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Abstract: A novel coordination polymer {[Ho2(DHTA)3(H2O)5]·H2O}n (1) was synthesized by
hydrothermal synthesis (DHTA = 2,5-dihydroxy-1,4-terephthalic acid anion). The crystallographic
data show that complex 1 crystallizes in a triclinic system with space group P 1, with a = 9.6617(17)
Å, b = 11.902(2) Å, c = 13.284(2) Å, α = 100.617(3)◦, β = 92.765(2)◦, γ = 106.715(2)◦, V = 1429.6(4) Å3,
Z = 2, C24H24O24Ho2, and Mr = 1026.290. Complex 1 contains two eight-coordinated metal centers
Ho(III). The TGA results show that the weight loss can be ascribed to the removal of the organic
component from 400 to 650 ◦C. At the temperature above 650 ◦C, the residue is Holmium(III) oxide
(Ho2O3). The luminescent results reveal that the complex has potential application as a new green
luminescence material.

Keywords: holmium(III); luminescence property; coordination polymer; crystal structure; 2,5-
dihydroxyl-1,4-terephthalic acid

1. Introduction

Metal-organic frameworks (MOFs) are organic–inorganic hybrid materials which are
composed of inorganic nodes connected by organic ligands through the self-assembly
process [1]. In recent years, MOFs have received a considerable amount of attention
due to their devise properties: luminescence, catalysis, magnetism, and gas adsorption,
etc. [2,3]. In particular, MOFs have shown their applications in the luminescence area
over the past decades; many strategies have been proposed to enhance the luminescence
properties of the MOFs and have obtained some advanced material to detect heavy-metal
ions and organic pollutants [4,5]. For example, Zhao et al. have used a solvothermal
synthesized Cu3(BTC)2 (HKUST-1) to adsorb Ce3+ from water. These results demonstrated
a significantly intensive adsorption capacity and a rapid removal rate [6]. Yang et al.
reported a robust luminescent zirconium-based MOF, PCN-128Y, which can serve as an
excellent platform for both detection and removal of antibiotic tetracycline, it also exhibits
favorable adsorption capability toward tetracycline in water [7]. In addition, rare earth
metals, as functional metal centers, are attracting more and more attention due to their
fantastic coordination properties and special chemical characteristics. Rare earth metals are
fundamental to many industrial applications, which can be utilized as positive charged
metal ions in MOFs, and they have shown immense potential in luminescence material due
to their enhanced luminescence. One example of this is a 3D holmium(III) coordination
framework based on the pyridine 2,6-dicarboxylate and oxalate ligands by Feng et al. [8].
Preliminary studies reveal this complex, with weak ferromagnetic couplings within the
two adjacent magnetic centers bridged through oxalato group, displays characteristic
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metal-centered fluorescence in solid state. In 2011, Czaja et al. reported the luminescence
properties of rare-earth ions of natural fluorite; they proposed the most effective excitation
mechanism for holmium ion emission [9]. It is demonstrated that λexc = 415 nm evidently
enhances the green luminescence of Ho3+ ions, that is, the 5S2→5I8 transition. In addition,
terbium and holmium co-doped yttrium phosphate as non-contact optical temperature
sensors was successfully obtained by Fang and co-workers [10]. Thus far, coordination
polymers of various structures have been obtained from metal ions, and carboxylic acid
ligands through coordination bonds or intermolecular interactions, revealing potential
applications in the field of functional materials [11]. The selection of appropriate organic
ligand is also of significance to promote the luminescence properties of the MOFs [12–17].
Rare earth ions have high affinity for hard donor atoms and organic ligands containing
oxygen or oxygen–nitrogen heteroatom, especially multicarboxylate [18]. In the past several
years, carboxylic acid ligands, such as 2,5-dihydroxyl-1,4-terephthalic acid (DHTA), are of
particular interest as linkers for luminescent MOFs synthesis. DHTA possess advantages
over other organic ligands such as 1,10-phenanthroline in terms of multiple coordination
sites, strong coordination ability, and high variety of coordination modes [19]. Though there
are some reports about the carboxylic acid ligands coordinated with rare earth metals, the
holmium(III) coordination frameworks are rarely reported. Thus, the combination of Ho(III)
with DHTA may obtain new complexes with novel structures or particular properties. In
this work, we present a new type of coordination polymer, {[Ho2(DHTA)3(H2O)5]·H2O}n
(DHTA = 2,5-dihydroxyl-1,4-terephthalate), which is composed of Ho(III) and DHTA, in
which the latter acts as both bidentate and tridentate bridging ligand. 1 was synthesized
under hydrothermal conditions. The structure of 1 was confirmed by elemental analyses, IR
spectrum, single-crystal X-ray diffraction analyses, and powder X-ray diffraction (PXRD).
In addition, the TGA and luminescence property analysis revealed that 1 has high thermal
stability and remarkable luminescence property. This work provides a new method to
synthesize materials with excellent luminescent properties.

2. Experimental
2.1. Materials and Method

DHTA was synthesized according to reference [20,21]; the solvents were purified by
distillation before use, and other reagents were used directly without further purification.
Ho(NO3)3•6H2O was obtained from Aladdin chemical reagent company (Energy Chemical
Co., Ltd., Shanghai, China).

2.2. Characterization

Single-crystal X-ray data were obtained on a Bruker Smart Apex II CCD (Bruker AXS
GmbH, Karlsruhe, Germany) based diffractometer equipped with graphite monochro-
matized Mo-Kα radiation (λ = 0.71073 nm) at 296 K. The C, H, N, and O elemental
analyses were performed on a Perkin-Elmer 2400 elemental analyzer (PerkinElmer, Inc.,
Watham, MA, USA). The luminescence properties have been studied using a Hitachi F-
4600 spectrophotometer (Hitachi High-Tech Science Corporation, Tokyo, Japan) in the
solid state at room temperature. In order to ensure the same conditions of fluorescence
characterization of complex 1 and DHTA, we took the same amount of their samples and
then ground them in a mortar for five minutes, respectively. The slit widths of excitation
and emission were 2 nm. 3D excitation scans of the luminescence of 1 has been recorded
400 nm ≤ λex ≤ 700 nm. The wavelength was scanned at 20 nm/s; a solid sample of 1 was
locked between two glass slides and then tested. The IR spectrum was recorded with a
Shimadzu IR-408 spectrophotometer (Shimadzu Corporation, Kyoto, Japan) using the KBr
pellet in the range of 4000–400 cm−1. The thermal stability experiment was conducted on a
TG SDT2960 thermal analyzer (TA Instruments, DE, USA) at a heating rate of 10 ◦C/min
under nitrogen from room temperature to 800 ◦C. PXRD was tested on a Rigaku RINT
Ultima III diffractometer (Rigaku Industrial Corp., Tokyo, Japan) with Cu-Kα radiation
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(λ = 1.5418 Å) by depositing powder on glass substrate, from 2θ = 1.5◦ up to 60◦ with
0.02◦ increment.

2.3. Synthesis of DHTA

The preparation of the DHTA is depicted in Scheme 1. For a typical process, 22 g
(0.11 mol) of dimethyl 1,4-cyclohexanedione-2,5-dicarboxylate was dissolved in glacial
acetic acid (120 mL) in a four-neck flask and stirred for an hour to obtain a homogeneous
solution. Subsequently, the solution was heated to 120 ◦C under reflux. After the addition
of I2 (0.3 g, 1.18 mmol) and potassium iodide (0.3 g, 1.8 mmol), 6 mL (57 mM) of hydrogen
peroxide was added to the system dropwise. After refluxing, 50 mL of water was added
into the solution and the temperature of the system was maintained 100 ◦C for 2 h. The
resulting product (yellow powder) was filtered and washed with distilled water three times
and finally dried at 75 ◦C for 12 h to obtain dimethyl 2,5-dihydroxyterephthalate. Next,
20 g (0.1 mol) of the dimethyl 2,5-dihydroxyterephthalate was mixed with water (100 mL)
by stirring in a three-neck bottle, resulting in a yellow thick liquid. Subsequently, 8 g of
sodium hydroxide was added into the above system. The solution was heated to 100 ◦C
under nitrogen purge and maintained for 2 h. Then, 57 mM hydrochloric acid was added
to the solution dropwise until the pH of the solution was adjusted to 4.5. The resulting
product was filtered, washed with distilled water 3 times, and the DHTA was obtained
after vacuum drying at 80 ◦C for 24 h (yield: 14.4 g, 80.16%). Anal. Calcd. for C8H6O6 (%):
C, 48.50; H, 3.05; O, 48.45. Found (%): C, 48.38; H, 3.09; O, 48.53. The standard uncertainties
were calculated to be 0.06, 0.02, and 0.03 for C, H, and O, respectively. IR (KBr): 3076,
1647, 1459, 1429, 1359, 1186, 897, 850, and 755 cm−1. 1H NMR (400 MHz, DMSO): δ 10.887
(q, 2H), 7.290 (q, 2H), and 3.708 (q, 2H).
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2.4. Synthesis of {[Ho2(DHTA)3(H2O)5]·H2O}n (1)

The complex {[Ho2(DHTA)3(H2O)5]·H2O}n (1) was prepared by a hydrothermal
method: Ho(NO3)3·6H2O (0.1 mmol, 45.9 mg) and DHTA (0.15 mmol, 29.7 mg,) were
firstly dissolved in 12 mL distilled water and stirred for 0.5 h to obtain a homogeneous
solution. Then, 5 mL of NaOH solution (0.25 M) was added to the solution and stirred for
another 0.5 h at room temperature. The resultant solution was transferred into a 25 mL
Teflon-lined stainless-steel autoclave. After hydrothermal treatment at 150 ◦C for 3 days,
the reaction mixture was cooled to room temperature and the resultant product was filtered
by distilled water 3 times. The prepared 1 was primrose yellow block crystals. Yield:
30.0 mg (65.4% based on Ho(III)). Anal. Calcd for C24H24Ho2O24: C, 28.14%; H, 2.41%, and
O, 37.26%; Found: C, 28.08%; H, 2.36%; and O, 37.42%.

2.5. X-Ray Crystallography

Single-crystal diffraction data were collected at room temperature on an XRD-6100
lab diffractometer using a microfocus Mo Kα emission rays (λ = 0.71073 Å). One primrose
yellow single crystal with dimensions of 0.150 mm × 0.118 mm × 0.077 mm was selected
and mounted on a goniometer head using paraffin oil. A total of 6362 reflections were
collected in the range of 1.569◦ ≤ θ ≤ 26.04◦ using the ω-2θ scan mode, of which 5682
were unique with Rint = 0.0232. The program CrysalisPro was used to control the data
collection and for the subsequent data reduction [22]. The crystal structure was solved
using the direct methods program SHELX [23] and refined using SHELXL in Olex2 [24].
All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were generated
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geometrically and treated by a mixture of independent and constrained refinement. The
crystal data and refinement details of the complex are summarized in Table 1. CCDC
1995993 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (Accesse is 20 October 2021).

Table 1. Crystal Data and Structure Refinement for complex 1.

Complex 1

Empirical formula C24H24O24Ho2
Formula weight 1026.29
Crystal system Triclinic

Space group P 1

Unit cell dimensions
a = 9.6617(17) Å, α = 100.617(3)◦

b = 11.902(2) Å, β = 92.765(2)◦

c = 13.284(2) Å, γ = 106.715(2)◦

Volume 1429.6(4) Å3

Z 2
Density (calculated) 2.384 g/cm3

F(000) 982
Theta range for data collection 1.569 to 26.04◦

Independent reflections 6362 [Rint = 0.0232]
Goodness-of-fit on F2 1.078

Final R indices [I > 2 sigma(I)] R1 = 0.0321, wR2 = 0.0819
R indices (all data) R1 = 0.0360, wR2 = 0.0835

3. Results and Discussions
3.1. Structure Description

The coordination environment of Ho(III) in 1 is depicted in Figure 1 and the corre-
sponding crystallographic data are summarized in Table 1. Independent parts of the unit
cell of 1 are composed of two independent Ho(III) centers, seven DHTA ligands, and six
water molecules. One of the DHTA acts as tridentate bridging ligand, connecting the two
Ho(III) through one hydroxyl oxygen atom and two carbonyl oxygen atoms; the other
DHTA ligands around the Ho(III) are all bidentate ligands. The two Ho(III) are located
in two different environments, and their coordination modes are different, but both are
eight-coordinated. To be specific, the Ho1 is bound to eight oxygen atoms, five of which
are from four different DHTA ligands and the other three are from three aqua ligands,
forming a slightly distorted square antiprism (Figure 2). Similarly, the Ho2 is bound to
eight oxygen atoms, among which six are from four different DHTA ligands as well, and
the remaining two oxygen atoms come from aqua ligands. The coordination modes form a
slightly distorted square antiprism. Interestingly, the DHTA ligands possess four different
coordination manners (A, B, C, and D), as shown in Scheme 2: the DHTA which contains O1
atom is connected with four Ho(III) atoms (manner A), while DHTA containing O10, O16,
or O21, are connected the two Ho atoms (manner B, C, or D, respectively). In coordination
mode C, the DHTA bridged the adjacent Ho(III) ions and extended the crystal in different
directions to form a three-dimensional supramolecular network structure (Figure 3). The
selected bond lengths and bond angles are listed in Table S1.

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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name given in cif).

From Table S2, the distance between Ho-Ocarboxyl is 2.238 to 2.500 Å, and the distances
between Ho-Owater vary from 2.316 to 2.594 Å, which is in agreement with the bond
lengths observed in other Ho(III) complexes [25]. In the network structure, there are
two types of hydrogen bond, namely, C-H···O and O-H···O (presented in Figure 4 and
Table S2). In addition, two types of intermolecular π···π and C-H···π interactions exist in
the arrangement; as shown in Table S3, the hydrogen bonds and π···π interactions enriched
the architecture of 1. The distances between the center of gravity of the π rings (Cg···Cg
distance) ranges from 3.730 to 3.742 Å, and the distances between C atom and Cg of the
π rings (C···Cg distance) range from 3.371 and 3.850 Å. Generally, the co-existence of
π···π, [26–28] C-H···π interactions and hydrogen bonds makes complex 1 become more
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stable, which contributes to the forming of a more stable three-dimensional network
structure, as shown in Figure 3.
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3.2. IR Analysis

The IR spectra of the complex 1 and DHTA are shown in Figure 5. From the infrared
spectrum of complex 1, the main characteristic peaks of 1 are 3392, 1587, 1503, 1441, 1371,
1204, 912, 870, and 786 cm−1, and the main characteristic peaks of DHTA are 3076, 1647,
1459, 1429, 1359, 1186, 897, 850, and 755 cm−1, respectively. There are wide and strong
absorption bands in the range of 3500–3200 cm−1; it should be ascribed by the characteristic
stretching vibration of hydroxyl groups from water molecules, the association of hydrogen
bonds may result in the broadening of the peaks. The band of the COO group from DHTA
ligand at 1647 cm−1 completely vanished in the spectrum of the complex 1, indicating no
free carboxyl group in complex 1. The peak at 1587 cm−1 was assigned to asymmetric
vibrations of the COO group, and the peaks at 1371 cm−1 was assigned to symmetric
vibrations of the COO group. The shift shows that carboxyl groups participate in the
coordination [29,30]. The characteristic peaks of substituted aromatic rings are mainly at
912, 870, and 786 cm−1. IR spectrum of the complex was consistent with the structure
analysis from the X-ray diffraction.

3.3. Thermogravimetric Analysis

The stability of 1 was investigated by thermogravimetric (TGA) analysis experiment.
In the temperature range of 40–1000 ◦C, the complex 1 experienced two significant weight
loss processes. As shown in Figure 6, from 40 ◦C to 95 ◦C, it shows a weight loss of 2.00%,
which is ascribed to the removal of one free water molecule (calculated 1.80%). Between
152 and 200 ◦C, it shows a weight loss of 8.90%, which is ascribed to the removal of five
coordinating water (calculated 8.80%). After 250 ◦C, it is due to the decomposition of
molecules of the organic component. Surprisingly, we found that the weight loss did not
stop, even at 1000 ◦C; this phenomenon may be due to the strong thermal stability of the
complex, resulting in slow weight loss.



Crystals 2021, 11, 1294 7 of 10Crystals 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

 

Figure 5. IR spectra of 1 and DHTA. 

3.3. Thermogravimetric Analysis 

The stability of 1 was investigated by thermogravimetric (TGA) analysis experiment. 

In the temperature range of 40–1000 °C, the complex 1 experienced two significant weight 

loss processes. As shown in Figure 6, from 40 °C to 95 °C, it shows a weight loss of 2.00%, 

which is ascribed to the removal of one free water molecule (calculated 1.80%). Between 

152 and 200 °C, it shows a weight loss of 8.90%, which is ascribed to the removal of five 

coordinating water (calculated 8.80%). After 250 °C, it is due to the decomposition of mol-

ecules of the organic component. Surprisingly, we found that the weight loss did not stop, 

even at 1000 °C; this phenomenon may be due to the strong thermal stability of the com-

plex, resulting in slow weight loss. 

 

Figure 6. TG curve of complex 1. 

3.4. PXRD Analysis 

PXRD analysis of complex 1 was performed at room temperature. The PXRD pattern 

of complex 1 as-synthesized are basically consistent with the simulated samples (Figure 

7), though slightly different from the simulated pattern at the low angled peaks due to 

minor impurities. 

Figure 5. IR spectra of 1 and DHTA.

Crystals 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

 

Figure 5. IR spectra of 1 and DHTA. 

3.3. Thermogravimetric Analysis 

The stability of 1 was investigated by thermogravimetric (TGA) analysis experiment. 

In the temperature range of 40–1000 °C, the complex 1 experienced two significant weight 

loss processes. As shown in Figure 6, from 40 °C to 95 °C, it shows a weight loss of 2.00%, 

which is ascribed to the removal of one free water molecule (calculated 1.80%). Between 

152 and 200 °C, it shows a weight loss of 8.90%, which is ascribed to the removal of five 

coordinating water (calculated 8.80%). After 250 °C, it is due to the decomposition of mol-

ecules of the organic component. Surprisingly, we found that the weight loss did not stop, 

even at 1000 °C; this phenomenon may be due to the strong thermal stability of the com-

plex, resulting in slow weight loss. 

 

Figure 6. TG curve of complex 1. 

3.4. PXRD Analysis 

PXRD analysis of complex 1 was performed at room temperature. The PXRD pattern 

of complex 1 as-synthesized are basically consistent with the simulated samples (Figure 

7), though slightly different from the simulated pattern at the low angled peaks due to 

minor impurities. 

Figure 6. TG curve of complex 1.

3.4. PXRD Analysis

PXRD analysis of complex 1 was performed at room temperature. The PXRD pattern
of complex 1 as-synthesized are basically consistent with the simulated samples (Figure 7),
though slightly different from the simulated pattern at the low angled peaks due to
minor impurities.

3.5. Luminescent Properties

The luminescence property of complex 1 in the solid state was investigated at room
temperature. As shown in Figure 8, the maximal emission peak appears at 514 nm
(λex = 415 nm) and it displays a green color. In contrast, free DHTA has the maximum
emission peak at 476 nm (λex = 325 nm), with a blue-shift of 38 nm compared with complex
1. Moreover, the luminescence intensity of the complex 1 is 6000, which is much higher
than DHTA of 5250. Moreover, the luminescence intensity of the complex is much higher
than that of the ligand. Compared with the spectrum of DHTA, the spectrum of complex
1 has a similar emission band and location, indicating that the intra-ligand transition is
responsible for the emission of complex 1 [31], the enhancement and the red-shift of the
luminescence emissions in complex 1 may be attributed to the increased energy transfer
efficiency between the ligand and metal ions after the formation of the complex, which
reduces the energy loss and further enhances the rigidity of the molecule, resulting in a
significant increase in luminescent intensity. These results suggest that complex 1 may
have potential applications as a new green luminescence material.
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4. Conclusions

In this work, we report a novel three-dimensional Ho(III) coordination polymer
composed of DHTA and coordination water molecules. In the structure, one DHTA ligand
acts as tridentate bridging ligand to connect the two Ho(III) through one hydroxyl oxygen
atom and two carbonyl oxygen atoms, and the other six DHTA ligands coordinate with
holmium atoms as bidentate ligands, and further form a stable 3D supramolecular network
structure. IR spectrum indicates that the carboxyl group is coordinated to Ho(III) ion. The
PXRD analysis showed that complex 1 was almost pure crystalline phase. According to
TGA analysis, the complex 1 possesses a high thermal stability and good luminescence
property. It also suggests that rare earth coordination polymers involving DHTA ligand
and Ho(III) ions could contribute to the study of luminescence materials. These properties
are expected to have further applications in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11111294/s1, Table S1: Selected Bond Lengths (Å) and Bond Angles (◦) of 1, Table S2:
Hydrogen Bond Length (Å) and Bond Angle (◦) of 1, Table S3: Short Ring-Interactions with Cg-Cg
Distances < 4.0 Å, α < 20.000◦ and β < 60.0◦. And the Analysis of C-H···Cg (π-Ring) Interactions
(H···Cg < 3.0 Å. γ < 30.0◦) for 1.
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