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Abstract: We study the elasto-optic behavior of stressed cubic crystals (all classes) and isotropic
materials (like e.g., glasses). We obtain the explicit dependence of the refraction indices on the stress
(either applied or residual), as well as a mild generalization of the Brewster law for cubic crystals. We
show also that the optic indicatrix and the stress ellipsoid are coaxial only in the isotropic case. This
theory allows the improvement of the measurement techniques, as photoelasticity, on cubic crystals
and optically isotropic materials.

Keywords: photoelasticity; stress measurement; quality control; photonics; cubic crystals; isotropic
materials; Brewster’ law; refraction indices; dielectric impermeability

1. Introduction

The optic and elasto-optic behaviour of crystals and transparent media are well stud-
ied, starting from the pioneering works by Brewster [1], Born [2], Wolf [3], and Maxwell [4].
Based on those studies a number of photoelastic techniques have been developed, ad-
dressed to stress analysis and materials elastic properties investigation. Classically these
methods are applied to and based on isotropic amorphous like materials. Perspex, glass,
and other transparent non-crystalline materials belong to the class of substances to which
studies have been addressed in number of different declinations for specific purposes.
Transmitted photoelasticity, reflected method, scattered light techniques are some of the
various methodologies based on the photoelastic theory for isotropic non-crystalline mate-
rial [5,6]. This development is exploited, since years, in numbers of applications, spanning
from mechanics to construction, from optics to electronics and it has acquired a renovated
interest by the growing of the digital techniques for image processing [7–9]. Structural
glasses, for buildings or cars, are evaluated by photoelastic techniques [10]: photoelasticity
is one of the widest used experimental methods for validating the FEM simulations of
stress distribution in mechanical parts; optical parts can be adjusted using photoelastic
principles (e.g., optical modulation and retarders for surface measurements).

In optically isotropic materials the spherical shape of the optical indicatrix, describing
the distribution of the dielectric impermeability (or refractive indexes) over the direction,
is deformed by stress in an ellipsoid inducing a change in the optical behaviour. In
this condition the light, crossing the specimen, is split in its ordinary and extraordinary
components and get a phase delay; that is, birefringence. Fringes are produced by the
relative phase delay acquired and observed via polariscopes. The analysis of the relative
isochromate and isocline fringes allows to carry out information on load magnitude and
direction, an instance which is particularly useful for the quality assessment and stress
detection in amorphous isotropic media [5,11].
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On the other hand, anisotropic crystalline materials exhibit a very different photoe-
lastic behaviour. Their optic indicatrix is an ellipsoid even under stress free conditions,
due to the anisotropy. The orientation and the shape of those ellipsoids are modified
by the components and magnitude of the stress tensor, as described by the elasto-optic
theory of the anisotropic crystals which was studied and developed since the last cen-
tury [12–14]. The natural birefringence of these substances leads to a different approach
for elasto-optic analysis and stress investigation. Recently, a tensorial algebra approach
based on the dielectric impermeability, the piezo-optic tensor and the stress tensor has
been developed for anisotropic crystals. The light acquires relative phase delay even in
unstressed condition and, consequently, fringes are produced having a specific shape due
to crystal specific symmetries; the modulation of these symmetries indicates the possible
stress condition. Those studies are based on the analysis of the Bertin surfaces [15–17] which
describes the loci of points where the ordinary and extraordinary light components get an
iso-delay. The models developed allow to deepen the crystal knowledge in its elasto-optic
characteristics and the assessment of the photoelastic constants (piezo-optic matrix) [18]
allowing the internals stress measurements [19–22]. This theoretical effort paved the way
to new measurements techniques such as laser conoscopy or sphenoscopy [23], thus allowing
reliable and precise measurements techniques for the fast quality control and residual stress
evaluation of these complex anisotropic materials [24–27].

However, also for some optically isotropic crystalline there is still a lack of knowledge
of their elasto-optic characteristics: this large class of substances, which is represented by the
cubic crystals, are fundamental in number of applications, from industrial to research ones.
They are exploited as scintillators [28], in laser technology, as electro-optic and non-linear
optics components for different purposes; in parallel with their excellent functional charac-
teristics, which make them crucial in fields spanning from medicine, to aerospace, lasers
and high energy physics [29], their production and life cycle manageability characteristics
are quite interesting. In fact, the growth and the production process are less complex and
critical with respect to the ones of the optically anisotropic crystals. All those mentioned
properties lead to the large use of these interesting materials within a strategical context.

Despite their large use, the cubic crystalline materials elasto-optic properties where
not extensively studied in their full extents. As a first approximation, they are considered as
amorphous-like substances when a photoelastic inspection is required, an instance which
is not only the rigorous way to proceed but which also leads to possible considerable error
in the data interpretation or to a uninterpretable patterns.

In this paper we propose the elasto-optic study of both the isotropic cubic crystals
and the isotropic amorphous ones, like glasses, starting from the tensorial approach of the
stress-dependent dielectric impermeability tensor, as it was already done for the anisotropic
crystals in previous papers.

The purpose of his paper is to give a new theoretical approach for a better comprehen-
sion of the elasto-optic behaviour of both cubic crystalline and amorphous isotropic media.
This theory allows the improvement of the measurement techniques and measurements
instrumentation, allowing further for the evaluation of the photoelastic parameters and
the stress analysis for the quality control as well as for characterization of this complex
class of materials. We also give some remarks about the extendibility of the Brewster
law. Finally, we show that the principal stress directions coincide to the principal axes
of the Optic Indicatrix (coaxiality) only for isotropic non-crystalline materials. The work
allows for a fast interpretation of the photoelastic observations; it completes our previous
application of the classical phtoelastic theory, including new results about the coaxiality
between principal stress directions and optical indicatrix.
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2. Materials and Methods

It is well known that the optical indicatrix Bx·x = 1, where B is dielectric impermeability
tensor, for an unstressed optically isotropic transparent material is a sphere [2], since the
dielectric impermeability tensor is spherical:

B = no
−2I, (1)

An applied or residual stress T modifies the dielectric impermeability according to
the Maxwell Equation:

B(T) = no
−2I + Π[T], (2)

where Π is the fourth-order piezo-optic tensor of the two optically isotropic point groups,
namely the Cubic and Isotropic one, and no > 1 is the refraction index. Since the considered
materials have a linear elastic behaviour, it makes sense to use the linear relations (2)
which, from a mathematical point of view, holds true in the “small stress” regime. Such
regime ranges, for brittle materials like crystals and glasses, over tens of MPa close to the
ultimate tensile stress before the brittle fracture is reached and applies well to the cases
we are treating. In the general case, besides some specific state of stress which leave the
stressed crystal still optically isotropic and which were studied in details into [16], the
tensor B(T) admits three eigencouples {(B1, u1), (B2, u2), (B3, u3)} and it becomes either
optically uniaxial or biaxial (The stress which leaves an optically isotropic material still
optically isotropic is the spherical (idrostatic) stress of the form T = σmI [16]).

Let (ξ,η,ζ) be the coordinates in the frame Σ≡{u1, u2, u3} of the eigenvectors of B(T),
hence it makes sense, for biaxial and uniaxial materials to define the Bertin Surfaces [19,20]:

cos4 ϕξ4 + η4 + sin4 ϕζ4 + 2 cos2 ϕξ2η2 + 2 sin2 ϕζ2η2 − 2 sin2 ϕ cos2 ϕζ2ξ2 − N2H2
(

ξ2 + η2 + ζ2
)
= 0 (3)

where H = λ
nmax−nmin

, λ is the light wavelength of the polariscope, N is an integer that
represent the fringe order, nmin and nmax are the minimum and maximum refraction indices
and 2ϕ is the angle between the optic axes, defined by:

sin2 ρ =
B1 − B2

B1 − B3
(4)

which holds for B1 > B2 > B3 and vice-versa with |B1 − B2| < |B1 − B3| see ref [15,19,20].
For optically uniaxial materials with B1 = B2, it is ρ = 0 and (3) reduces to:(

ξ2 + η2
)2
− N2H2

(
ξ2 + η2 +ζ2

)
= 0. (5)

The importance of these surfaces is that it should be possible to observe the Cassini-like
interference fringes, that is sections of the Bertin Surface with an observation plane, by
the means of conoscopic observations [24,25,30]: indeed for e.g., ζ = d the coordinate of an
observation plane, from Equation (3) we get the family of curves, parameterized on d, N
and H:

f (ξ, η) = 0, (6)

which by Equation (3) are even in their variable. Let a = |f (ξ,0) = 0| and b = |f (0, η) = 0|, then
in [31] we introduced the ellipticity ratio or photoelastic constant C, a measurable parameter
in a conoscopic fringe analysis:

C = 1 − b
a

(7)

By Equations (2)–(6) C may clearly depend on the applied stress and into [19,20] we
generalized the definition by introducing the tensor of photoelastic constants Fσ such that:

C(T) = Fσ·T + o(||T||2). (8)
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Clearly, Equations (3)–(5) are undefined for optically isotropic materials and no cono-
scopic observation of interference fringes is possible in this case as defined before.

However, one can wonder what happens to e.g., an uniaxial Bertin surface when
a monotonically increasing applied stress reduces B(T) to a spherical tensor, in order to
figure out what happens to the observed interference fringes. This means that for isotropic
materials with nmax = nmin:

H→ ∞ as nmax − nmin → 0, (9)

in Equation (5). Now, let ζ = d be the coordinate of an observation plane which is orthogonal
to the optic axis ζ, then the equation of the Cassini-like curves, for a given fringe order e.g.,
N = 1 and in polar coordinates r2 = ξ2 + η2 reduces to:

r4 − H2r2 − d2H2 = 0, (10)

If we solve for r then we obtain:

r2 = H2 (
1 +

√
1 + 4 d2

H2

2
), (11)

and hence the interference fringes growth monotonically to infinity when nmax − nmin→0,
thus disappearing progressively from the conoscopic field of observation.

Similar results can be obtained in the case of induced biaxiality with nmax − nmin→0,
in fact the parameters a and b introduced before, diverge with a similar law of (11).

A key point in any optical analysis is to arrive at an explicit relation for the dependence
of the refraction indices in the stressed crystal in terms of the components of the piezo-optic
tensor and of the stress tensor. However, since the relation between the eigenvalues of B(T)
and the principal refraction indices nk, k = 1, 2, 3 is:

nk =
1√
Bk

, k = 1, 2, 3, (12)

which is strongly non-linear in T, then within the same hypotheses of (2) we may arrive at
the linearized relation:

nk = no −
n3

o
2

(
∂Bk
∂T

)
T = 0
·T + o

(
||T||2

)
, k = 1, 2, 3. (13)

In Equation (13) it is possible that the derivative of Bk with respect to T is not defined
for T = 0, thus making the linearization impossible. A way to remove this inconvenience
was proposed into [32], where precisely such a problem was addressed and completely
solved in a general manner: however for who is not accustomed to the very formal algebraic
treatment given therein, here we shall recover the same results in a different and more
conventional way.

To finish this overview of the problems related to optically isotropic materials and
crystals, we recall that for isotropic amorphous materials the Brewster law [1] relates the
principal refraction index of B(T) to the principal values σk, k = 1, 2, 3 of T, namely:

ni − nj = KB(σi − σj), i 6= j, i,j = 1,2,3, (14)

where K depends on no and Π; the question in this case is if it is possible to extend, and to
which extent, the Equation (14) to other crystallographic symmetry group. The answer was
obtained in a definitive manner into [33] and here we shall show how the same results can
be easily recovered within our present approach.

The frames we use in this work are the following: S ≡ {e1, e2, e3} with coordinates
(x,y,z) which is the reference coincident with the crystallographic axes, and Σ ≡ {u1, u2, u3}
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with coordinates (ξ,η,ζ), we already introduced, and which is the reference frame for the
Optic Indicatrix and Bertin surfaces.

In the following section we shall assume that all the observations are made along
the direction spanned by e3 and accordingly we may observe only the effects of the plane
stress Te3 = 0, since for the stress along the same direction, in absence of applied forces
on the surfaces orthogonal to e3, we may assume zero mean value: therefore they are not
detectable by the means of a conoscopic analysis since it takes the mean values on the optic
path along the same direction. Accordingly, the components of such a plane stress in the
frame S are:

T =

 σxx σxy 0
σxy σyy 0
0 0 0

, (15)

Let (σ1, σ2, 0) be the principal stress of Equation (15) and U the frame of the corre-
sponding eigenvectors which is rotated with respect to S by an angle α given by:

tan α =
σxx − σyy −

√(
σxx − σyy

)2
+ 4σ2

xy

σxy
, (16)

Then we shall also make use of the Mohr’s relations [34].

σxx =
σ1 + σ2

2
+ cos 2α

σ1 − σ2

2
,

σyy =
σ1 + σ2

2
− cos 2α

σ1 − σ2

2
, (17)

σxy = sin 2α
σ1 − σ2

2
,

between the principal stress and the components of Equation (15).

3. Results
3.1. Cubic Crystals
3.1.1. Classes 23 and m3

In the frame S of Figure 1, the tensor B(T), for a plane stress is given by (2) with
piezo-optic tensor [13,14]

Π =



π11 π12
π13 π11

π13 0
π12 0

0 0
0 0

π12 π13
0 0

π11 0
0 π44

0 0
0 0

0 0
0 0

0 0
0 0

π44 0
0 π44

, (18)
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Figure 1. The frame S is referred to the crystallographic axes of the cubic crystal with axes (a,a,a);
the frame Σ corresponds to the principal axes of the Optic Indicatrix. In absence of stress, since the
optical indicatrix is a sphere we may assume S = Σ.

Leads to, where for the sake of notation we write n0
−2 = B0:

B(T) = B0 +



π11 π12
π13 π11

π13 0
π12 0

0 0
0 0

π12 π13
0 0

π11 0
0 π44

0 0
0 0

0 0
0 0

0 0
0 0

π44 0
0 π44





σxx
σyy
0
0
0

σxy


=

 B0 + π11σxx + π12σyy π44σxy 0
· B0 + π13σxx + π11σyy 0
· · B0 + π12σxx + π13σyy


(19)

The eigenvalues of (19) are

B1,2 = 1
2
[
2B0 + (π11 + π13)σxx + (π11 + π12)σyy ± R

]
B3 = B0 + π12σxx + π13σyy

, (20)

where:
R =

√[
(π13 − π11)σxx + (π11 − π12)σyy

]2
+ 4π2

44σ2
xy, (21)

and eigenvectors

u1,2 =
[

1, (π13−π11)σxx+(π11−π12)σyy±R
2π44σxy

, 0
]
, u3 =

[
0, 0, 1

]
, (22)

which means that the Σ is obtained from S by a rotation about the z = ζ axis which depends
on T.

From (20) we have B1 > B2 but it is not possible to establish a-priori the complete
ordering of the eigenvalues.

From (20) and (21), then:

n1,2 =

√
2√[

2B0 + (π11 + π13)σxx + (π11 + π12)σyy ± R
]

n3 =
1√

B0 + π13σyy + π12σxx
(23)
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and by a trivial application of (13) we see that, due to the presence of the term R as given
in (21), the derivates of n1 and n2 blows up for T = 0.

Now, if we consider the rotation around the z-axis:

tan 2γ =
2B12

B11 − B22
=

2π44σxy

(π11 − π13)σxx + (π12 − π11)σyy
, (24)

and since tan2γ can be estimated, in fact, the angle γ can be experimentally evaluated
following the procedure described by Whalstrom [15].

Then from (24) we get:

2π44σxy = − tan 2γ
[
(−π11 + π13)σxx + (π11 − π12)σyy

]
. (25)

By substituting (25) into (21) we have:

R =
∣∣[(π13 − π11)σxx + (π11 − π12)σyy

]∣∣√1 + tan2 2γ, (26)

and then:

n1,2 =

√
2√[

2B0 + (π11 + π13)σxx + (π11 + π12)σyy ±
∣∣[(π13 − π11)σxx + (π11 − π12)σyy

]∣∣√1 + tan2 2γ
] ,

n3 =
1√

B0 + π12σxx + π13σyy
, (27)

The relation (27), which depends on the measured parameter γ, can be successful
linearized into:

n1 = − n3
o

2

[(
π11 + π13 ± (π13 − π11)

√
1 + tan2 2γ

)
σxx +

(
π11 + π12 ± (π11 − π12)

√
1 + tan2 2γ

)
σyy

]

n2 = −n3
o

2

[(
π11 + π13 ∓ (π13 − π11)

√
1 + tan2 2γ

)
σxx +

(
π11 + π12 ∓ (π11 − π12)

√
1 + tan2 2γ

)
σyy

]
(28)

n3 =
−1

2B
3
2
0

[
π12 σxx + π13σyy

]
When we evaluate the birefringence on the observation plane normal to e3 (we makes

the same in the follow) ∆n = n1 − n2, from (28):

∆n = ±n3
o

√
1 + tan2 2γ

[
(π13 − π11)σxx + (π11 − π12)σyy

]
, (29)

and by substituting (29) into (3.6) then we get:

∆n = ±2σxyn3
o

π44

sin 2γ
. (30)

By (17) relations (30) can be written in terms of the principal stress and of the angle α:

∆n = ±(σ1 − σ2)n3
o

π44

sin 2γ
sin 2α, (31)

Finally is it possible to also write (29) as follows:

∆n = g1(Π, γ)σxx + g2(Π, γ)σyy, (32)
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or by the means of (17):

∆n = f1(Π, γ, α)σ1 + f2(Π, γ, α)σ2, (33)

where g1 and g2 depend on the Π components π13, π12, π11 and γ, meanwhile f 1 and f 2
depend also on the angles α.

Despite the complex cubic structure, the evaluation of both the ∆n and the rotation angle
γ of the optic indicatrix axes around z allow the determination of the shear stress (30). The
(31) shows ∆n as a function of principal stress difference as in the classical Brewster form.

3.1.2. Classes 43m, 432, m3m

By following the previous procedure also for the cubic crystals of the classes 43m, 432,
m3m, since the piezo-optic tensor is given in this case by [13,14]:

Π =



π11 π12
π12 π11

π12 0
π12 0

0 0
0 0

π12 π12
0 0

π11 0
0 π44

0 0
0 0

0 0
0 0

0 0
0 0

π44 0
0 π44

, (34)

then we obtain:

B(T) = B0 +



π11 π12
π12 π11

π12 0
π12 0

0 0
0 0

π12 π12
0 0

π11 0
0 π44

0 0
0 0

0 0
0 0

0 0
0 0

π44 0
0 π44





σxx
σyy
0
0
0

σxy

, (35)

which yields, explicitly:

B(T) =

 B0 + π11σxx + π12σyy π44σxy 0
· B0 + π12σxx + π11σyy 0
· · B0 +

(
σxx + σyy

)
π12

, (36)

The eigenvalues of Equation (36) are:

B1 =
2B0 +

(
σxx + σyy

)
(π11 + π12)− R

2
,

B2 =
2B0 +

(
σxx + σyy

)
(π11 + π12) + R

2
, (37)

B3 = B0 +
(
σxx + σyy

)
π12,

with:
R =

√(
σxx − σyy

)2
(π12 − π11)

2 + 4π2
44σ2

xy, (38)

The corresponding eigenvectors are:

u1 =

[
1,

(
σxx − σyy

)
(π12 + π11)− R

2π44σxy
, 0

]
,

u2 =

[
1,

(
σxx − σyy

)
(π12 + π11) + R

2π44σxy
, 0

]
, (39)

u3 = [0, 0, 1],
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Also in this case there is a the rotation of the optic indicatrix around the z = ζ axis
that is expressed by the angle γ, which can be experimentally evaluated by following
Wahlstrom [15] as we remarked before. By a trivial calculation:

tan 2γ = 2B12
B11−B22

=
2π44σxy

(π11σxx+π12σyy)−π12σxx−π11σyy

=
2π44σxy

(π11−π12)(σxx−σyy)
,

(40)

We define the difference ∆B as:

∆B = B2 − B1 = R =
√(

σxx − σyy
)2
(π12 − π11)

2 + 4π2
44σ2

xy, (41)

which in terms of the principal stresses (17) reads:

∆B = B2 − B1 = R = |σ1 − σ2|
√
(cos 2α)2(π12 − π11)

2 + π2
44(sin 2α)2, (42)

The angle α is the rotation of the principal stress frame, a parameter which is related
to γ by Equation (40):

tan 2γ =
π44(σ1 − σ2) sin 2α

(π11 − π12)(σ1 − σ2) cos 2α
=

π44

(π11 − π12)
tan 2α, (43)

The angles α and γ coincide only when:

π44

(π11 − π12)
= 1

A condition which holds only for the material of the Isotropic symmetry group as
shown in the follow.

In the general case, for cubic materials of these classes, the ratio:

π44

(π11 − π12)
= k

determines the rotation of the principal stress frame U with respect to S so we can rewrite
(42) by trivial transformations and using (43) as:

∆B = B2 − B1 = R = |(σ1 − σ2)(π12 − π11) cos 2α|
√

1 + k2(tan 2α)2

= |(σ1 − σ2)(π12 − π11)|
√

1+tan2 2γ√
1+ tan2 2γ

k2

= |(σ1 − σ2)(π12 − π11)| f (γ),
(44)

Equation (44) shows that ∆B is a linear function of the principal stress difference.
When we turn our attention to ∆n in terms of the principal stress it is possible to linearize
it to arrive at:

∆n = ∓2n3
0|(π12 − π11)|

√
1 + tan2 2γ√
1 + tan2 2γ

k2

(σ1 − σ2), (45)

In this case, the experimental knowledge of ∆n, k, and the rotation angle γ allows
for the calculation of the principal stress difference as in the classical Brewster law. Once
determined the principal stress difference through the (45) it is possible also obtain the
shear stress using also (43):

σxy =
(σ1 − σ2)

2
sin 2α =

(σ1 − σ2)

2
tan 2γ√

k2 + tan2 2γ
, (46)
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From (43) and (46) it is trivial to evaluate also the α angle as (from (46)):

α =
1
2

a sin
tan 2γ√

k2 + tan2 2γ
, (47)

We remark that Equation (45) is a special instance of the Brewster law (see also [33]).

3.2. Isotropic Materials

The glass and plastic media composed by either random oriented micro-crystals or
amorphous substance present the highest optic symmetry, and in this case the Π tensor is
that of the Isotropic symmetry group [13,14]:

Π =



π11 π12
π12 π11

π12 0
π12 0

0 0
0 0

π12 π12
0 0

π11 0
0 π11 − π12

0 0
0 0

0 0
0 0

0 0
0 0

π11 − π12 0
0 π11 − π12

, (48)

and in the case of plane stress (15) from (2) we have:

B(T) =

 B0 + π11σxx + π12σyy (π11 − π12)σxy 0
· B0 + π12σxx + π11σyy 0
· · B0 +

(
σxx + σyy

)
π12

, (49)

The eigenvalues of (49) are:

B1,2 =
2B0 +

(
σxx + σyy

)
(π11 + π12)∓ |π12 − π11|R

2
,

B3 = B0 +
(
σxx + σyy

)
π12, (50)

where:
R =

√(
σxx − σyy

)2
+ 4σ2

xy, (51)

The first part of Equation (50) can be written as (being in this case eigenvalue order indifferent):

B1,2 =
2B0 +

(
σxx + σyy

)
(π11 + π12)∓ (π12 − π11)R

2
. (52)

In isotropic materials the principal directions of B(T) coincide with those of T [32]: indeed:

tan 2γ =
2B12

B11 − B22
=

σxy(
σxx − σyy

) , (53)

so K = 1 and by from Equation (15):

tan 2γ =
2 σ1−σ2

2 sin 2α

2 σ1−σ2
2 cos 2α

= tan 2α, (54)

Hence U = Σ with α = γ and in this common frame we can write:

B1 = B0 + σ1π11 + σ2π12,

B2 = B0 + σ1π12 + σ2π11, (55)

B3 = B0 + (σ1 + σ2)π12,

The γ angle represents the rotation of the index ellipsoid around z = ζ as usual [15].
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Once again, from Equation (55) we obtain that ∆B = B1 − B2 is a linear function of
the principal stress difference:

∆B = (π12 − π11)(σ1 − σ2), (56)

and by linearization we trivially recover the Brewster Equation (14)

∆n21 = ∓2B−
3
2

0 (π12 − π11)(σ1 − σ2), (57)

with:
KB = 2n3

0(π12 − π11). (58)

Also in this case the shear can be calculated by means of Equation (57):

σxy =
(σ1 − σ2)

2
sin 2γ = ∓ ∆n21

2B−
3
2

0 (π12 − π11)
sin 2γ. (59)

The ∆n21 (57) is proportional to the ∆B (56) in the same form of the Brewster law.
Finally, the shear stress and the principal stress difference are valuable.

4. Conclusions

By starting from the stress-dependent dielectric impermeability tensor we gave a
formal and abstract treatment of the stress-optic behaviour and the Brewster Law in cubic
crystals and general isotropic media. In the small stress approximation, we linearized the
refraction indices difference as a function of the stress in terms of the components of the
piezo-optic tensor Π tensor and of the rotation angle γ of the optic indicatrix: we also
extend, whenever it is possible, the Brewster law to cubic crystals.

These are fundamental aspects for a proper interpretation of the fringe patterns obtained
via photoelastic investigation and for the evaluation of the stress via photoelastic measurements.

An additional interesting outcome of the work is that we demonstrated how the
coaxiality of the optic indicatrix and the stress ellipsoid only in the case of isotropic
materials. This is a crucial consideration to take into account for the experimental procedure
and analysis.

Moreover, we showed that the Bertin surfaces as well as the Cassini-Like curves, are
undefined in absence of stress, and in some limit case of linearized stress. In fact, for
amorphous and cubic crystalline, the linearization of the related photoelastic parameters,
as for instance the ellipticity ratio, may lead to undefined forms.
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