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Abstract: In the present investigation, the physical, mechanical and durability properties of six
concrete mixtures were evaluated, one of conventional concrete (CC) with 100% Portland cement (PC)
and five mixtures of Ecofriendly Ternary Concrete (ETC) made with partial replacement of Portland
Cement by combinations of sugar cane bagasse ash (SCBA) and silica fume (SF) at percentages of 10,
20, 30, 40 and 50%. The physical properties of slump, temperature, and unit weight were determined,
as well as compressive strength, rebound number, and electrical resistivity as a durability parameter.
All tests were carried out according to the ASTM and ONNCCE standards. The obtained results
show that the physical properties of ETC concretes are very similar to those of conventional concrete,
complying with the corresponding regulations. Compressive strength results of all ETC mixtures
showed favorable performances, increasing with aging, presenting values similar to CC at 90 days and
greater values at 180 days in the ETC-20 and ETC-30 mixtures. Electrical resistivity results indicated
that the five ETC mixtures performed better than conventional concrete throughout the entire
monitoring period, increasing in durability almost proportionally to the percentage of substitution of
Portland cement by the SCBA–SF combination; the ETC mixture made with 40% replacement had
the highest resistivity value, which represents the longest durability. The present electrical resistivity
indicates that the durability of the five ETC concretes was greater than conventional concrete. The
results show that it is feasible to use ETC, because it meets the standards of quality, mechanical
resistance and durability, and offers a very significant and beneficial contribution to the environment
due to the use of agro-industrial and industrial waste as partial substitutes up to 50% of CPC, which
contributes to reduction in CO2 emissions due to the production of Portland cement, responsible for
8% of total emissions worldwide.

Keywords: properties; mechanical; electrical resistivity; durability; ecofriendly ternary concrete;
SCBA; SF

1. Introduction

Concrete is the most widely used construction material worldwide, due to its great
mechanical and physical properties, with a demand that grows every year due to the
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need for the development of civil infrastructure across all countries in the world [1–8].
Even though concrete is durable, it is compromised when exposed to aggressive media
where chloride and sulfate ions may be present, which are considered to be the main
responsible agents for the premature deterioration of reinforced concrete structures, in
which the main problem is the corrosion of reinforcing steel [9–14]. This compromises
sustainable development by not complying with the useful lifetime for which the structures
were designed; additionally, it is known that the manufacture of Portland cement, the main
component for the development of concrete, is responsible for around 5 to 8% of total CO2
emissions worldwide [15–17]. This has led the scientific community to look for options
to reduce the environmental impact due to the use of concrete, of which the addition of
supplementary materials to Portland cement is a very favorable option. These materials
are industrial wastes, of which Fly ash is a waste material in the power generation industry,
and reusing this highly active pozzolan in the construction industry may bring about
several advantages [18]; silica fume (SF) is a byproduct from the production of silicon
alloys such as ferro-chromium, ferro-manganese, calcium silicon, etc., which also creates
environmental pollution and health hazards [19]; blast furnace slag is a waste product of
the steel manufacturing process [20]; and among agro-industrial wastes, the most used as
alternative materials to Portland cement are rice husk ash [21] and sugar cane bagasse ash
(SCBA) [22–24].

Lua et al. found that fly ash (FA) and blast furnace slag (BFS) with various contents
(cement replacement ratio at 0, 20, and 40%) significantly affected the autogenous self-
healing ability of early age cracks. The self-healing efficiency of early age cracks decreased
with increases in FA and BFS content. BFS mortars exhibited greater recovery in relation
to water penetration resistance compared to the reference and FA mortars [25]. Likewise,
Anandan et al. determined that the mechanical properties of processed fly ash based
concrete with 50% OPC replacement had equal or better strength gain at later ages than
unprocessed fly ash based concrete with 25% OPC replacement [26], and in another research
work it was shown that binary concretes with 20% fly ash reinforced with AISI 304 Steel
presented a higher corrosion resistance than AISI 1018 steel when exposed to a simulated
marine environment [27].

Atis et al. showed that the compressive strength of silica fume concrete cured at
65% RH was easier to influence than that of Portland cement concrete. It was found
that the compressive strength of silica fume concrete cured at 65% RH was, on average,
13% lower than silica fume concrete cured at 100% RH in concretes with three different
water/cement ratios and SF percentages of 10, 15 and 20% [28]. Bhanja et al., based on
findings of compressive and tensile strength increases with silica fume incorporation,
determined that the optimum replacement percentage is not a constant one but depends
on the water–cementitious material (w/cm) ratio of the mix [29]. Ozcan et al. concluded
that inclusion of silica fume in concrete increased the compressive strength between 20%
and 50% compared to control PC concrete and there was an optimum replacement ratio of
silica fume, which could be predicted using artificial neural networks (ANN) and fuzzy
logic (FL) [30]. Landa et al. determined that sustainable binary concretes made with 10%
SF provided high corrosion resistance to AISI 1018 steel when exposed to sulfates for more
than 300 days [31].

Fly ash, silica fume and SCBA have been used in various investigations as supple-
mentary materials to cement with excellent results, such as from Srinivasan et al. who in
their studies showed that SCBA in blended concrete had significantly higher compressive
strength, tensile strength, and flexural strength compared to concrete without SCBA. It was
found that the cement could be advantageously replaced with SCBA up to a maximum
limit of 10% [32]. Another study showed that green concretes with substitution of 20% of
Portland cement for with SCBA presented a great resistance to corrosion when reinforced
with stainless steel [33]. Kawade et al. obtained results showing that SCBA concrete
had significantly higher compressive strength compared to concrete without SCBA. The
optimal level of SCBA content was achieved with 15.0% replacement and the partial re-
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placement of cement by SCBA increased workability of fresh concrete; therefore, use of
super plasticizer was not essential [34]. Castaldelli et al. evaluated different BFS/SCBA
mixtures, replacing part of the BFS with SCBA from 0 to 40% by weight; the results of
the mechanical resistance values were approximately 60 MPa of compressive strength for
BFS/SCBA systems after 270 days of curing at 20 ◦C. This demonstrated that sugar cane
bagasse ash is an interesting source for preparing alkali-activated binders [35]. There are
several studies of sustainable concretes, including SCBA, that have shown that corrosion
resistance increased compared to that of reinforcing steel when exposed to sulfated media
or marine media [22,36–39], and some research has also been reported on the use of SCBA
for green road construction [40,41].

Despite the fact that a large number of studies have been carried out worldwide on
the benefits of the inclusion of SCBA for the preparation of concretes and mortars, there is
still no standardized process for its commercial use as there is for fly ash and silica fume.

When using alternative materials to Portland cement, there are three very important
impacts on development in the construction field. The first is the improvement in physical,
mechanical and durability properties of the concretes. The second is the reduction in
CO2 emissions when making concrete to build civil infrastructure (bridges, houses, dams,
hospitals, roads) by reducing the amount of Portland cement per cubic meter of concrete.
The decrease is proportional to the amount in which the Pozzolanic material replaces
Portland cement, so that the more volume of Portland cement is replaced, the greater the
impact on the environment will be, in accordance with the findings of Dong et al.: when
50% of the cement content was replaced by FA, the embodied CO2 emissions for the UHPC
mixture were reduced by approximately 50% as compared to the CO2 emissions calculated
from conventional normal-strength concrete [42]. The third is the impact on the culture
of recycling waste materials. In first-world countries, the use of fly ash and silica fume is
already significant compared to emerging countries, such as Mexico, where at the moment
there does not exist civil infrastructure where concrete has been used with replacement in
large volumes by this type of material.

Therefore, in this research work, physical, mechanical and durability tests were carried
out on Ecological Ternary Concretes (ETC), made with substitution of Portland cement
in 10, 20, 30, 40 and 50% of combinations of SCBA and SF, in order to determine the most
suitable substitution percentage for the fabrication of ETC that provides better performance
than a conventional mixture. Six concrete mixes were produced with a water–cement
ratio of 0.65. The physical properties of the concrete in the fresh state, such as slump,
volumetric weight, and temperature, were determined according to ASTM and ONNCCE
standards. For the mechanical properties, compressive strength tests were carried out as
well as rebound number tests, and for the durability parameter of all the study mixtures,
the electrical resistivity was determined.

2. Materials and Methods
2.1. Materials

For the elaboration of the study specimens, Portland cement type CPC 30R was used
according to the NMX-C-414-ONNCCE standard [43], sugar cane bagasse ash (SCBA)
was obtained from a sugar mill located in the town of Mahuixtlán, Veracruz, México, and
silica fume (SF) was acquired commercially. Six concrete mixtures were made for the
present research, the first of conventional concrete, denoted the control mix (MC), and
the remaining five of Ecofriendly Ternary Concrete (ETC), made by substituting the CPC
30R for combinations of SCBA and SF at percentages of 10, 20, 30, 40 and 50%. SCBA
and SF were used because they are agro-industrial and industrial wastes with pozzolanic
properties due to their chemical composition. The results of the chemical characterization
of the cementitious materials used, obtained by X-ray fluorescence (XRF) analysis, are
presented in Table 1.
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Table 1. Chemical composition of the cementitious materials obtained by XRF.

Chemical Composition (% by Mass)

Fe2O3 Al2O3 SiO2 CaO Na2O K2O MgO SO3

Cement Portland 3.872 5.478 21.187 63.346 0.564 0.83 2.068 2.157
Sugar Cane Bagasse Ash 5.105 3.150 77.739 3.995 0.569 6.672 0.563 0.406

Silica Fume 1.574 0.792 92.261 0.436 0.383 1.314 0.292 0.335

The coarse and fine aggregates used for the preparation of the study mixtures were
from banks of the Xalapa region. Table 2 summarizes the physical characteristics of the
materials used; the tests were carried out according to ASTM standards [44–47].

Table 2. Physical characteristics of the aggregates.

Aggregates Relative Density
(Specific Gravity)

Bulk Density (“Unit Weight”)
(kg/m3)

Absorption
(%)

Fineness
Modulus

Maximum Aggregate
Size (mm)

Coarse (Gravel) 2.38 1381 5.10 - 19
Fine (Sand) 2.60 1764 1.56 3.40 -

2.2. Proportioning of the Mixtures MC and ETC

For the design and proportioning of the concrete mixtures, the ACI 211.1 method [48]
was used; a water/cement ratio = 0.65 and a slump of 10 cm were measured for all concrete
mixes. Table 3 presents the dosing of the six studied mixtures, the control mix (MC) and
the five Ecofriendly Ternary Concrete (ETC) mixtures made with substitution of CPC 30
with combinations of SCBA-SF at 10, 20, 30, 40 and 50% (ETC-10, ETC-20, ETC-30, ETC-40,
ETC-50).

Table 3. Dosage of ternary concrete mixtures (Kg/m3).

Mixture CPC 30R SCBA SF Water Aggregate Fine Aggregate Coarse

MC 315.00 - - 205.00 746.00 881.00
ETC-10 283.50 15.75 15.75 205.00 746.00 881.00
ETC-20 252.00 31.50 31.50 205.00 746.00 881.00
ETC-30 220.5 47.25 47.25 205.00 746.00 881.00
ETC-40 189.00 63.00 63.00 205.00 746.00 881.00
ETC-50 157.50 78.75 78.75 205.00 746.00 881.00

2.3. Physical Properties of Concrete Mixtures

To determine the physical properties of the six studied mixtures (MC, ETC-10, ETC-20,
ETC-30, ETC-40, ETC-50), slump, temperature and unit weight tests were carried out. All
tests were carried out in accordance with the ASTM and ONNCCE.

According to the NMX-C-156-ONNCCE-2010 standard [49] for determining slump,
a truncated conical mold was used where the fresh concrete was poured and compacted.
The mold was placed over a base and raised upwards. The measure of the consistency
or workability of the concrete was provided by the amount of concrete slumped and the
distance slumped, see Figure 1a.

The temperature was determined according to the ASTM C 1064/C1064M-08 stan-
dard [50], which indicates that the concrete must be placed in a non-absorbent container
with at least 75 mm of concrete in all directions from the temperature sensor, which must
have a resolution of ±1.0 ◦C or smaller with an interval of 0 ◦C to 50 ◦C. The thermometer
was submerged in fresh concrete to a minimum depth of 75 mm, leaving it for over 2 min
until the reading was established (see Figure 1b). The unitary mixture was calculated
according to the NMX-C-162-ONNCCE-2014 standard [51]; the equipment used for this
test was a balance with a precision of 50 gr., maze of gum, ruler plate, verification plate,
measuring container and compaction rod. The concrete was placed in three layers inside
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the container, and each one was compacted via 25 penetrations with the compaction rod.
When compression was complete, the mold was made flush with the ruler plate; finally,
the container with the compacted concrete was weighed (see Figure 1c,d).
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2.4. Mechanical and Durability Properties of Eco-Friendly Ternary Concrete Mixtures
2.4.1. Compressive Strength

Compressive strength is the parameter or property of the mechanical behavior of
hydraulic concrete most necessary for the structural design of civil infrastructure built on
the basis of reinforced concrete. Compressive strength testing was carried out according to
the NMX-C-083 ONNCCE standard [52], for which specimens were manufactured using
cylindrical steel molds of 100 × 200 mm. After 24 h they were removed from the molds and
placed in a curing tank according to the NMX-C-ONNCCE standard [53]. The specimens of
the six study mixtures were tested at the ages of 7, 14, 28, 90 and 180 days using a loading
rate of 0.3 MPa/s (see Figure 2). The compressive strength values analyzed in the results
section are the average of the values of three specimens of each mix of concrete.
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2.4.2. Rebound Number

To determine the rebound number of specimens of the six concrete mixtures used in
this study, tests were carried out according to the NMX-C-192-ONNCCE-2018 standard [54],
in which a procedure is established to determine the rebound index for hardened concrete
using a device known as a sclerometer or rebound hammer, to evaluate the compressive
strength as well as the surface uniformity of the concrete. The results are considered relative
rather than absolute values, but the test has the advantages of being non-destructive and
widely used worldwide, and is used for evaluating the compressive strength of in-situ
concrete [55] and in conjunction with the UPV test to predict the compressive strength
of concrete in studies according to the findings of Amine et al. [56]. A rebound hammer,
abrasive stone, spatula, flannel and brush were used to carry out the test. The test surface
preparation was at least 150 mm in diameter and 100 mm thick. The surface was free of
any layer other than concrete (see Figure 3).
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2.4.3. Electrical Resistivity

Electrical resistivity tests were carried out on the six concrete mixtures MC, ETC-10,
ETC-20, ETC-30, ETC-40 and ETC-50. Electrical resistivity is considered a very important
physical property to determine the quality and durability of concrete [57,58]. Several inves-
tigations have shown that the level of corrosion or resistance to corrosion of reinforcing steel
in concrete exposed to aggressive media can be determined by electrical resistivity [59,60].

The electrical resistivity test was carried out according to the ASTM G57-07 stan-
dard [61], according to the specified equipment requirements and procedures for the
measurement of resistivity in the laboratory and on site. The DURAR Network manual [62]
indicates the criteria for interpretation of the resistivity results obtained and their relation-
ship with the risk of corrosion of the reinforced concrete, which are presented in Table 4.
The tests were carried out at 7, 14, 28, 90 and 180 days. Figure 4 shows the arrangement to
carry out the electrical resistivity test.

Table 4. Electrical resistivity in concrete and risk of corrosion [20].

Electrical Resistivity Risk of Corrosion in Reinforced Concrete

ρ > 200 kΩ-cm Low Corrosion Risk
200 > ρ > 10 kΩ-cm Moderate Corrosion Risk

ρ < 10 kΩ-cm High Corrosion Risk
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3. Results and Discussion
3.1. Slump

Figure 5 shows the slumps in cm of the six study mixes, the control mix (MC)
and the five Eco-friendly Ternary Concrete mixtures (ETC-10, ETC-20, ETC-30, ETC-40,
ETC-50ETC).
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A decrease in workability or slump was observed in the five ETC mixtures; however,
the ETC-10 mixture presented only a 7% decrease (0.5 cm) with respect to the control
mixture (MC), with a value of 6.5 cm, which is considered an acceptable workability slump.
With an increase to 20% in the percentage of substitution of CPC 30R with the combination
of SCBA-SF, the slump showed a decrease of 50% (3.5 cm) with respect to the control mix
(MC); this decrease in workability is attributed to the demand or absorption in excess of
water due to pozzolanic materials [63,64], as is the case for SCBA and SF. For the ETC-30
mixture the slump was similar to that of the ETC-20 mixture, reaching a slump of 3 cm,
which indicates a decrease of about 60% compared with the control mixture. In the case
of the ETC-40 and ETC-50 mixtures, the effect of substituting CPC 30R by 40% and 50%
respectively had a decisive effect in reducing the workability of these mixtures compared
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to the control mixture, with a decrease in slump of 80% for the ETC-40 mixture and 85%
for the ETC-50. This behavior is due to excess water absorption by the supplementary
materials used; therefore, in several investigations where concretes with large volumes
of pozzolanic materials such as blast furnace slag or fly ash were used, water-reducing or
super fluidizers additives were used to obtain slumps greater than 10 cm, which allowed
adequate workability of the concrete mixtures [65,66].

3.2. Temperature

Figure 6 presents the behavior of the temperatures of the six studied concretes. It is
observed that five mixtures presented a temperature of 25 ◦C and the ETC-50 mixture
presented a temperature of 26 ◦C. The reported temperature values are within the specifi-
cations of the ASTM C 1064/C1064M-08 standard.
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3.3. Unit Weight

Figure 7 presents the unit weight results of the six study mixtures. There was minimal
variation between the MC mixture and the ETC mixtures, and all of the unit weight values
were within the specifications for the use of concrete in structural elements of civil works
according to the NMX-C-155-ONNCCE-2014 standard, which indicates that hydraulic
concretes for structural use must have a normal unit weight in fresh condition between
1900 kg/m3 and 2400 kg/m3 [67]. The lowest unit weight obtained was that of the ETC-50
mixture with 2149 kg/m3, with a decrease of 5% compared to the unit mass of the MC
mixture; the highest unit weight was presented by the ETC-30 mixture with a value of
2288 kg/m3, 1.5% higher than the control mix. Khawaja et al. who evaluated concrete with
Portland cement substitution in 5, 10, 15, 20, and 25% by SCBA, recorded an increase in
unit weight of 3.13%, associated with the adhesive property of particles which reduced the
concentration of induced air bubbles and consequently generated a stiffer matrix [68].

3.4. Mechanical and Durability Properties
3.4.1. Compressive Strength

Figure 8 shows the compressive strength results of each of the mixtures, which were
tested at the ages of 7, 14, 28, 90 and 180 days. After 7 days, the concrete ETC hadlower
compressive strength values than the control mixture, of 11.32, 7.66, 30.92, 44.55 and 75.31%
respectively for the ETC-10, ETC-20, ETC-30, ETC-40 and ETC-50 mixtures; this negative
effect was due to the presence of alternative pozzolanic materials to cement SCBA and SF,
and is in agreement with Wu et al., who showed that FA had a negative effect on strength
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at early ages, but significantly enhanced the later-age strength [69]. In other studies a
similar behavior has been shown even when the specimens of concrete were exposed to an
aggressive medium such as sulfates [70]. At 14 days, increases in the resistance of the ETC
concretes were observed, and this increase in compressive strength over time continued
to 28 days, when the ETC-10 and ETC-20 concretes had 90% of the compressive strength
values of the MC, with values of 28 and 29 MPa respectively, while for the ETC-30 and
ETC-40 concretes the values were 22 and 23 MPa, and the ETC-50 mixture presenting the
lowest compressive strength value with 13 MPa. These compressive strength values in
the first 28 days coincide with the findings of various studies, where it has been shown
that at 28 days sustainable or ecological concretes that substitute 20% of the CPC with
supplementary materials obtain the best performance in compressive strength testing, as
demonstrated by Mohamed [71], who found that a ternary concrete mixture made with
the substitution of 10% FA + 10% silica fume for Portland Cement presented the highest
resistance to compression in a study that covered substitutions from 10% to 50% of fly ash
and silica fume for the fabrication of ternary and binary concretes exposed to different types
of curing. Arif et al. found that sugar cane bagasse ash used as filler in concretes provided
substantial improvements to compressive strength at substitution percentages of up to
≈20% [72]. In other studies, it has been shown that concretes with high FA contents—30%,
40% or higher—presented higher compressive strength values than the control mix, but
this was due to the use of superfluidifiers and concretes with a low w/c ratio, equal to or
less than 0.40 [73,74].
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At 90 days the differences between the MC and the ETC-10, ETC-20 and ETC-30
concretes were minimal; however, lower values were observed for the specimens of the
ETC-40 and ETC-50 mixtures. In percentages, the difference in compressive strength
compared to the MC at 90 days was 7.22, 3.24, 1.07, 21.42 and 38.41% for the ETC-10,
ETC-20, ETC-30, ETC-40, and ETC-50 mixtures respectively, with the ETC-30 mixture
presenting the best performance. This result matches the findings of Le et al. [75], who
concluded in their study that the compressive strength of a sample substituting OPC
with 30% SCBA and 30% BFS was comparable to that of the control after 91 days [75].
At 180 days, the ETC-30, ETC-20 and ETC-40 specimens had a higher compressive strength
than the specimen made with the MC control mixture; these results coincide with the
literature, which indicates that at late ages the high amorphous silica content in the SCBA
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reacts with the calcium hydroxide product of the cement hydration process, giving rise to
the formation of additional hydrated calcium hydroxide (C-S-H), which contributes to the
increase in compressive strength over time [76]. In another investigation it was found that
a concrete mix made with 25% of cement replaced with processed slag, which presented
the highest SiO2 content, obtained a superior compressive strength performance, reaching
a value greater than 70 MPa at 90 days, which confirms the contribution to the increase
in compressive strength due to pozzolanic material. A high content of SiO2 presents
a high capacity to yield tobermorite (calcium hydrosilicates (C–S–H)) by reacting with
portlandite (a product of concrete mineral hydration) [77]. With the results of compressive
strength at 180 days, it can be concluded that the optimal percentage of substitution of CPC
with a combination of SCBA-SF is 30%, followed by 20%, with increases in compressive
strength of 7.13 and 5.58% respectively compared to the MC, and in third place the ETC-40
mixture, which presented a compressive strength equal to the MC. Only the mixture of
Ecofriendly Ternary Concrete with 50% substitution of SCBA-SF (ETC-50) failed to develop
a mechanical resistance close to that of the control mix, reaching a resistance of 20.09 MPa
at 90 days.
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3.4.2. Rebound Number

Figure 9 shows the results obtained from the rebound number tests to determine the
compressive strength. It can be seen that the values obtained for the MC are similar to
those presented in Figure 8: at the age of 28 days the control had an approximate value
of 33 MPa for both simple compressive strength and rebound number tests. In the 7 day
test, the ETC concretes reported compressive strength values lower than the MC by higher
percentages than those reported in Figure 8, while over time these values increased in the
five ETC mixtures, with this behavior likely being due to the effect of using materials with
pozzolanic characteristics such as SCBA and SF. Unlike the compressive strength test using
the cylinder, the values reported using the sclerometer for the five ETC concrete mixtures
at the ages of 28, 90 and 180 days were always lower for the five ETC mixtures than for the
MC; however, the mixtures with the best performances were still ETC20 and ETC30, which
confirms the behavior in the compression test reported in Figure 8, where it was shown
ETC20 and ETC30 were the best ETC mixtures at 90 and 180 days. The results obtained
with the non-destructive rebound number test coincide with those reported in the literature
on the use of said test to approximate the mechanical resistance of concrete elements in
situ or in the laboratory, as reference values of resistance which must be supported by
compressive strength tests of the evaluated concretes [78,79].
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3.4.3. Electrical Resistivity of Concrete Mixtures

Figure 10 shows the results obtained from the Electrical Resistivity test of the six
concrete mixtures in this study. The tests were carried out at the ages of 7, 14, 28, 90 and
180 days. In Table 4 it can be seen that at the age of 7 days, almost all mixtures were found
to have high corrosion risk, with values less than 10 kΩ-cm for the specimens of the MC,
ETC-10, ETC-20, ETC-30 and ETC-40, mixtures. These values coincide with findings from
the literature, where at early ages resistivity values are lower [80]. The only specimen that
presented a higher value was the ETC50 mixture, reporting a resistivity of 13.45 kΩ-cm
after 7 days, which indicates a moderate risk of corrosion. At the age of 14 days, all
concretes showed a minimal increase in Electrical Resistivity, but both the ETC-40 and
ETC-50 mixtures presented electrical resistivity values greater than 10 kΩ-cm, representing
a moderate corrosion risk. At the age of 28 days, the benefit of the combination of the SCBA
and the SF as pozzolanic materials was observed, as the durability of the ETC-20, ETC-30,
ETC-40 and ETC-50 mixtures increased, with increases in the electrical resistivity values
correlating with the percentage of substitution, with values that placed all of them in the
moderate corrosion risk zone. ETC-20 and ETC-30 possessed electrical resistivities of 13.43
and 20.03 kΩ-cm while ETC-40 and ETC-50 presented the best performance with values of
47.5 and 51.4 kΩ-cm respectively. This is in agreement with the results of Bagheri et al.,
who evaluated concretes with different percentages of substitution of Portland cement with
FA and SF, and found that the concretes with 20% and 30% FA and SF possessed electrical
resistivity values at 28 days two times greater than that of the control mix [81]. At the
age of 90 days, all Ecological Ternary Concretes (ETC-10, ETC-20, ETC-30, ETC-40, ETC-
50ETC) reached the stage of moderate corrosion risk. The ETC-40 and ETC-50 concretes
continued to present the best performances, with electrical resistivity values of 179.56 and
170.24 kΩ-cm respectively.

Finally, at the age of 180 days, the concretes that presented low electrical resistivity
were the control mixture MC with a value of 10.88 kΩ-cm, followed by the concretes
ETC-10 and ETC-20 with values of 12.74 and 54.39 kΩ-cm respectively. The concretes that
presented the best performances were the ETC-30, ETC-40 and ETC-50 specimens, with
values of 143.53, 191.44 and 156.20 kΩ-cm respectively. As can be seen, the Ecofriendly
Ternary Concrete with 40% substitution of the SCBA-SF combination for Portland cement,
mixture ETC-40, showed the best performance; this increase in electrical resistivity agrees
with the results of Sadrmomtazi et al. [82], showing that including silica fume has positive
effects on the fiber–matrix transition zone structure while increasing mechanical strength
and specific electrical resistivity by up to 20 times compared to controls, due to the produc-
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tion of pozzolanic reactions and decreased concentration of portlandite, which increases
uniformity and density as well as bond quality. It is observed that all ETC mixtures per-
formed better in the electrical resistance test compared to the compression resistance test,
and this behavior coincides with a report in the literature and is associated with the fact
that the total volume of concrete pores is not reduced by pozzolanic reactions, but the pore
structure becomes more discrete [83].
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4. Conclusions

In all ETC mixtures there was a decrease in workability, which is attributed to the
demand or absorption in excess of water due to pozzolanic materials. However, there
were no significant variations in temperature or unit weight in the fresh state compared to
the control mixture. The tested slump, temperature and unit weight of the ETC mixtures
in their fresh state met requirements for the construction of civil works, such as bridges,
pavements, buildings, dams, etc.

The results of compressive strength at 180 days indicated that the optimal percentage
of substitution of CPC by combination of SCBA-SF was 30% followed by 20%, due to their
increases in compressive strength of 7.13 and 5.58% respectively compared with the MC.
The ETC-40 mixture also presented a compression resistance equal to that of the MC.

The rebound number test is a non-destructive test that can be used to evaluate the
compressive strength of ETC concretes in the laboratory and on site, with the reservation
that they are not considered as definitive values but rather as approximations, and it is
always recommended to supplement rebound number tests with simple compression tests
on cylinders and cubes.

All ETC mixtures presented better results in the electrical resistance test compared to
the compression resistance test, suggesting that the ETC concretes were more durable and
had a higher resistance to corrosion compared to the control mixture.

The Eco-friendly Ternary Concrete with 50% substitution of SCBA-SF (ETC-50) dis-
played a resistance of 20.09 MPa at 180 days, sufficient for the construction of minor works.

The use of ETC concretes has a very significant sustainability impact by contributing to
the reduction of CO2 emissions caused by Portland cement, replacing up to 50% of it with
SCBA and SF waste and generating a culture of recycling in countries such as Mexico for
the use of waste that, like SCBA, has lacked a defined use and previously been discarded
as garbage.
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