary conditions at the boundary of the area to absorb the incident
waves and avoid reflecting waves as much as possible. The most common absorption
boundary condition was the PML absorption boundary, which could theoretically achieve
complete absorption.

3. Results and Discussion

According to the Bragg phase matching condition, the resonant excitation of the
coupled mode is carried out when Equation (1) is satisfied [24]:

k sin θ = β +
q × 2π

Λ
(1)

In the expression, k = 2π
λ is the wave number, q is the diffraction order (q = −1), θ

is the incident angle, β =
2πne f f

λ is the real part of the propagation constant, and ne f f is
the effective refractive index of the guided mode. The range of the grating period can be
estimated by using the above equation.

The grating coupler is sensitive to the effective refractive index, which has to fulfill
the inequality nSiO2 ≤ ne f f ≤ nLN , where nLN and nSiO2 are the refractive indices of SiO2
(1.444) and LN (2.138) [25], respectively. The fiber angle θ, selected as 8◦, can effectively
avoid the second-order reflection that greatly reduces the coupling efficiency of the vertical
grating coupler [26]. By substituting the inequality into Equation (1), the estimated range
of Λ for the optical fiber angle can be obtained as λ

2.138−sin θ ≤ Λ ≤ λ
1.989−sin θ . The range of

Λ is estimated to be 0.775 µm ≤ Λ ≤ 1.188 µm.
In order to improve the coupling efficiency, the parameters of the grating coupler are

analyzed and optimized. The thickness and the etching depth of the Si3N4 strip-loaded
grating coupler are set to 0.3 µm. Due to the polarization sensitivity of the grating coupler,
the fundamental TE mode is used in the simulation. The parameters of the TE polarized
grating coupler are simulated and optimized. The results are shown in Table 1. The
optimized coupling efficiency at a wavelength of 1.55 µm is 33.5%.

Table 1. The optimized parameters of the Si3N4 strip-loaded grating coupler at a wavelength
of 1.55 µm.

Λ (µm) DC T (µm) Lx (µm) Ly (µm) θ (◦)

1.166 0.54 2 4.8 1 8

The relationship between the coupling efficiency and the wavelength is shown in
Figure 2. The coupling efficiency is half of the peak value when the wavelengths of light
are 1.494 and 1.607 µm. The −3 dB bandwidth is 113 nm. The simulation results show that
the Si3N4 strip-loaded grating coupler on LNOI has a larger −3 dB bandwidth compared
with the silicon strip-loaded grating coupler on LNOI [27].
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In this simulation, the influence of each parameter on the performance of the grating
coupler is studied using the control variable method. During the simulation, except
for the modification of the studied parameter, the other parameters are fixed at their
optimized values.

The relationship between the coupling efficiency and the grating period is shown in
Figure 3a. When the grating period varies to 1.166 µm, the coupling efficiency reaches
its maximum value. The coupling efficiency remains above 30% when the grating period
deviates by 0.022 µm. The relationship between the coupling efficiency and the wavelength
at different periods is shown in Figure 3b. The coupling efficiency at a wavelength of
1.55 µm corresponds to the red circles in Figure 3a. The peak of the coupling efficiency is
red-shifted when the period increases, and it moves in the opposite direction when the
period decreases.
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The relationship between the coupling efficiency and the duty cycle is shown in
Figure 4a. The coupling efficiency reaches a peak when the duty cycle varies to 0.54.
When the duty cycle deviates by 0.08, it retains a coupling efficiency of more than 30% at
a wavelength of 1.55 µm. Figure 4b shows the variation of the coupling efficiency with
wavelengths for different duty cycles. The coupling efficiency at a wavelength of 1.55 µm
in Figure 4b corresponds to the red circles in Figure 4a. The peak of the coupling efficiency
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is red-shifted when the duty cycle increases, and it moves in the opposite direction when
the duty cycle decreases.
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The relationship between the coupling efficiency and the SiO2 cladding layer thickness
is shown in Figure 5. The curve of the coupling efficiency oscillates periodically between
the maximum and the minimum as the thickness of the SiO2 cladding layer increases.
The periodic variation of the coupling efficiency stems from the constructive or destruc-
tive interference between the upward reflected light from the LN/SiO2 interface and the
SiO2/LN interface.
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Figure 6a,b shows the coupling efficiencies as functions of Lx and Ly, respectively.
Since the grating coupler is symmetrical in the y-direction, only half of Ly is simulated. The
coupling efficiencies reach their peaks when Lx and Ly are set at 4.8 µm and 1 µm, respec-
tively. The coupling efficiency decreases faster when Lx decreases than when Lx increases.
The coupling efficiency decreases to 30% when Lx is 3 µm and 7.2 µm. When Ly is less
than 5 µm, the coupling efficiency is almost unchanged. However, the coupling efficiency
begins to decrease rapidly when Ly is 6 µm, while the coupling efficiency decreases sharply
to 29%.
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Figure 7a shows the relationship between the coupling efficiency and the fiber angle.
The coupling efficiency is very sensitive to the change of the fiber angle. The coupling
efficiency decreases very little when the fiber angle deviates by 1◦. However, the coupling
efficiency decreases rapidly when the fiber angle deviates by 2◦. The peak of the coupling
efficiency is red-shifted when the fiber angle decreases, and it moves in the opposite
direction when the fiber angle increases.
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Figure 8 shows the electric field distribution of the light wave. The in-coupled light
formed an angle (8◦) relative to the normal of the LN substrate. This angle allows the
grating coupler to achieve near-vertical coupling in the waveguide plane at wavelengths of
around 1.55 µm while avoiding second-order reflection. The light from the optical fiber is
mainly divided into three parts: some scatter upwards into the air due to reflection, some
are coupled into the waveguide, and others are lost in the substrate.

Table 2 lists a comparison of the different types of grating couplers previously reported
on and the coupler in this work. The chirped grating couplers and grating couplers using
the bottom or top reflectors have higher coupling efficiencies than uniform grating couplers.
In this work, the maximum coupling efficiency of the LNOI coupler using uniform Si3N4
strip loading is 33.5%, and the −3 dB bandwidth is 113 nm. It can be confirmed that
the grating coupler is a reliable method for solving the coupling between the chip and
the single-mode fiber, and a wide −3 dB bandwidth can be obtained by using Si3N4
strip loading.
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Table 2. A comparison of the reported grating couplers in this work.

Grating Coupler Type Features Coupling Efficiency (%) Bandwidth (nm) Ref

LN-on-SiO2 Chirped grating coupler 43.7 (TE)
(1550 nm) 48 (−3 dB) [10]

Si3N4-on-SOI Apodized grating coupler 79.4 (TE)
(1550 nm) 80 (−1 dB) [16]

Si-on-LNOI Polarization-independent 50.1 (TE)
(1550 nm) 86 (−3 dB) [17]

LN-on-SiO2 Chirped and apodized grating coupler 83.2 (TE)
(1536 nm) 82 (−3 dB) [28]

LN-on-SiO2 Integrated coupler and filter 14.5 (TE)
(1550 nm) 80 (−3 dB) [29]

Si-SiO2-LN Fully etched grating 53.7 (TE)
(1550 nm) 102 (−3 dB) [30]

LN-on-SiO2 Metal bottom reflector 45.7 (TE)
(1553.5 nm) 30 (−1 dB) [31]

Si-on-SiO2
Uniform grating with

upper reflector
89.4 (TE)

(~1550 nm) 96 (−3 dB) [32]

Si3N4-on-LNOI Strip-loaded uniform grating 33.5 (TE)
(1550 nm) 113 (−3 dB) This work

4. Conclusions

In this work, a 3D-FDTD simulation technique was used to systematically study the
performance of an Si3N4 strip-loaded grating coupler on LNOI. The light was coupled
vertically into the LNOI waveguide from a single-mode fiber. The parameters Λ, DC, T, Lx,
Ly, and θ were analyzed and optimized to be 1.166 µm, 0.54, 2 µm, 4.8 µm, 1 µm, and 8◦,
respectively. At wavelengths of around 1.55 µm, the maximums of the coupling efficiency
and the −3 dB bandwidth were 33.5% and 113 nm, respectively. The relationship between
the parameter tolerance and the coupling efficiency of the grating couplers was discussed.
Larger tolerances greatly reduced the requirements for manufacturing accuracy. Our
simulation results for the grating couplers will provide useful guidance for the fabrication
of similar optical devices.
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