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Abstract: Structural, optical and electrical properties of (ytterbium/terbium) co-doped ZnO thin
films deposited on glass substrates using the spray pyrolysis method were investigated. The films
exhibited the hexagonal wurtzite structure with a preferential orientation along (002) direction.
No secondary phase was observed in the X-ray diffraction detection limit. Atomic force microscopy
(AFM) was performed and root means square roughness (RMS) of our samples decreased with
terbium content. Photoluminescence measurements showed a luminescence band at 980 nm which
is characteristic of Yb3+ transition between the electronic levels 2F5/2 to 2F7/2. This is experimental
evidence for an efficient energy transfer from the ZnO matrix to Yb. Hall Effect measurements gave
a low electrical resistivity value around 6.0 × 10−3 Ω.cm. Such characteristics make these films of
interest to photovoltaic devices.
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1. Introduction

Zinc oxide (ZnO) is a type II-VI transparent semiconductor compound with n-type natural
conductivity, which is ensured by the existence of "defects" related to interstitial zinc atoms and oxygen
vacancies. Its notable properties: high exciton binding energy, a wide bandgap around 3.37 eV and a
high chemical and physical stability [1]. These properties make it a suitable host material for different
dopants, such as boron B [2], aluminum Al [3], gallium Ga [4] and fluoride F [5]. It is a promising
candidate for applications in short-wavelength emitting devices [6,7], field emission devices [8,9], solar
cells [10,11] and sensors [12,13]. Several techniques have been used to deposit undoped and doped
ZnO thin films such as sol–gel [14], electron beam evaporation [15], spray pyrolysis [16] and radio
frequency magnetron sputtering [17].

The rare earth elements are characterized by their rich energy levels and long-lived excited
states and temperature-independent luminescence in both infrared and visible light ranges [18,19].
Their optical properties and their 4f shell transitions enhance the optical properties of ZnO films [20].
Besides, this doped ZnO can be used as a retrogradation and/or conversion layer within photovoltaic
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solar cells to improve their efficiency [21]. Most lanthanide ions are good candidates for luminescent
centers due to their special 4f electron transition at the different energy levels and stable oxidation
state 3+. Therefore, the rare-earth doping of the ZnO semiconductor became of interest for display
applications involving ultraviolet, visible and infrared light emission [22].

The present investigation is focused on the study of the terbium rare earth effect on Yb-doped
ZnO thin films prepared using the spray pyrolysis technique because of its simplicity, low cost, easy to
add doping materials, and the possibility of varying the film luminescent properties by changing the
composition of starting solution. It is also promising for high rate and mass production capability of
uniform large area coatings in solar cell applications and optoelectronic devices [23,24]. The samples
were characterized by various techniques to assess the effect of co-doping on the structural, optical and
electrical properties.

2. Experimental Details

Undoped and co-doped ZnO films were prepared by the spray pyrolysis technique on silica
glass substrates (SiO2). The solution was prepared by dissolving the precursors in distilled water at
room temperature. We used a dilute solution of zinc acetate dihydrate (Zn (CH3COO)2, 2H2O) (molar
concentration C = 0.05 mol/l) for the elaboration of thin layers of undoped ZnO. For co-doping, we used
a mixture of zinc acetate and ytterbium chloride hexahydrate (YbCl3, 6H2O) (Sigma–Aldrich 99.9%)
with a fixed concentration of (x = 5%) and terbium chloride hexahydrate (TbCl3, 6H2O) (Sigma–Aldrich
99.9%) with two different molar ratios of Tb, 1% and 3%. Subsequently, we added to our solution a few
drops of acetic acid, while stirring magnetically for 30 minutes at room temperature, to obtain a clear
homogeneous solution. The glass substrate was cleaned with ethanol and rinsed with distilled water,
and subsequently dried under nitrogen gas flow before deposition. The substrate was then placed on a
ceramic heating plate and heated progressively until the deposited temperature was reached. All films
were deposited at 350 ◦C during 77 min with a flow rate of the solution fixed at 2.6 ml/min.

The phase purity and the crystallinity of the films were determined using an X-ray diffractometer
(XRD, Malvern Panalytical, Almelo, Netherlands) (X’Pert Pro) using the Bragg–Brentano geometry
(θ–2θ). This diffraction model consists of measuring the intensity diffracted by a displacement of
the sample and the detector simultaneously and respectively with an angle θ and 2θ. X-rays were
produced from a CuKα radiation source of wavelength λ = 1.54056 Å. The chemical composition of
the films was determined using the energy dispersive x-ray spectroscopy (EDS) (JEOL JSM-6700F).
The EDS x-ray detector measures the relative abundance of emitted x-rays versus their energy in the
range of 0–10 keV. The detector is a lithium-drifted silicon, solid-state device. The morphology of the
surfaces of the thin films was inspected by Digital Instrument Dimension 3100 atomic force microscopy
(AFM, Digital Instruments (Veeco), Plainview, New York, United States). The optical properties of the
films were verified using U–Perkin–Elmer Lambda 950 spectrophotometer measurements; we used
a double beam recording spectrophotometer that can function in two configurations: transmission
mode or reflection mode. It consists of three main parts: the source of radiation, the sample holder
and reference. Photoluminescence (PL) experiments were carried out at room temperature using a
355 nm excitation line of a frequency-tripled neodymium-doped yttrium aluminum garnet Nd–YAG
laser (HORIBA, Kisshoin, Minami-ku Kyoto, Japan). The electrical properties of the films were studied
at room temperature, using an ECOPIA Hall effect measurement system, in the form of a horizontal
bar and rectangular block. Copper metal was used as an ohmic contact.

3. Results and Discussion

3.1. Micro-Structural and Morphological Properties

Figure 1 shows both undoped and co-doped (Yb–Tb) ZnO X-ray diffraction spectra. All layers
have a single polycrystalline phase and all peaks correspond to the hexagonal würtzite structure of
ZnO. No rare earth dopant segregation is detected by XRD since no characteristic peak of a terbium
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or ytterbium oxide phase was seen in the XRD diagram. We observed that the introduction of both
ytterbium and terbium results in the growth of both (100)/(002) and (101)/(002) peak intensity ratios
relative to the undoped layer, indicating that the incorporation of Yb and Tb as elemental dopants
slightly affects the preferential orientation. These films were preferably oriented in the direction of
growth with the c-axis perpendicular to the substrate. The texture of the samples was estimated by
calculating the texture coefficient, denoted Tc (hkl) [25]. We can see from Table 1 that the Tc (002)
values decrease with co-doping, which is reflected by a degradation of the crystalline quality of
our layers compared to undoped ones and even comparing them with mono-doping by Yb or Tb.
For all co-doped samples, Tc (002) remains nearly constant, indicating that the increase in Tb did
not change the preferential orientation. A similar result was found using rare-earth doping by other
researchers [21]. The peaks are almost superimposed and in addition, there is almost no shift, which
explains the constancy of the parameters a and c (Figure 1).
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Figure 1. XRD diffraction spectra of (a) undoped ZnO, (b) ZnO: 5% Yb3+-1% Tb3+ and (c) ZnO: 5%
Yb3+-3% Tb3+ films.

Table 1. Structural parameters of undoped and co-doped ZnO thin films.

x Nominal Thickness
(nm)

Grain Size D
(nm)

Tc
(002)

RMS Roughness
(nm) Reference

Undoped ZnO 430 76 3.0 30.0 This work
1% Tb3+ _ _ 2.9 36 [26]
5% Yb3+ 455 83 3.5 _ [27]

5% Yb3+-1% Tb3+ 450 30 1.6 10.6 This work
3% Tb3+ _ _ 2.7 77 [26]

5%Yb3+-3%Tb3+ 462 23 1.6 8.8 This work

The values of the parameters of the lattice a and c are around 0.322 nm and 0.521 nm respectively.
The grain size D of the ZnO layers was estimated from the Scherrer formula [28]. Table 1 shows a
decrease of the values obtained the grain size ranging from 76 nm to 23 nm following co-doping Yb
and Tb. It can be seen from Figure 1 that the widening of the diffraction peak (002) (full width at half
maximum peak (FWHM)) is accompanied by a decrease in the size of the crystallites [29]. The thickness
of the films was determined using a stylus profilometer and the values are given in Table 1.



Crystals 2020, 10, 169 4 of 10

The local chemical compositions of the samples were characterized by EDS in different regions
of the films surface, consequently giving an overall mapping of the sample. The EDS spectra of
Tb and Yb co-doped ZnO films are shown in Figure 2. The attendance of the elements ytterbium,
terbium, zinc, and oxygen could be observed in the spectra, the presence of the Si peak is endorsed to
the glass substrate. One can notice that the Yb and Tb concentration in the film are lower than the
nominal concentration in the sprayed solution. In the tables inserted in Figure 2, we have reported the
percentages of Zn, Tb, Yb, and O obtained via this analysis. The percentage values of the concentration
of Tb and Yb are slightly underestimated compared to the nominal value. The EDS analyses show that
the ratio [Zn]/[O] is less than 1. As a consequence, this shows that the deposit is slightly in excess of
oxygen on the one hand and part of it is due to the glass substrate from another hand.
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Figure 2. Typical EDX spectra of Yb3+/Tb3+ co-doped ZnO thin films with the following Tb doping
contents: (a) 1% Tb, (b) 3% Tb.

Figure 3a,b illustrate the AFM 3-dimensional images of Yb and Tb co-doped ZnO films.
These micrographs illustrate a slight difference between the morphology of the deposited films,
although a clear influence on the roughness has been measured. Samples without ytterbium content
(Table 1) show high roughness values, whereas roughness decreases considerably (about 10 nm) when
ytterbium is co-doped. Similar behavior is observed in the grain size variation estimated from XRD
studies. Such low values of roughness are compatible with use in photovoltaics.
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Figure 3. AFM images of Yb3+/Tb3+ co-doped ZnO thin films: (a) ZnO: 5% Yb3+-1% Tb3+, (b) ZnO:5%
Yb3+-3% Tb3+.

3.2. Optical Transmittance and Photoluminescence

The spectra of the T-transmission as a function of the wavelength in the 350–800 nm range are
shown in Figure 4. We find that the transmission decreases during the co-doping to reach values
less than 70%. The decrease of the transmission is a little more marked in the 400–500 nm region.
This may be due to the absorption of oxygen deficiencies, whose defect levels are located slightly
below the conduction band. This absorption has the effect of reducing the value of the forbidden band.
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The absence of the interference fringes is due to the diffusion of light. The latter is caused by the small
size of the grains, which disperse light rather than transmit it.Crystals 2019, 9, x FOR PEER REVIEW 6 of 10 
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Photoluminescence (PL) is a powerful method for studying the effects of doping on the optical
properties of semiconductors. PL spectra are shown in Figure 5. The peak at 710 nm corresponds to
the second-order diffraction peak of the 355 nm laser line. The strong luminescence band at 379 nm
corresponds to the excitonic emission. The second order of this PL band is visible at 760 nm. The wide
PL band between 510 and 680 nm characterize the deep levels of oxygen vacancies in the ZnO and
zinc or oxygen atoms in interstitial positions [30]. The relative intensity of this band compared to the
undoped and Yb-doped ZnO [27] increased with Tb co-doping level. This behavior can be attributed
to the increase of both optically active defects and non-radiative transition centers created by the
incorporation of Tb and Yb in ZnO matrix. Around 980 nm, one can see a peak that is characteristic
of the 2F5/2→

2F7/2 transition of Yb3+ ions. This peak indicates an existing transfer energy between
ZnO matrix and the Yb3+ ion and agrees with previous works [27,31]. Yb3+ ions are known to have
only two spin orbit manifolds levels, 2F5/2 and 2F7/2. No clear emission from Tb3+ ions has been
detected in the 400–1000 nm wavelength range, which means that there is either no transfer to Tb3+

or the transfer efficiency is very low. The optical band gap energies Eg of the films were estimated
from the photoluminescence spectra. Eg values are 3.27 eV, 3.23 eV and 3.21 eV for undoped ZnO,
ZnO:5%Yb-1%Tb and ZnO:5%Yb-3%Tb, respectively. This decrease is probably due to the increase of
RE defects in the ZnO upon doping as it has been reported by Zheng et al. [32]. The RE 4f electrons
introduce new states close to the conduction band of ZnO and a new LUMO is thus formed, which
leads to a reduction in the band gap.
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3.3. Electrical Properties

Hall-effect measurements were performed to investigate the electrical properties of the ZnO thin
films. The data of electrical resistivity (%), Hall mobility (µH) and carrier concentration (ne) at room
temperature are listed in Table 2. We noticed that the electrical parameters are dependent on the
co-doping concentration. The origin of carriers in our films comes from both intrinsic donors such as
lattice defects (oxygen vacancies and metal atoms in interstitial positions) and extrinsic doping due to
the substitution of RE3+ for Zn2+ in ZnO matrix. A free hole will be produced for each substitution
of Zn by Yb or Tb, which will contribute to the electrical conduction as free carriers. Using Hall
Effect measurements, the films were found to be n-type semiconductor. These results are surprising
since the RE ion doping must lead to a p-type doping. One can suppose that the insertion of the RE
atoms in a substitutional position in the ZnO is not sufficient to induce p-type conduction. This can
be explained by the fact that the conduction is primarily dominated by defects in ZnO and that most
of RE atoms are probably lodged in interstitial positions, which indicates in this case that Tb and Yb
act as a donor-type impurity. These results are in agreement with those reported in Yb-doped ZnO
thin films [27]. The low mobility values observed are mainly attributed to the deterioration of the
film crystallinity, grain boundaries, and/or to ionized impurity scattering, as already suggested by
Thangaraju et al. [33]. Furthermore, Swapna et al. [34] reported that in the films prepared by the spray
pyrolysis method, oxygen is one of the most important background impurities that diffuse readily into
the crystal lattice when depositing samples in the air at elevated temperatures. Therefore, the oxygen
impurity can alter the microstructure and grain size of the thin films during the deposition process and
serves as a trap. Therefore, the mobility decreases. The combination of these two effects results in a
decrease in the electrical resistivity. A minimum value of 6.0 × 10−3 Ω.cm has been obtained for the
ZnO films doped with 5% Yb and 3% Tb.
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Table 2. Electrical parameters of undoped and co-doped ZnO thin films.

x Nominal ne (1020 cm−3) ρ (10−2 Ω.cm) µH (10−1 cm2/V.s) Ref

Undoped ZnO 0.13 65 7.3 This work
1% Tb3+ 1.3 6.0 8.4 [26]
5% Yb3+ - 8.0 5.2 [27]

5% Yb3+-1% Tb3+ 5.5 5.4 2.1 This work
3% Tb3+ 0.82 7.4 10.3 [34]

5% Yb3+-3% Tb3+ 23 0.6 4.7 This work

To follow up this work, appropriate heat treatments under controlled atmospheres are needed to
improve the physical properties of these films, and further analysis such as infrared photoluminescence
measurements are expected.

4. Conclusions

In this work, we conducted a study focused on the terbium rare earth effect on Yb-doped ZnO
thin films that were prepared on glass substrates by the spray pyrolysis technique, with the objective
to investigated the structural, optical and electrical properties. The x-ray diffraction (XRD) analysis
showed that the films exhibit the hexagonal wurtzite structure and a preferential orientation in the
(002) direction. The co-doped films reveal that co-doping has a notable impact on the values of optical
transmission, reaching values of less than 70%. Photoluminescence measurements show an emission
band around 980 nm corresponding to the intrashell transitions of 2F5/2→

2F7/2 from Yb3+ ion, which
can be interpreted as an energy transfer between ZnO matrix and the doping Yb3+ centers. No emission
from Tb rare earth was observed. All samples were n-type, and the electrical resistivity decreases down
to 6.0 × 10−3 Ω.cm. The above-mentioned characteristics render these co-doped ZnO films potential
candidates for the photons’ down-conversion layers in photovoltaic cells, with the advantage that they
are prepared by a simple and economical technique.
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