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Abstract: The analysis of line broadening in X-ray and neutron diffraction patterns using profile
functions constructed on the basis of well-established physical principles and TEM observations
of lattice defects has proven to be a powerful tool for characterizing microstructures in crystalline
materials. These principles are applied in the convolutional multiple-whole-profile (CMWP) procedure
to determine dislocation densities, crystallite size, stacking fault and twin boundary densities,
and intergranular strains. The different lattice defect contributions to line broadening are separated
by considering the hkl dependence of strain anisotropy, planar defect broadening and peak shifts,
and the defect dependent profile shapes. The Levenberg-Marquardt (LM) peak fitting procedure can
be used successfully to determine crystal defect types and densities as long as the diffraction patterns
are relatively simple. However, in more complicated cases like hexagonal materials or multiple-phase
patterns, using the LM procedure alone may cause uncertainties. Here, we extended the CMWP
procedure by including a Monte Carlo statistical method where the LM and a Monte Carlo algorithm
were combined in an alternating manner. The updated CMWP procedure eliminated uncertainties
and provided global optimized parameters of the microstructure in good correlation with electron
microscopy methods.

Keywords: X-ray line profile analysis; neutron line profile analysis; CMWP; global optimum;
dislocation densities; grain size; planar defects; Monte Carlo method

1. Introduction

Line profile analysis (LPA) of X-ray and neutron diffraction patterns has proven to be a powerful
method for quantitative and qualitative characterization of lattice defects in crystalline materials [1-7].
Formally, there are two different approaches for treating diffraction line broadening. The top-down
approach uses closed-form profile functions, like Gaussian, Lorentzian, pseudo-Voight, or Pearson-VII,
for fitting peak profiles [8-11]. Since these profile functions are of ad hoc mathematical character, it is
difficult to establish a sound correlation between specific lattice defects and the parameters of these
functions. The bottom-up approach is based on physical profiles developed by using the physical
properties of specific lattice defects [2-6,12-15]. Size profile calculation is based on optical principles [16]
and the concept of column lengths [17,18]. Size distribution is taken into account, assuming log-normal
size distribution [6,12,19]. Strain broadening is described by the Krivoglaz—Wilkens theory of
diffractions in dislocated crystals [2,3,20,21]. The Krivoglaz-Wilkens theory has been extended to
heterogeneous dislocation distributions [4,22-24], to small dislocation loops in irradiated crystals [25],
and to infinitesimal dislocation dipoles in strongly deformed crystals [26]. Line broadening caused
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by planar defects has been treated theoretically [27-29] and modeled numerically for twinning and
staking faults [30-32]. Broadening related to elastic intergranular strains is modeled by taking into
account the elastic anisotropy of the materials [25,33,34].

The Levenberg—-Marquardt optimization procedure has been used successfully in innumerable
cases, cf. [5-7,19,25-35] to determine crystal defect types and densities. In the present work,
we developed a more robust procedure where the Levenberg-Marquardt and the Monte Carlo
methods are applied consecutively to provide the global optimum values of the physical parameters
characterizing microstructures. In a previous short letter-type report [15], the basics of the method
were outlined briefly. Here, we provide a detailed and more elaborate description of the procedure
and show its power by analyzing the depth dependence of the dislocation density, the planar defect
density, and the grain size in a Zr matrix and in ZrH precipitates in a hydrated Zr specimen.

2. Fundamental Principles of the Convolutional Multiple-Whole-Profile (CMWP)
Optimization Procedure

The convolutional multiple-whole-profile (CMWP) optimization method is based on physically
modeled profile functions of different microstructure elements [12-15]. The two fundamental
microstructure elements are size and strain [1]. In diffraction patterns they combine as convolution,
and in a particular hkl diffraction peak they are

Tna(s) = I () * I, (s), )

where Iikl(s) and Iﬂl(s) are the size and strain profiles. The variable s is

s =K — gnk )

where gy is the fundamental reciprocal lattice vector of the hikl reflection and K is an arbitrary reciprocal
space vector. Diffraction peaks are three-dimensional in reciprocal space [35]. In powder diffraction
experiments, the intensity distributions are integrated along the surface perpendicular to the diffraction
vector, gyx, and Equations (1) and (2) reduce to one dimension in the radial direction.

Tnia(s) = Iy, (s) * I, (s) 3)

where s = 2(sinf — sinOg)/A, O and Op are the diffraction angle and the exact Bragg angle of the ikl
peak, A is the wavelength of radiation and * indicates convolution. The equivalent of Equation (1) in
Fourier space is

Apg(L) = A5 (L)A], (L) 4)

where L is the Fourier variable. If planar defects, intergranular strains, and instrumental effects become
substantial, the above equation is extended:

Apa(L) = Ay (L) Ay (L) Apg (L) A (L) Ayt (L) )

where Aig (L), AIZ%S (L), and A%‘{?t (L) are the Fourier transforms of the profile functions of planar defects,

intergranular strains, and instrumental effects. The Fourier transforms Aikl(L), Aﬁd (L), Aglg (L), and
AIGS

1¢5(L) are modeled using physical properties of these lattice defects [15,25,30-34], whereas A% (L) is
determined by using measured patterns of defect-free standard materials. The latter can be determined
by measuring the patterns of standard specimens, e.g., of Si, CeO,, diamond, or LaBg standards. The

diffraction pattern is calculated from the inverse Fourier transforms of Ay (L):

Tcuc(20)= thl nglFT—l[Agkl(L) AD (L) APD(L) AICS(L) Ag;jf(L)](ze —201) (6)
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where 6% and [ are the exact Bragg position and the intensity of the ikl reflection. The least-squares

optimization is made by minimizing the weighted sum of squared residuals (WSSR):

hkl
IO

WSSR =} {[lcae(207) + BG(26))] - Iveas (26 /] )

where BG(20;) is the background intensity at 20; and w; are weights applied to the i measured data.
The size profile is calculated by taking into account the shape and size distribution of coherently
scattering domains [17]. Assuming log-normal size distribution, the Fourier transform of size profiles
can be written as [12,19]
mS exp (4 502)

AS(L) = T gy U 15420

m exp( 2, erfe [m \Lim) \/—6]+ |L|3erf [m(\lfgl;n)]

®)

where L is the Fourier variable, m and o are the median and variance of the log-normal size distribution
density function, and erfc is the complementary error function. Equation (8) is valid for spherical
crystallites. The CMWP procedure yields the option to evaluate elliptical flat of long crystallites using
the ellipticity parameter e which is the ratio of the long and short axis of rotational ellipsoids. With m
and o, the arithmetic-, area-, and volume-weighted mean crystallite diameters can be calculated [36].

<X>j=m exp(k(rz) )

where k = 0.5, 2.5, and 3.5 for arithmetic-, area-, and volume-weighted means, respectively, and j stands
for these averages.
The Fourier coefficients of the strain profile are [1]

Apy(L)= exp( - 2PL2g%(e2 ) (10)

where <€§ . ) is the mean square strain (mss). Krivoglaz showed that strain broadening can only be

caused by one-dimensional linear defects [20,21], and calculated (eé . ) for dislocations at small L values:

5 . pCb? D
<égfL>_ 4 ln(L) an

where p, C, and b are the density, the contrast, and the Burgers vector of dislocations, and D is the size
of the crystal. This expression is logarithmically singular with increasing crystal size and is only valid
for small L values. Wilkens [2,3] corrected the expression by replacing the crystal size with the effective
outer cut-off radius of dislocations, R,, and calculated (e§,L> in the entire L range:

pCb*
47

f(n) (12)

<€§,L> =

where n=L/R,. The f(n) function is logarithmic at small L values and hyperbolic at large L values.
The explicit form of f(n) is given in Equations (A6) to (A8) in Reference [2] and is shown in Figure 1.
The figure shows f(n) as a solid blue line, and the logarithmic and hyperbolic components are shown
as dash-dot-dot and dashed lines, respectively.

The profile functions of faulted and twinned crystals consist of several sub-profiles [1]. Typical
sub-profiles of the 311 reflection of copper containing 4% intrinsic stacking faults are shown in
Figure 2 [30]. The number, positions and breadths of sub-profiles depend on the hkl indices
of the fundamental Bragg peaks [1,27-32]. In the CMWP procedure, the shifts and breadths of
the sub-profiles are parameterized as a function of the density of specific planar faults or twin
boundaries [30,31]. The fractions of the sub-profiles are based on the multiplicities within the /I
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reflection. The shifts and breadths of the sub-profiles are given by fifth-order polynomials of the planar
fault density. The coefficients of the polynomials, along with the fractions of sub-profiles, are listed in
the materials’ specific parameter tables. CMWP uses these tables to evaluate the density of planar
defects. The parameter tables are free to edit by users. Based on theoretical considerations, it was shown
that the sub-profiles are the sum of a symmetrical and an anti-symmetrical Lorentzian function [30,31].
The theoretical derivations were verified by numerical simulations using the DIFFaX software [32].
The anti-symmetrical component of the profile function is produced by interference between two
overlapping sub-reflections in reciprocal space. One of these sub-reflections corresponds to the parent,
whereas the other corresponds to the twin crystal. The symmetrical and the anti-symmetrical parts
of the sub-reflections are correlated with each other and can be characterized by a breadth and an
anti-symmetry parameter [27]. These two values are also parameterized as a function of stacking fault
and twin density, and are included in the parameter tables freely available through the web [30,31].

Figure 1. The Wilkens function [2] (blue curve). The dot-dot-dash line is the logarithmic part, as in
the Krivoglaz approximation [21]. The dash curve is the hyperbolic part. (Copyright by courtesy of
Ribarik [12].)

Figure 2. An intuitive schematic interpretation of the dislocation dipole character parameter, M = Re 4/p
(a) Random dislocation distribution, where M )) 1. (b) Dislocations arranged in strong dipole
configuration where M ({ 1. The size of the regions of the material in (a) (red circle) and (b) (gray circle)
and the number of plus and minus dislocations (up and down Ts) in the two regions are the same.
The red arrows are for Re and the blue double arrows are for the average dislocation distance.

2.1. Physical and Secondary Parameters in the CMWP Procedure

The aim of the CMWP procedure is the qualitative and quantitative characterization of
microstructures in crystalline materials. The crystallographic structure of the different components
in the materials is assumed to be known. In this sense, CMWP is different, but complementary to
Rietveld methods. The parameters used in the optimization procedure are divided into two groups
of (i) physical and (ii) secondary ones. Physical parameters include the size distribution parameters,
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m and o, the dislocation parameters, p and M, the planar defect densities, & or {3 for stacking faults of
twin boundaries, and the elastic intergranular strain, ¢lGS. The peak positions and peak intensities are
also fitted during the optimization procedure; however, these parameters are only used to improve the
match between the measured and calculated diffraction patterns.

2.2. The Density and the Arrangement Parameter of Dislocations

Krivoglaz and coworkers [20,21] showed that the Fourier transform of the strain profile is a
logarithmic function of K as long as D/L is larger than unity, where D is a number of length dimensions.
In References [20,21] D was suggested to be the grain size. The problem with this definition of D is the
same as in the elastic stored energy of dislocations, which becomes logarithmically singular if the upper
integration limit is set to be the crystal size. In the case of elastic stored energy, this problem is solved by
setting the upper integration limit by the average distance of dislocations [37,38]. Wilkens realized the
correlation between the elastic stored energy of dislocations and strain broadening of diffraction peaks,
and replaced D in the Krivoglaz formula with the effective outer cut-off radius of dislocations, R, [2,3,39].
Wilkens introduced the concept of “restrictedly random” dislocation distributions and calculated the
strain function, f(1), in the entire L range [3]. The concept assumes that the equal number of plus and
minus straight parallel screw dislocations are randomly distributed within cylinders of R, radii, where the
cylinders cover the whole crystal. Since the value of R, depends on the actual dislocation density, Wilkens
introduced the dimensionless parameter M = Re 4/p to describe the dislocation arrangements [3]. The value
of M is large when the dislocations are uncorrelated and arranged randomly and the related strain fields
are of long-range character. In contrast, M is small when opposite-sign dislocations are in strong correlation
close to each other and the related strain fields, due to screening, are of short-range character. An intuitive
schematic illustration is shown in in Figure 2, where 12 dislocations are randomly distributed in Figure 2a
and in a strong dipole configuration in Figure 2b. In the case of random distribution, the strain fields reach
out much further than the average dislocation distance, d s, (the red circle is R, and the blue double
arrow the average dislocation distance), whereas in the case of strong dipole configuration, the strain
fields are strongly screened and R, becomes shorter than d ;... The M value is in direct correlation with
the average dislocation distance:

Re
Aisloc

M = R, \p= (13)

Random or strong correlated dislocation arrangements can be called weak or strong dipole
characters. In the first case, M is larger than unity, M > 1, whereas in the second case, it is close to
unity or even smaller: M < 1. Due to the reciprocity of length scales in crystal and reciprocal space,

V-5Cr-5Ti

30 minat800°C |
M=16 ;"

4 GPay=37
M=5.8

-2.5 -2l.0 I —1[.5 -1[.0 -0.5 0.0
K [L/FWHM]

Figure 3. Intensity distributions of the {110} reflections of a V-5Cr-5Ti alloy deformed by high-pressure

torsion at 4 GPa pressure to the shear strain of y = 37 (red curve) and after heating to 800 °C (blue curve)

with logarithmic intensity scale normalized to the maximum intensities and the FWHM. More details

about material processing and the heat treatments can be found in Reference [40].



Crystals 2020, 10, 623 6 of 19

When the strain fields are of long- or short-range character, the tail regions of diffraction peaks decay
faster or slower. Figure 3 shows the intensity distributions of the {110} reflections of a V-5Cr-5Ti [40]
alloy deformed by high-pressure torsion at 4 GPa pressure to the shear strain of y = 37 (blue curve)
and after.

Heating to 800 °C (red curve) with a logarithmic intensity scale normalized to the maximum and
the FWHM. The dislocation density did not decrease after heat treatment at 800 °C for 30 min, but the
dislocations rearranged into narrow dipole configurations [40]. This rearrangement of dislocations is a
kind of recovery process before recrystallization, when the dislocations annihilate and their density
drops to low values. In the as-deformed state (blue curve), the tail of the peak decays much faster
than in the heat-treated (red curve) recovery state. In the recovery state, the plus-minus dislocations
form close pairs of dipoles for which the efficiently screened strain fields are of short-range character.
The change of the M parameter from 5.8 to 1.6 is the quantitative measure of rearrangement of the
dislocation distribution during the recovery process. When the strain fields are of long-range character,
i.e. M>1, the profile tails will be short and the profiles will have a bell-shaped character. Meanwhile,
when the strain fields are of short-range character, the profile tails will be long and the profiles will
be more of Lorentzian character. This is one of the reasons why attributing Gaussian or Lorentzian
components in a pseudo-Voight profile function to strain or size broadening is physically incorrect.

2.3. The Contrast Factor of Dislocations

The mean square strain is proportional to the contrast, C, of dislocations. In X-ray or neutron
diffraction, the contrast has the same physical meaning and origin as in TEM. It depends on the relative
orientation between the Burgers and line vectors, b and I, the particular diffraction vector, g, and the
elastic constants of the crystal, cjjq: C = C(b,Lg,ci) [2,3,19]. In a polycrystal, or if all possible Burgers
vectors are randomly populated, C can be averaged either over the permutations of the ikl indices or
all possible Burgers vectors [41,42]. In the case of cubic and hexagonal crystals, the average contrast
factors, C, can be written as [5,43,44]

C= Ehoo(1 - qHZ) , (14)

Ciks = Ciko (1 +qux+ g ) , (15)

where Cjg9 and Cjy o are the average contrast factors for of the 100 and hk.0 type reflections, H? = (h2k?
+ h212 + K212)/(h? + k* + 17)%, and x = (2/3)(I/ga)? (a is the basal lattice constant of the hexagonal crystal).
In the CMWP code, Equation (15) is included in a more direct manner as Equation (15a) [12]:

Ciks = Ciko (1 +mH] + azHg_) , (15a)

where H% ={[K? + K2 + (h + K)?YPY[H? + k> + (h + k) + (3/2)(a/c)?I?], H% =Y + K+ (h+ k)? +
(3/2)(a/c)?2], a1 = g1and ap =qp + ql/[(2/3)(c/a)2]. The mss in Equation (12) consists of p, C, and b in the
product. Therefore, only p and the hkl dependent g or g1 and g, can be determined independently via
the CMWP procedure. The scaling factors Ehoo and Ehk‘o can only be refined after the g or q; and g,
values have been determined. The same is true for the Burgers vector values of <a>, <c¢>, and <c+a>
slip modes in hcp materials [15,45]. The effect of changing dislocation density on the elastic constants
and the Ehoo and Ehk.o scaling constants was investigated in References [46,47]. In Reference [47], it was
shown that the effects could change the absolute values of dislocation densities up to 40%.

2.4. Determination of Slip Modes in hcp Crystals

Once the a; and a, parameters are determined, the true dislocation densities, pirue, and the <a>,
<c>, and <c + a> slip mode fractions in /icp materials can be determined [15,45]. A simpler and more
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straightforward method than in References [15,45] is briefly described here. The mss can be written as
the sum of the partial mss values, (efg L), related to the different slip modes:

1 =
(eg)= Z (ehy ) = Z 1 PiC b f(n), (16)

where i stands for the different slip modes. We can assume that the strain function f(n) is global for all
hk.l peaks:

—e 1 =i
p*Cffb*zzzﬂpiCbg (17)
i
off

where p* and C”” are the dislocation density and the contrast factor values given by the CMWP

procedure. Here, Eeff = C*0 1+ alH% + azHi), where C* o is the input value of the scaling factor
and q1* and g,* are the contrast factor parameters given by the CMWP procedure. The fractions, &,
&y and &4y of the partial mss values are

=eff

& = piC b2 /(p .y, (18)
where ) ; &; = 1. The partial dislocation densities will be
pi = &pCp? /(Elbf). (19)

Since Equations (5) must hold for all k. values, &; can be obtained using the least-squares method.

The CMWP procedure allows the evaluation of diffraction patterns consisting of more than one
phase. In such cases, the number of physical parameters increases. In the simplest case of a cubic
single-phase material with a spherical crystallite shape and no planar defects, the number of physical
parameters will be five: p, M, and q for the strain profile and m and o for the size profile. In an hcp
specimen, containing two different phases, the number of physical parameters becomes twelve: p,
M, m, 0, and g1, g5, and pl, M, ml, ¢!, and q%, q;, where the upper index "1’ is for the second phase.
(Note that the major phase is not labeled.) Since line profile analysis evaluates only the shape and
broadening of diffraction peaks, the peak positions and maxima are treated in CMWP as secondary
parameters. The peak shifts caused by faulting or twinning are taken into account by the shifts of the
sub-profiles included in the parameter files for planar defects [30,31].

2.5. Algorithms Used for Solving Equation (7)

Equation (7) requires a non-linear problem with correlations between the different parameters to be
solved. The possibilities are (a) nonlinear least-squares algorithms [48], (b) direct search methods [49],
and (c) statistical methods [50]. The most frequently used nonlinear least-squares algorithms are the
Newton method, the steepest descent or conjugate gradient method, and the LM [51,52] procedure.
The nonlinear least-squares algorithms find the local minimum of the WSSR in the parameter space,
which does not necessarily coincide with the global minimum of the WSSR. Statistical methods [37,39]
can be used to find the global minimum of the WSSR in the parameter space. In order to find the
global minimum in the CMWP procedure, we applied a special MC statistical algorithm and the LM
nonlinear least-squares algorithm in a multiple successive process. The MC method only optimizes
the physical parameters. Based on physical considerations, each parameter is restricted between a
minimum and maximum value which cannot be bypassed; however, these can be edited by the user.
In consecutive iterations, the new parameter values are searched in the proximity of the previous ones:

al, € [“2_1 + AL - A;] (20)
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where i is the parameter index and # is the current iteration number. A}, is defined as

Aé/ n-ng |n ="
Al = A6(1/4)W, ‘ ng<n<mny . (21)
Al |n1 <n
min

The value of A/, is the same during the first ng iterations. During further iterations, A}, decreases
exponentially to Ainin' Once Al reaches Afmn, when 7 reaches 1;, the Al, values remain constant.
For example, if AB/ 1mm = 50, the value of A’min is reached after about 4000 iterations, as shown in
Figure 4. In the special MC algorithm developed for CMWP, we applied a bias towards the prevailing
parameter values in the consecutive iterations. The consecutive parameter values follow a cubic
probability function vs. x/, generated by a random number generator:

. . . 3 .
aiy = AL(2x, -1) +dl_, (22)

where x, € [0,1]. The star in ai; indicates that this consecutive value has not yet been accepted as a
better value than a;_l. The biased cubic probability function is shown schematically in Figure 4b.

@) N (b)

A=0.4 T
0.4 1 4
. 1 !
i \ a, |
A '
n ' i 14 |
! An—Ao(l 4)
0.2 ' ai
' B
'
'
: ]
0.0+ - B
n, n, J
T T T T a A
0 2000 4000 6000 8000 10000 L T
n 0.0 0.5 X 10

Figure 4. (a) Half-breadth of the parameter interval, A, as a function of the number of iterations, 7.
Up to the first 1, steps (horizontal red line), Al, stays constant. Between the steps 1, and 77, Al, decays
exponentially (blue line). Beyond 4, AL stays constant (horizontal green line). (b) Schematic drawing
of the parameter values @), vs. the random generated number, ¥}, in the biased cubic probability
function used in the special MC algorithm.

Due to the biased probability function, the parameter space is sampled on a finer scale around
preceding values. However, as Figure 4b shows, there is also a good chance of sampling remote regions
of the parameter space. The condition for accepting the new parameters, a), is

a

i { aj;, WSSR, < WSSR,—1 )

n=\ 4 WSSR,, WSSR,_;

n-1’

The errors of the parameter values are determined in terms of p% fractions of the WSSR [53].
If a particular WSSR value is larger than the best value, WSSRy,;, found until the actual iteration,
but within a certain p% fraction of WSSRp, i.€.,

WSSR > WSSRpest AND WSSR < (1 + p%)-WSSRyest, (24)

then the parameter values corresponding to this WSSR value are stored in an array. At the end of the
fitting procedure, the largest and the smallest of each parameter value in the array will be considered
as the plus-minus absolute errors of the respective parameters with the given p% number. The relative
errors are calculated and listed accordingly. The convergence criteria of the special MC procedure are
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that (i) the number of steps reaches a user-defined value and (ii) that the 1 + p% statistics reaches at
least Nj,, where N, is an editable minimum number of MC iterations in which the WSSR was not larger
than the last WSSR value. The systematic testing of the combined LM + MC algorithm showed that
1ng = 2000, p = 3.5% and N, = 100 gave excellent pattern fittings and good physical parameter values
even if the diffraction patterns were complicated. Our experience showed that the MC procedure
outlined above is ideally suited in the case of line profile analysis. In agreement with the copyright
conditions of CMWP, the source code of this MC is accessible in the software package, which is free to
use for academia purposes.

2.6. Organization of the Combined LM and MC Algorithms

The total number of parameters can become quite large when more than ten diffraction peaks
and more than one phase comprise the diffraction pattern. In such cases, the LM procedure can get
frustrated and the optimization procedure can get stuck. This problem is overcome by sectioning the
LM procedure. One full cycle of the optimization procedure consists of the following sections: (1) MC
optimization, (2) LM optimization of only the peak positions, (3) LM optimization of only the peak
heights, (4) LM optimization of only the physical parameters, (5) LM optimization of all parameters
including the physical parameters, the peak positions, and peak heights, and (6) readjustment of the
BG. The cycle of six steps is repeated until convergence is reached.

2.7. Systematic Comparison of the Performance of the LM and MC Procedures

Though the LM optimization procedure is a well-established and widely used analytical method,
in nonlinear problems, the parameter space can have more than a single minimum and LM can get
stuck in one which is not the absolute minimum. The implementation of the MC procedure combined
with LM aimed to find the global minimum in the parameter space. A systematic analysis was carried
out to check the performance of both the LM procedure alone and the combined alternative with
LM plus MC. The most critical parameters were the dislocation density concomitant with the dipole
character number, i.e., p and M. One of the Zircaloy-4 X-ray diffraction patterns containing about 10%
d-hydride, discussed in detail in the next paragraph, was evaluated by varying the starting values of p
over 5 orders of magnitude, from 1073 x 10 m~2 to 100 x 10'* m~2. The results are shown in Figure 5.
CMWP is governed by optimizing the parameters for obtaining the smallest weighted sum of squared
residuals (WSSR). The WSSR values are shown in Figure 5a vs. the starting values of p when LM alone
(open blue triangles) and LM combined with MC (open red circles) were applied. The figure shows
that LM alone could not find the minimum of WSSR, especially when the initial p values were larger
than the optimum, which was about 0.9(+ 0.1) X 10 m~2. The combined application of LM + MC
always found the optimum WSSR whatever the initial values of p were. The dislocation density and
the dipole character number, p and M, are shown vs. the initial p values in Figure 5b. The figure shows
that both p and M varied up to about two orders of magnitude when only LM was applied: 0.7 < p <
100 x 10* m~2, 0.4 <M < 60. With the combination of LM + MC, the optima of both p and M were
found within reasonable error margins: 0.7 < p < 1.13 x 10" m™2, 10 < M < 60. The relatively large
variation of M does not mean that it could not be determined. Whenever the value of M is of the order
of 10 or larger, it only means that the dipole character of dislocations is very weak. Or, in other words,
the dislocation arrangement is “random” [2,3].
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Figure 5. Systematic investigation of the LM and MC optimization procedures. (a) The WSSR vs. the
initial value of the dislocation density, pinitial, Wwhen LM alone (open blue triangles) and the LM and
MC (open red circles) optimization procedures were used. (b) The final dislocation density and dipole
character parameter values, pfina and Mgin,y, vs. the initial, values, pinitia] and Minitial, in logarithmic
scales, calculated using either the LM alone (open blue triangles and green triangles) or the LM and
MC optimization procedures (open red circles and black dots). The vertical black lines indicate error
bars. All curves in the two figures are only to guide the eye.

2.8. Extension of CMWP for Handling Satellites or Diffuse Scattering

Guinier-Preston (GP) zones [54,55], small dislocation loops [56,57], or diffuse scattering of solute
atoms [58] can produce satellites or diffuse scattering peaks around or below the fundamental Bragg
peaks. Typical satellites in the lower intensity ranges of diffraction peaks of a proton-irradiated
Zircaloy-2 specimen are shown in Figure 6a. The vertical arrows point to the satellite peaks produced
either by vacancy- (on the left side of the peaks) or interstitial-type dislocation loops (on the right
side of the 00.2 reflection). The interstitial-type satellite on the 10.1 peak cannot be seen because it is
blending in with the broader main peak. The strain profile given by Equations (10)—(12) relies strongly
on the tail regions of Bragg peaks. Satellites or diffuse scattering peaks, not related directly to the
strain profiles, may distort the physical parameter values defining the true strain profiles and the true
strain parameters. The option to handle satellites or diffuse scattering peaks is also implemented in the
CMWP procedure [25]. Irradiation-induced dislocation loops evolve from knocked out vacancies and
interstitials in irradiated materials [56,57,59-62]. Larson and Young [61] and Mason et al. [62] showed
that irradiation-induced dislocation loops have a very wide size distribution, ranging from a few tenths
to a few hundred nanometers. The strain fields of small dislocation loops overlap and strengthen each
other inside the loop regions. As a consequence, within the strained regions of the small vacancy-
or small interstitial-type loops, the lattice constants increase or decrease relative to the matrix lattice
constants, respectively [61,63]. The strained regions around small loops produce satellite peaks around
the fundamental Bragg reflections in proton-, neutron-, or ion-irradiated materials [25,57,62]. Based
on the theoretical description of satellites and diffuse scattering of point defect clusters and small
dislocation loops [61,63,64], we developed a procedure to handle satellites in the CMWP procedure [25].
Taking into account the small size and wide size distribution of the strained volumes of small loops,
the satellite profiles, ISST(S + As), were modeled as size profiles according to Equation (8), where As
is the shift of the satellite peaks relative to the main hkl reflection. In References [64-66], it was
shown that although the strained volumes are coherent with the matrix, the intensities scattered by
the strained volumes are incoherent; therefore, the intensities of the main and the satellite peaks
are additive. The satellite intensities are usually a few percent of the intensities of the main peaks;
therefore, the optimization of the main diffraction pattern and the satellite peaks can be done in separate
steps. The two steps can be repeated subsequently until the procedure converges. Figure 6b,c shows
zoomed parts of the measured (open circles) and CMWP-calculated (red lines) diffraction patterns of a
Zircaloy-2 specimen neutron irradiated to the fluence of 13.1 X 1025 n/m2 at about 300(+ 25) °C [58,67].
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The satellites are shown as blue lines. The shift of satellites is s = sp \/Eg, where s0 is a global shift
parameter for the entire pattern and As scales for the different reflections, with the average contrast
factor of <a>-type dislocation loops [25]. The intensities of the satellites were adjusted to the heights of
the related main peaks. Although the procedure was conceived for treating satellites produced by
irradiation-induced dislocation loops, it is a general option in the CMWP procedure which can be used
to handle diffuse scattering satellites of any kind around fundamental Bragg peaks.

Zircaloy-2 proton irradiated at 350 °C 4.7 dpa (@) Zircaloy-2 neutron irradiated 13.1 [10° n/m’]  (b) Zircaloy-2 neutron irradiated 13.1[10”° /m’]  (c)

10°

10°

Counts

10°4

104

3.8 3.9 4.0 41 4.2

4.2

37 3.4 36 38

3.4 35 36
K [1/nm] K [1/nm]

4.0
K [1/nm]

Figure 6. (a) Typical satellites in the lower intensity ranges of diffraction peaks in a proton irradiated
Zircaloy-2 specimen. The vertical arrows point to the satellite peaks produced either by vacancy- (on
the left side of the peaks) or interstitial-type dislocation loops (on the right side of the 00.2 reflection).
The interstitial-type satellite peak is blending in with the broader 10.1 Bragg peak. (b) Measured (open
circles) and CMWP-calculated (red line) zoomed part of the diffraction pattern of a Zircaloy-2 cladding
material specimen [58] neutron irradiated to 13.1 X 102 n/m2. The blue line shows the satellite peak
related to vacancy- and interstitial-type dislocation loops. (¢) The same as in (a) for the first three Zr
peaks. The alloy contains second-phase particles (SPPs) of different precipitates, as indicated in the (b)
and (c) figures.

2.9. Stabilizing the Fluctuations of the Physical Parameters When the Effective Outer Cut-Off Radius, Re,
Approaches the Lower Limit of Continuum Theory

The actual value of the effective outer cut-off radius of dislocations, Re, as it was shown
in Equation (12), depends on both the dislocation density and the dipole character of the

dislocation arrangement.
M

Re = % = M'ddisloc ’ (25)
A systematic investigation of the f(n) function revealed that when M drops into the range around
or below unity along with large dislocation densities in the range of 10'® x m~2, the effective outer
cut-off radius, R, can reach small values of a few nm, approaching the lower limit of the continuum
approach [66,67]. The dislocation density in neutron- [57] or proton-irradiated [68,69] Zr alloys can
reach a few times 10'®-m2 while the M value is M < 1. In these diffraction patterns, the profiles broaden
mainly in the tail regions of the profiles, while the FWHM change much less. The diffraction profiles of
the 10.3 Bragg reflections of Zircaloy-2 proton irradiated to 2.3 dpa at 280, 350, and 450 °C are shown
in Figure 8a in Reference [68]. The figure shows that the tails are short when irradiation is at a high
temperature, whereas they are very long when the irradiation is at a low temperature. TEM images of
the same specimens are shown in Figure 3 in Reference [68]. Figure 3a in Reference [68] shows that at
low temperatures, small dislocation loops form with very high density, whereas at high-temperature
irradiation (see Figure 3c in Reference [68]) only a few large dislocation loops are present. When p
is in the range of 10'®m? and M is around unity or smaller, R, can approach the lower limit of the
continuum approach. During the optimization procedure, M can become uncertain in the sense that R,
can approach extremely small, and p extremely large values. In order to avoid this kind of uncertainty,
we introduced a lower limit, R, for R, by replacing n = L/R, with = L/(R, + R;).

£ = (=) 26)
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where R, is in the range of the lower limit of the length scale of the continuum approach [68,69].

A systematic investigation of the effect of R. on the physical parameters is shown in Figure 7.
We carried out this analysis on the diffraction pattern of a Zircaloy-2 specimen proton-irradiated
to 2.3 dpa at 280 °C, in which the dislocation density was very large and the M parameter about
unity [68]. The figure shows p and M vs. R in the range of 0 < R, < 30 nm. With R; decreasing
to about R. = 8 nm, M decreased, whereas p increased. Below R = 8 nm, there was a range of R
between about 6 < R. < 8 nm in which both p and M were stable around p = 9 x 10> m™2 and M
= (0.75. The introduction of R, in the range of about 6 to 8 nm stabilized the physical parameters,
especially the values of p and M. When R, is significantly larger than R, then its value has no effect on
the physical parameters.

Zircaloy-2 proton-irradiated 2.3 dpa 280 °C

p [10*°m?, M

Figure 7. Systematic analysis of the effect of value of R. in the CMWP procedure. The dislocation
density, p, and the dipole character parameter, M, vs. R. in the range of 0< R, <30. The vertical black
lines indicate the error margin.

Neutron diffraction patterns are usually measured in time of flight (TOF) mode. In TOF patterns,
the intensities are given vs. d = 1/K. The software also works in I(K) representation. The TOF patterns
have to be converted to I(1/K) = I(d*) representation (where d4* = 1/d), which is a very simple task.

3. Dislocation Density and Crystallite Size in Zr Matrix and Zr Hydrides in a Hydrated Zircaloy-4
Sheet Material

The performance of the CMWP procedure with the combination of the MC and the LM optimization
methods was shown by the evaluation of the dislocation structure in a hydrated Zircaloy-4 specimen.
The dislocation and stacking fault densities and the subgrain size were determined within the two
coexisting Zr and ZrH phases. The spatial distribution of the volume fraction of ZrH in a hydrated
Zircaloy-4 specimen was investigated using high-resolution scanning synchrotron experiments in
References [70,71]. The diffraction patterns were re-evaluated using the CMWP procedure described
in Section 2.6.

3.1. Experiment

A hydride blister was grown on a Zircaloy-4 alloy platelet sectioned from a CANDU pressure tube.
The alloy composition was Zr-1.49%5n-0.2%Fe-0.11%Cr-2.5%Nb, all in wt %. [71]. For the hydration
procedure, see References [70,72]. The schematic configuration of the hydrated platelet within the
pressure tube, along with an optical micrograph of the hydrated blister, is shown in Figure 8a,b.
High-angular-resolution X-ray microdiffraction was carried out at the 1-ID beamline at the Advanced
Photon Source synchrotron at the Argonne National Laboratory [71]. The schematic positions of the
X-ray diffraction experiments on the hydrated platelet are shown in Figure 8c. X-ray diffraction scans
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were taken along three linear traces, one horizontal (red line) and two vertical (center green line and
right blues line), with 16 and two times 11 positions, respectively. The beam size on the specimen was
300 x 300 um?, illustrated approximately by the small red dot in the center vertical line in Figure Sc.

runié run10 runi (C)
(a) basal poles 4

| )
hydrated platelet /I\//’;‘_—- \’“”_1'_/ 4 runi
specimen 1 "
contour of blister £
radial / - f‘
f !
*‘o\’f’«\ ~beam size
A%
* run11 -
~4 mm S run11

Figure 8. (a) Schematic configuration of the hydrated platelet sectioned from a CANDU pressure
tube. The conventional coordinate system with the residual stress directions, radial, axial, and hoop
strain/stress directions, along with the typical basal pole directions in the textured Zr tube material, is
also indicated. (b) Optical micrograph of the hydrated Zircaloy-4 platelet. The darker region is the
hydrated blister. (c) Schematic drawing of the X-ray diffraction positions along the hydrated platelet.

The diffraction patterns were recorded in a solid-state detector of 200 um pixel size with 2048 x 2048
pixels at a distance of 1.948 m from the sample. In order to obtain more reflections, the detector
was shifted so that the beam hit the lower left corner of the detector, as shown in Figure 2a in
Reference [71]. The Debye-Scherrer rings of the reflections were integrated along azimuth sections of
arcs in +2.5 degrees.

3.2. Results

The diffraction patterns were evaluated for the dislocation density, the subgrain size, the dislocation
arrangement parameter, and the stacking fault density, p, <X>area, M, and g in the fcc 6—ZrH and in
the Zr matrix phases. Typical measured (open circles) and fitted (red solid lines) diffraction patterns
corresponding to four different positions along the scanning lines are shown in Figure 9. In order to
show the different reflections of very different relative heights, the intensities are in logarithmic scale.
The patterns in Figure 9a,c,e,g show the entire measured range for the positions Line-1 Run-1, Line-1
Run-8, Line-2 Run-3, and Line-3 Run-11, respectively. Figure 9b,d,f,h shows zoomed ranges from 5.5 to
7.5 degrees, showing the detailed structure of the patterns where relatively large number of diffraction
peaks were in complicated sequences and overlapped.

In the Line-1 Run-1 position (in Figure 9c, the top right edge position of the blister), the Zr
peaks were much stronger than the 6-ZrH peaks. This ratio was reversed in the Line-1 Run-8 pattern,
where the d-hydride peaks were much stronger than the Zr peaks (in Figure 9c, the center top position
of the blister). The Line-2 Run-11 position was at a distance of about 1.8 mm from the outer edge of the
blister, but the 5-hydride peaks were still clearly visible. Although the Line-3 Run-3 position, at the
outer edge of the blister, was a very different position compared to Line-2 Run-11, the two patterns
indicated very similar ratios of the volume fractions between ZrH and Zr, and similar dislocation and
subgrain structures. The lateral and depth profiles of the dislocation density, p, the stacking fault
density, 3 and the area average mean crystallite size, <X>area, in the 5-ZrH are shown as a function
of position in Figure 10. The light brown shade in the figures indicates the blister. The blue and the
three red dots in Figure 10a show the approximate positions of the four diffraction patterns in Figure 9.
The dislocation density in the Zr matrix varied between 1(+ 0.15) X and 11(+ 1.5) x 104 m~2, whereas
in the ZrH phase, it varied between about 10(+ 2) X and 350(+ 50) x 10 m~2,
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Figure 9. Measured (open circles) and CMWP-calculated (red lines) diffraction patterns (a,c,e,g) in
the entire, and (b,d,f,h) in a zoomed angular range at four different depths in the ZrH blister. (a,b)
are along Line-1 Run-1 at the top right edge, (c,d) are along Line-1 Run-8 at the center, (e,f) are along

Line-2 Run-11 at the lower center edge, and (g,h) are along Line-3 Run-3 at the right middle edge of the
blister, respectively.
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Figure 10. (a) The dislocation density, p, (b) the stacking fault density, 3, and (c) the area average mean
crystallite size, <x>area, in 8-ZrH as a function of lateral and depth positions in the ZrH blister.

The experimental error of the stacking fault density in the 5-hydride was about + 20%. The volume
fraction of the 6-hydride was determined in Reference [71]. It was shown to vary from about 80% in the
center region of the blister to a few percent at a distance of about 2 mm from the edge of it. For details,
see Figure 2 in Reference [71]. The results showed that the dislocation density and the volume fraction
were in close correlation with each other in the ZrH phase. At the largest volume fractions of ZrH,
the dislocation densities reached extremely large values. The dislocation density in the Zr matrix
was also correlated with the volume fraction of the ZrH phase. ZrH is well-known to exert large
intergranular strains on the surrounding Zr matrix [73]. These strains induce large dislocation densities
in both phases and cause cracking of the Zr phase, as shown in Figure 2a in Reference [71].

4. Conclusions

The CMWP line profile analysis procedure was extended by implementing a special MC method in
combination with the LM algorithm to provide the global optima for dislocation densities, dislocation
arrangement or dipole character parameters, planar defect densities, subgrain size, and intergranular
strains in polycrystalline or single-crystal materials. The procedure has the capacity to evaluate
multiphase materials where the microstructures of the different component phases are determined at
the same time. Taking into account the possible large number of optimization parameters, a sectioning
was introduced where the physical, peak position, and peak height values are optimized in a cycle of
six subsequent steps. The six-step cycle is repeated until convergence is reached.

Profile shape plays a decisive role in determining dislocation densities from the strain profile.
The dislocation arrangement or dipole character parameter is one of the more sensitive parameters in the
strain profile. The Krivoglaz-Wilkens strain function was modified in order to protect it from becoming
unstable in cases when a large dislocation density is accompanied by a very strong dipole character.
In such cases, the effective outer cut-off radius approaches the length limit of continuum theory.
An editable hard limit was introduced into the Krivoglaz—Wilkens strain function in order to prevent
the effective outer cut-off radius becoming smaller than the lower length limit of continuum theory.

We developed a procedure to handle the satellite peaks appearing on the flanks of the major Bragg
peaks in polycrystalline materials. Such satellites are produced by e.g., neutron- or proton-irradiated
Zr alloys [58,70] or by GP zones in supersaturated solid solutions [55,56,59].

The implementation of the MC procedure and the six-step cycle procedure was tested by
evaluating the coexisting hcp Zr and fcc 8-ZrH phases in a hydrated blister on a Zircaloy-4 specimen.
The two-dimensional lateral and depth profiles of the dislocation densities, the stacking fault densities,
and the subgrain size were determined by evaluating position-sensitive high-resolution synchrotron
X-ray diffraction patterns. The results were in good correlation with the mechanical and electron
microscopy analysis done on the same specimen.
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