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Abstract: The effects of granulation of reactive mixtures Ti-Cr-C and Ti-Cr-C-Ni on the combustion
temperature and velocity, as well as phase composition and mechanical properties (crushing ability)
of combustion products, were studied. Granulation was associated with a 1.5-fold increase in
combustion velocity, caused by a nearly 10-fold increase in gas permeability. Secondary reactions
between TiC, Cr7C3, and molten Ni led to the formation of (Ti,Cr)C FCC solid solution and Ni2.88Cr1.12

intermetallics. After the combustion of Ti-Cr-C-Ni mixtures, prolonged fluorescence was registered,
suggesting the exothermic nature of secondary phase formation reactions. The introduction of the
nickel binder decreased the content of Cr in the solid solution (Ti,Cr)C owing to the formation of the
Ni2.88Cr1.12 phase. To prevent the Cr depletion from the carbide solid solution, Ni-20%Cr binder was
added to the granulated 80%(Ti + C)/20%(3Cr + 2C) mixture. Combustion of granulated mixture
yielded brittle porous sinter cake, which was easy to crush and mill, whereas the combustion products
from the powdered mixtures were more ductile and harder to crush.

Keywords: milling; composites; microstructure; carbides

1. Introduction

Widely used in the machining industry, cermets consist of a hard ceramic phase and ductile
metallic binder, which endow these materials with high hardness and ductility [1–3]. A multitude of
compositions was developed, including TiC/Ni, TiC/Fe, TiC/NiCr, ZrC/W, SiC/CoSi2, and SiC/AlSi [3].
Transitional metal carbides are usually employed as the ceramic phase owing to their outstanding
hardness, stiffness, and refractoriness [4–10]. Titanium carbide (TiC) is often the ceramic of choice
owing to its low density (4.93 g/cm3) and friction coefficient, high solvency with other carbides, high
melting point (3067 ◦C), elastic modulus (410 GPa to 450 GPa), thermal conductivity (30 × 106 S/cm),
thermal stability, as well as hardness surpassing tungsten carbide (WC) for more than 30% [11–15].

The development of TiC-based cermets began shortly after the patenting of first classical WC-Co
hardmetals. TiC-based cermets proved to be superior to WC-Co counterparts regarding resistance
against wear and oxidation, as well as cutting performance [16–19], but remained definitely inferior in
toughness [4,20–22]. To improve the mechanical properties of TiC-based cermets, alloying is widely
used [19,23–27].
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The addition of carbon can beneficially affect the mechanical properties of cermets [28–30],
in particular, owing to the reduction of residual oxides [31–33] and improved wettability of the ceramic
phase by the binder [29,34–43].

Tungsten-free TiC-based cermets are continuing to gain traction in both research and
industrial-scale production. In Japan, TiC-based cermets account for over 30% of the metal cutting
grades [44,45]. The first TiC-based cermets, marketed by the Metallwerk Plansee, Austria, were based
on TiC/Mo2C with a nickel or nickel-chromium binder. The addition of Mo2C was intended to improve
the wettability of Ti-based ceramics by the nickel binder [46–48].

Since then, binders based on various transient elements such as Fe, Cr, Ni, Co, Mo, and their
alloys were adapted to produce TiC-based cermets [4,49–52]. Ni-based alloys demonstrate particularly
high corrosion and wear resistance and are characterized by a low wettability angle on TiC substrate,
which is conducive for the densification of TiC-Ni cermets during liquid phase sintering [53]. One of
the most commonly used Ni-based alloys is NiCr (80% Ni-20% Cr), which can be used as the binder
for TiC to attain high hardness, wear, and corrosion resistance, as well as reasonable toughness of the
composite [54].

Solid solution (Ti,Cr)C, while retaining the main advantages of TiC, possesses higher oxidation
resistance owing to the formation of Cr2O3 [55]. To diminish the brittleness and enhance the adhesion
during the deposition of protective coatings, metallic binders (Ni, Mo, NiCr, Cu, and so on) are added to
the carbide (Ti,Cr)C-based powders, as demonstrated Borisov et al. [56] and Varma and Mukasyan [57].

Carbide solid solution-based composites can be produced using the powder metallurgy,
hot isostatic pressing, spark plasma sintering, and self-propagating high-temperature synthesis
(SHS) [58,59].

Numerous works [60–73] outlined the advantages of SHS materials for thermal spraying of
protective coatings based on carbides and related composites. SHS stands out in terms of its low energy
consumption, simplicity, high productivity, purity, and uniformity of the products obtained in one
technological cycle. At equal coating properties, SHS powders provide 20–25-fold energy savings and
half the labor input as compared with conventional methods of powders preparation. [74]. The high
exothermal effect of TiC formation allows for a large choice of metallic binder compositions and
concentrations as the binder usually acts as an inert diluent in the combustion front and the primary
reaction has to be exothermic enough to allow for the self-propagation reaction to occur. Several
studies investigated the use of SHS for the synthesis of TiC-Cr, TiC-Ni, and TiC–NiCr composite
powders [61,62,70,75,76].

SHS of titanium-chromium carbide from the mixtures of titanium, carbon, and nickel-chromium
alloy powders was suggested by Zhang et al. [77,78] and implemented at semi-industrial scale by
Vlasov et al. [79]. However, the SHS of the titanium-chromium carbide with a metallic binder from
powders mixtures produces strong and ductile sinter cakes, requiring a subsequent higher-energy ball
milling and increasing the pollution of the products by the wear products of milling bodies.

In this work, we propose the application of granulated batch mixtures for the production of
titanium-chromium carbide with metallic binders. As the authors demonstrated previously, during the
combustion of granulated Ti-C mixtures, the granules retain their size and structural integrity even with
the addition of metallic binders. Moreover, granulation of the batch mixture allows one to minimize
the influence of the content of gaseous admixtures and humidity of the mixture and ensure the high
stability and reproducibility of the produced materials [80,81].

The goal of this work was to investigate the impact of granulation on the SHS of Ti-Cr-C-(Ni/NiCr)
mixtures and to optimize the synthesis parameters for the production of uniform and easy-to-grind
cermet granules.

2. Materials and Methods

The following initial powders were used in this work: PTM grade Ti (supplier: JSC “Polema”,
d50 < 34 µm, d90 < 54 µm), PTCh-1M grade Cr (supplier: JSC “Polema”, d50 < 24 µm, d90 < 65 µm),
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P-803 grade carbon black (supplier: JSC “Ecopolza”, d50 < 2.5 µm, d90 < 4 µm), NPE-1 grade nickel
(supplier: JSC “Mettechinvest”, d50 < 100 µm, d90<150 µm), Ni-20%Cr alloy (supplier: JSC “Polema”,
d50 < 75 µm, d90 < 142 µm), and Ni-40%Cr alloy (supplier: JSC “Polema”, d50 < 88 µm, d90 < 157
µm). Additionally, polyvinyl butyral and 95% technical alcohol were used.

The composition and nomenclature of the mixtures used in this work are given in Table 1.
Granulation of the powder mixtures was performed in the following fashion. The initial powder
mixture was prepared for 4 h in a conventional ball mill (60 rotations per minute, 6 liter volume) with
the rotational axis shifted for 45◦ in the vertical plane. The ball to powder ratio was 6:1. Steel jars and
steel milling medium (8 mm balls). The balls and powders filled 40% of the mill’s volume. After the
mixing, a 4% solution of polyvinyl butyral in alcohol was added to the mixture and the obtained paste
was rubbed through a mesh with the 1.25 mm cell size and rounded on a rotating horizontal surface.
The granules were then dried during 10 h and the target fraction of 0.63–1.6 mm was separated using a
vibrating screen.

Table 1. Nomenclature and composition of the used mixtures (M1–M8) and nickel-based binders
(B1–B3).

Denotation Stoichiometry Elemental Composition (wt.%)

C Cr C Ni

B1 Ni - - - 100.0
B2 80%Ni/20%Cr - 20.0 - 80.0
B3 60%Ni/40%Cr - 40.0 - 60.0
M1 70%(Ti + C)/30%(3Cr + 2C) 56.0 26.0 18.0 -
M2 80%M1 + 20%B1 44.8 20.8 14.4 20.0
M3 80%M1 + 20%B2 44.8 24.4 14.4 16.0
M4 80%M1 + 20%B3 44.8 28.2 14.4 12.0
M5 80%(Ti + C)/20%(3Cr + 2C) 64.0 17.2 18.8 -
M6 80%M5 + 20%B1 51.2 13.8 15.0 20.0
M7 80%M5 + 20%B2 51.2 17.8 15.0 16.0
M8 80%M5 + 20%B3 51.2 21.8 15.0 12.0

The composition of the initial granulated mixture (M1) and binder (B1) was chosen after the works
of Vlasov et al. [80], where the solid solution was synthesized by SHS and then subsequently coated by
nickel. The rationale behind the other composition choice has arisen during the investigation.

The features of combustion were investigated using a custom device (Figure 1). The device allows
for synthesis in both gas flow and static atmosphere, measurement of gas expenditure and pressure
during the combustion, and video recording. Combustion velocity was measured using a video
camera with a dark filter. To preclude the geometry creep of the non-combusted part of a specimen
during combustion and for overall stabilization of the results, the chamber was washed with Ar before
every measurement.

In this work, syntheses were carried out in the argon atmosphere. The microstructure of
the combustion products was investigated by scanning electron microscopy (SEM) using the Ultra
Plus microscope (Carl Zeiss, Oberkochen, Germany). The phase composition of the combustion
products was studied using the DRON-3 diffractometer with the monochromatic CuKα-radiation.
Diffraction patterns were recorded in the range 2θ = 20–80◦ with a step of 0.2◦ and analyzed by
«Crystallographica Search Match» software with Powder Diffraction File database (PDF-2, ICDD, USA,
Release 2011). Adiabatic combustion temperature (Tad) was calculated using THERMO software
(http://www.ism.ac.ru/thermo/).

http://www.ism.ac.ru/thermo/
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Figure 1. Schematics of the experimental device. 1—nitrogen-filled gas cylinder, 2—Ar-filled gas
cylinder, 3—PC for video-recording, 4—PC for the recording of sensor output, 5—sensors for gas
expenditure and pressure, 6—digital video camera, 7—electrical spiral, 8—reactive mixture, 9—mineral
wool layer, 10—metallic mesh, 11—gas switcher (the position I—nitrogen; II—argon; III—closed).

Gas permeability of powdered and granulated green mixture was measured according to
Equation (1). Measurements of the argon flow rate were performed at 1 and 2 atm difference
between the inlet and outlet of installation (Figure 1).

k =
2P1µQL

S(P1 − P2)
(1)

where the k is the gas permeability of the medium (Darcy units), Q is the volumetric flow rate of gas
(cm3/s) at atmospheric pressure, L is the height of the charge (cm), S is the cross-sectional area of the
quartz tube (cm2), P1 is the gas pressure at the upper end of the sample (atm), P2 is the gas pressure at
the lower end of the sample (atm), and µ is the viscosity of the gas (cP).

3. Results

To assess the influence of the granulation process on the combustion velocity and phase composition
of the products, the aforementioned SHS installation (Figure 1) was employed to investigate the
combustion of powdered and granulated mixtures.

The granulated mixtures demonstrated 1.5-fold higher combustion velocity as compared with
the powdered counterparts (Table 2). For M1 composition, combustion velocity was 22 mm/s for
granulated mixture and 14 mm/s for the powdered mixture. For M2 composition, velocities were 9 and
6 mm/s for the granulated and powdered mixtures, correspondingly. The combustion of powdered
and granulated M5 and M6 mixtures differed considerably. Granulated mixtures combusted in a stable
way, whereas powdered mixtures combusted in a pulsating mode. In the simplest case of steady
propagation, all of the wave points move at a constant and identical velocity. When the steadiness is
upset, the system may undergo planar autooscillations in the front velocity (pulsating combustion),
localization of reaction in one or several hot spots that move along the spiral trajectory (spinning
waves), and chaotic motion of numerous hot spots (chaotic solid flames) [82].
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Table 2. Gas permeability, adiabatic combustion temperature (Tad), measured combustion temperature
(Tc), and velocity (Uc).

Denotation
Gas permeability, Darcy Tad, K Tc, K Uc, mm/s

Powdered Granulated Powdered Granulated Powdered Granulated

M1 2.4 24.2 2700 2240 2270 14 22
M2 2.2 26.3 2350 1820 1830 6 9
M3 2.8 25.7 2375 1850 1840 4 8
M4 3.5 27.9 2350 1860 1790 5 9
M5 3.1 28.0 2950 2380 2340 13 24
M6 2.8 25.2 2600 2140 2150 7 11
M7 2.3 26.8 2580 2120 2140 6 10
M8 2.7 27.1 2575 2180 2170 6 12

For purely gas-phase reactions, the reactants are completely intermixed and the measured intrinsic
activation energy corresponds to the isolated binary collisions of molecules that lead to a chemical
reaction. However, in solid−gas, solid–liquid, and solid−solid reactions, the structural properties
have a pronounced effect on the measured kinetic parameters [82,83]. The combustion front is usually
separated into the pre-heating zone, combustion zone, after-combustion zone, and secondary structure
formation zone. In the pre-heating zone, the reactive mixture receives a flux of heat from the nearby
combustion front; the heating rate depends mainly on the combustion temperature and thermal
conductivity of the reactive mixture. Ignition is usually achieved when the less refractory component
melts. In the case of Ti-C mixtures, a Ti-based melt is formed, and the dissolution of carbon in a Ti melt
is the main driver of the combustion process [84–86].

The particle size of reactants and the heterogeneity of the system, in general, have a significant
influence on the conversion of solid-phase reagents. In a solid reactive mixture, the larger particles
create a clear temperature difference between the gas and the surface of the solid reactants, whereas
the temperatures of the gas and surface of finer particles are almost identical. The consecutive
stages of drying, devolatilization, and combustion of a reactive medium are overlapped for large
particles, whereas they are sequential for fine mixtures. This allows for a considerable simplification
in the analysis of the combustion of finer reactive mixtures. The propagation of planar combustion
waves is usually described in terms of the model of gasless combustion, using the equations of
thermal conductivity and chemical kinetics [87]. For example, the recently developed thermochemical
model simplifies the combusting process by ignoring the processes occurring on the surface of the
combusting particles [88]. In the framework of such models, one could expect that the granulation
would decrease the combustion velocity in solid-state reactive mixtures owing to the increased porosity
and heterogeneity of the medium. However, our measurements demonstrate a clear increase in the
combustion velocity of granulated mixtures.

We suggest that the release of admixture gases during the combustion is a major factor in the
combustion front propagation, and the difference of gas permeability between powdered and granulated
reactive mixtures is responsible for the difference in combustion velocity. Released gases, filtering
through the granulated mixture, convectively heat up and ignite the surface of the reactive granules;
the combustion front within individual granules propagates from the surface towards the center. In
the powdered mixtures, the convective heating of green mixture by exuding hot gasses is hindered by
the formation of viscous melt in the combustion front, which traps the hot gases and prevents the flux
of hot gases from the combustion front into the preheating zone. This effect is also responsible for a
significant elongation of the samples during combustion [87]. In the granulated mixtures, the melting
occurs only within the bounds of individual granules and a network of interconnected open pores is
always available, thus allowing for efficient convective heating of reactive granules in the preheating
zone. The sources of outgassing are both the residual gaseous impurities in the green powders and the
products of decomposition of polyvinyl butyral [89–93].
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A similar problem was previously addressed in the area of the combustion of solid fuels. Some of
the results indeed indicate that the larger fuel particles attain a higher propagation rate. The increase of
fuel density was not associated with lower specific reactant conversion rates or significant changes in
the structure of the combustion front [94]. To support this hypothesis, gas permeability was measured
for the powdered and granulated mixtures of all compositions. The values can be found in Table 2
along with the calculated adiabatic combustion temperatures and measured combustion temperatures
and velocities. The granulation was associated with a nearly 10-fold increase in gas permeability (from
2–3 to 25–28 Darcy).

For the composition without the metallic binder (M1, M5), X-Ray diffraction (XRD) of the
combustion products did not reveal any differences for the powder and granulated mixtures.
The calculated phases at combustion temperature and experimentally defined phase composition are
provided in Table 3.

Table 3. The calculated and measured phase composition.

Mixture Phase composition at Tad
Calculated by Thermo

The Phase Composition of
Combustion Products

M1 TiC, Cr3C2 (Ti,Cr)C, TiC
M2 TiC, Ni(liq), Cr3C2, Cr7C3 (minor) (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2,
M3 TiC, Ni, Cr7C3, Cr3C2 (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2,
M4 TiC, Ni, Cr7C3, Cr3C2 (Ti,Cr)C, Ni2.88Cr1.12, Cr7C3,
M5 TiC, Cr3C2, C(minor) (Ti,Cr)C
M6 TiC, Ni(liq), Cr3C2, C(minor) (Ti,Cr)C, Ni2.88Cr1.12
M7 TiC, Ni(liq), Cr3C2, Cr7C3 (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2,
M8 TiC, Ni(liq), Cr7C3, Cr3C2 (Ti,Cr)C, Ni2.88Cr1.12, Cr3C2,

The difference in the phase composition of combustion products at Tad calculated by Thermo and
investigated by XRD at room temperature (Table 3) originates from the lack of thermodynamic data on
carbide solid solutions. For all four-component mixtures (M2–M4, M6–M8), the diffusion of chromium
into the TiC-based solid solution leads to the decomposition of the Cr-rich Cr7C3 phase and formation
of Cr-poor Ni2.88Cr1.12.

This process produces a prolonged fluorescence of combustion products. The analysis of videotapes
of the combustion process revealed 8 to 14 s long fluorescence of the combustion products produced
from NiCr-containing mixtures (Figure 2). No differences were observed in the phase composition of
products of combustion of the powdered and granulated mixtures.
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Figure 2. Frames from the videotape of the combustion of granulated M5 mixture (time is counted
from the ignition).

The fluorescence is presumably related to the exothermic secondary phase formation in the
after-combustion zone, which is corroborated by the lack of a prolonged fluorescence and faster cooling
of a specimen prepared from the granulated Ti + C mixture, although the combustion temperature for
this mixture is higher than for Ti-Cr-C. One should note that the specimens without the metallic binder
(M1, M5) featured the presence of TiC in addition to (Ti, Cr)C (Figure 3a), but TiC was absent in the
combustion products produced in semi-industrial SHS reactor from M1 mixture (Figure 4a).

The difference in the phase composition of products obtained under different conditions can be
explained if we take into account the sequence of the chemical conversion process and the difference in
the product cooling rate. The mass of the initial mixture is almost 100 times higher in the semi-industrial
SHS reactor as compared with the lab reactor. Therefore, the cooling rate is degrees of magnitude
lower, which provides sufficient time for diffusion processes to be completed. In the framework of this
mechanism, the presence of TiC in the small-volume combustion products is inevitable, as it is the
most refractory compound (Tmelt = 3200 K) among the intermediate combustion products. These
samples cool down faster than the formation of the (Ti,Cr)C phase is concluded.

Let us discuss the influence of metallic binder content on the composition of synthesis products
produced from the granulated mixtures. XRD of combustion products of the M1 mixture revealed the
formation of the (Ti,Cr)C solid solution with a minor amount of TiC (Figure 3a). An addition of 20 w.%
nickel binder (mixture M2) alters the phase composition (Figure 3b) and leads to the formation of
chromium carbide and nickel-chromium intermetallic. Zhang et al. [77] showed that peaks of the main
phase (Ti,Cr)C shift towards the lower angles, signifying the decrease of chromium content in (Ti,Cr)C.
This shift of (Ti,Cr)C peak is demonstrated in Figure 3 for compositions with the various content. XRD
has also revealed that part of the Cr has bonded with the Ni as the nichrome phase has emerged in
the pattern.
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To investigate the influence of scale factor on the phase composition of the combustion products, we
compared the XRD data from our specimens (Figure 3) with the specimens produced in a semi-industrial
SHS reactor (Figure 4). In the SHS reactor, Vlasov et al. [79] synthesized M1 and M2 mixtures, herewith,
the reactor load was 12 kg. As compared with the specimens produced using the lab reactor (Figure 3a),
the specimens from the semi-industrial reactor (Figure 4a) do not contain the TiC phase. The addition
of 20 wt.% of nickel into the mixture altered the composition of the products obtained from the
semi-industrial SHS reactor (Figure 4b) and caused the formation of chromium carbide and nichrome,
the same as in Figure 3b. Therefore, the change of phase composition upon the introduction of nickel
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binder does not pertain to the sample’s geometry, but rather to the changes of the combustion and
phase formation mechanisms.

Zhang et al. [78] suggested that the decreased content of Cr in solid solution (Ti,Cr)C is related to
the decreased combustion temperature of reactive mixturex. Indeed, addition of 20 wt.% Ni decreases
the adiabatic combustion temperature Tad from 2700 K (M1 composition) to 2350 K (M2 composition).
The decrease of Tad lowers the combustion velocity from 22 mm/s to 9 mm/s. To increase the Cr
content in (Ti,Cr)C and eliminate the chromium carbide phases, we have to increase the combustion
temperature. This could be attained by increasing the content of Ti + C fraction in the mixture, for
example, to M5 composition. For this composition, Tad is equal to 2950 K. An addition of 20 wt.%
Ni binder (composition M6) leads to a decrease of Tad down to 2600 K, which is close to Tad for M1
composition. The combustion velocities of granulated compositions M5 and M6 increased to 35 and
16.5 mm/s, correspondingly. According to the XRD data, M5 combustion products contain (Ti,Cr)C
with a small amount of TiC. Upon the addition of nickel (M6 composition), the content of Cr in TiC
decreases drastically, in the same manner as in the composition M2. The peak of solid solution shifts to
the left and is close to the pure TiC peak (Figure 5a,b). No direct dependencies between combustion
temperature and Cr content in solid solutions were found in mixtures with a nickel binder.
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Figure 5. XRD patterns for the combustion products of granulated 80%(Ti + C)/20%(3Cr + 2C)
mixture with various binder compositions: (a—no binder, (b)—20% Ni, (c)—20% NiCr (80%Ni/20%Cr),
(d)—20% NiCr (60%Ni/40%Cr). (e) provides etalon TiC lines. The circle denotes the shift of one of the
(Ti,Cr)C peaks.

The addition of 20 wt.% Ni as the binder leads to the formation of the Ni2.88Cr1.12 phase. Therefore,
chromium must be (partly) forming a solid solution with nickel, as Cr and Ni are well-soluble in each
other [81]. Apparently, Ni, which has a lower melting temperature, melts first and spreads on Cr
particles with the formation of nichrome, which immobilizes Cr and prevents the formation of (Ti,
Cr)C with the calculated composition. To prevent Cr depletion owing to the formation of nichrome,
the following experiments were conducted with Ni replaced by the Ni-20%Cr and Ni-40%Cr alloys
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(binders B2, B3 in Table 1). XRD data for combustion products of compositions M3, M4, M7, and M8
are provided in Figure 3c,d and Figure 5c,d.

Figure 3 demonstrates that the substitution of nickel with nichrome did not lead to the increase of
Cr content in (Ti, Cr)C, that is, to the shift of the solid solution peak towards the larger angles (see the
(220) peak in the magnified fragment of XRD pattern in Figure 3). When the nichrome (Ni-40%Cr)
alloy was used, chromium carbides and Cr7Ni3 solid solution were formed, signifying the excess of Cr
in the initial mixture. However, for composition M7, the substitution of Ni to nichrome (20%Cr) leads
to the increased content of Cr in (Ti, Cr)C and little to no unwanted by-product phases (Figure 5c).
For M8 composition (binder with 40% Cr), unwanted Cr-based solid solutions and chromium carbides
are formed (Figure 5d).

It is noteworthy that synthesis products produced from all of the investigated granulated mixtures,
both with and without the metallic binder, were in a form of brittle sinter cake comprised of granules
with the same size as in the initial mixture. Figure 6 demonstrated the porous, easy-to-grind granules
of combustion products.
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Porosity arises from the emission of adsorbed gases and products of decomposition of polyvinyl
butyral, which arrests the coagulation of droplets formed during combustion. The fractures of
individual granules of combustion products are provided in Figure 7. Noticeably, all SEM images
demonstrate that the grains of combustion products are 2–5 µm, which is an order of magnitude below
the size of Cr and Ti particles owing to the self-dispersion of starting reagents during the combustion.
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Combustion products of granulated specimens with the metallic binder could be crushed into <1
µm powder both in a mortar and using the hydraulic press at approximately 2.45 MPa (Figure 8b).
Combustion products from non-granulated mixtures could be ground only if they contained no metallic
binder. Binder-containing non-granulated samples could be crushed to the 5–10 mm pieces using the
hydraulic press at 2.45 MPa pressure (Figure 8d) and then to 1–2 mm pieces using 12.25 MPa pressure
(Figure 8e).
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Figure 8. Combusted products of mixture M6: specimen synthesized from the granulated mixture
(a); sample (a) crushed using 2.45 MPa pressure (b); specimen synthesized from powder mixture
(c); specimen (c) after crushing using 2.45 MPa pressure (d); specimen (c) crushed using 12.25 MPa
pressure (e).

Thus, in this work, we used SHS of granulated 80%(Ti + C)/20%(3Cr + 2C) mixture with
a nichrome (Ni-20%Cr) binder to produce in one technologic operation the (Ti,Cr)C solid solution with
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nickel-containing binder and a minor amount of impurities. Products of combustion of agglomerated
mixtures could be crushed and ground easily. This suggests a perspective of the application of
granulation of reactive mixtures for the SHS of composite powders with an optimal combination of
melting point, hardness, corrosion, and ablation resistance for various applications, including the flame
spraying [95–98].

4. Conclusions

1. The granulation of reactive mixtures Ti + C, 70%(Ti + C)/30%(3Cr + 2C), and 80%(Ti +

C)/20%(3Cr + 2C) was demonstrated to increase the combustion velocity by 1.5-fold; the granules in
the combustion products retained their size and did not sinter.;

2. The compositions with metallic binder featured a prolonged fluorescence after the passing
of the combustion front, presumably owing to the occurrence of exothermic secondary phase
formation processes;

3. The addition of nickel decreases the Cr content in (Ti,Cr)C solid solution owing to the interaction
of nickel melt with chromium and formation of NiCr intermetallic;

4. For the granulated 80%(Ti + C)/20%(3Cr + 2C) mixture, the substitution of Ni to Ni-20%Cr and
Ni-30%Cr alloys resulted in the increase of Cr content in solid solution and the formation of (Ti, Cr)C
with NiCr binder;

5. Combustion products procured from granulated mixtures could be more easily processed into
powders owing to the decreased ductility of the combustion products.
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