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erik.cizmar@upjs.sk (E.Č.); serhii.vorobiov@upjs.sk (S.V.); alexander.feher@upjs.sk (A.F.)

3 Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus (NASB),
P. Brovka 19, 220072 Minsk, Belarus; radyush@ifttp.bas-net.by (Y.V.R.); pushk@physics.by (A.V.P.);
olekhnov@ifttp.bas-net.by (N.M.O.)

4 Energy Safety Research Institute (ESRI), Bay Campus, Swansea University, Fabian Way,
Swansea SA1 8EN, UK; Andrius.stanulis@swansea.ac.uk (A.S.); a.r.barron@swansea.ac.uk (A.R.B.)

5 Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University,
Houston, TX 77005, USA

6 Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong,
Bandar Seri Begawan BE1410, Brunei

7 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
8 Department of Materials and Ceramics Engineering/CICECO-Aveiro Institute of Materials,

University of 3810-193 Aveiro, Portugal
* Correspondence: dmitry.khalyavin@stfc.ac.uk (D.D.K.); salak@ua.pt (A.N.S.)

Received: 30 September 2020; Accepted: 16 October 2020; Published: 17 October 2020
����������
�������

Abstract: Magnetic properties of the high-pressure stabilized perovskite BiFe1-yScyO3 phases
(0.1 ≤ y ≤ 0.9) have been studied by means of magnetization measurements and neutron diffraction.
The metastable perovskites of this series undergo irreversible polymorphic transformations upon
annealing, the phenomenon referred to as conversion polymorphism. It has been found that the
solid solutions with y ≥ 0.70 exhibit no long-range magnetic ordering regardless of their polymorph
modification, while those with y ≤ 0.60 are all antiferromagnets. Depending on the scandium
content, temperature and structural distortions, three types of the antiferromagnetic orderings,
involving collinear, canted and cycloidal spin arrangements, have been revealed in the phases obtained
via conversion polymorphism and the corresponding magnetic phase diagram has been suggested.

Keywords: high-pressure synthesis; conversion polymorphism; oxygen octahedral tilting;
G-type antiferromagnetic; weak ferromagnetism; collinear magnetic ground state

1. Introduction

Chemical modifications of one of the most known type-I multiferroics, bismuth ferrite [1],
make it possible to tune the properties of the parent composition (e.g., to adjust the ranges of the
antiferromagnetic and the ferroelectric phase transitions) and to obtain new crystalline and magnetic
structures [2,3]. While bulk single-phase perovskites with considerable and even complete isovalent
substitutions of bismuth in BiFeO3 can be easy produced using the conventional ceramic routes [4–6],
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the formation of the compositions with more than 15 mol.% substitution of iron (except for Mn3+

substituted BiFeO3 where up to 30 mol.% can be achieved [7]) requires a high-pressure synthesis.
Using the high-pressure synthesis, the Bi(Fe,B3+)O3 solid solutions with the Fe3+-to-B3+

substitution of 50 mol.% and above (B3+ = Mn [8,9], Co [10–12], Cr [13,14], Ga [15,16]) have been
obtained. The composition-driven sequences of the crystalline phases and their structural distortions
as well as the feasibility of their application as materials with desired functionalities (in particular,
as multiferroics and piezoelectrics) were studied [10,17]. Even though the magnetic behavior of
particular compositions of those solid solution systems were investigated in great detail, only a few
magnetic phase diagrams have been published so far [8,16].

We have recently prepared and characterized the entire series of the high-pressure stabilized
perovskite solid solutions of the BiFeO3-BiScO3 system [18,19]. BiScO3 was chosen as the end member
since substitution of Fe3+ by a considerably bigger Sc3+ was expected to induce new crystal structures
and thereby new combinations of multiferroic properties. Indeed, three structure fields with the
rhombohedral R3c symmetry and the

√
2ap ×

√
2ap × 2

√
3ap superstructure (where ap is the pseudocubic

perovskite unit-cell parameter), the orthorhombic Pnma symmetry (
√

2ap × 4ap × 2
√

2ap) and the
monoclinic C2/c one (

√
6ap ×

√
2ap ×

√
6ap) were revealed [18]. Moreover, in the BiFe1-yScyO3 series,

the phenomenon of annealed-stimulated irreversible transformations between metastable perovskite
phases (conversion polymorphism) was observed. We have revealed at least three compositional ranges
in this solid solution system, where the post-synthesis annealing results in the formation of different
perovskite polymorphs with new combinations of structural distortions and magnetic orders [19].

While the as-prepared (non-annealed) phase of the BiFe0.50Sc0.50O3 composition is the
antipolar Pnma, the conversion-stabilized modification is a polar orthorhombic with the Ima2 symmetry
(2ap ×

√
2ap ×

√
2ap) [20]. Both the polar and the antipolar polymorphs of BiFe0.5Sc0.5O3 are G-type

antiferromagnets (AFM) with a weak ferromagnetic (FM) component below the Néel temperature,
TN ~220 K. Although the type of the magnetic order and the TN value are the same for both polymorphs,
magnetization of the polar polymorph below TN was found to be 2–5 times smaller than that of the
antipolar one [20]. Besides, the BiFe0.50Sc0.50O3 polymorphs were shown to be also rather different
in terms of effects caused by their magnetic anisotropy [21,22]. In the range of the BiFe1-yScyO3

compositions with y close to 0.30, annealing of the as-prepared antipolar Pnma phase leads to
irreversible transformation into a rhombohedral R3c polymorph with a very unusual collinear magnetic
ground state [19]. The monoclinic C2/c phase of the as-prepared BiFe1-yScyO3 compositions with y ≥ 0.7
irreversibly transforms into a new antiferroelectric-like phase with the orthorhombic Pnma symmetry
and the 2

√
2ap × 4ap ×

√
2ap superstructure [19]. Hereafter, the modifications with the superstructures

√
2ap × 4ap × 2

√
2ap and 2

√
2ap × 4ap ×

√
2ap are denoted as Pnma (I) and Pnma (II), respectively. It should

be stressed here that the different unit cell choice in these modifications implies essentially different
distortions involved.

A temperature–composition phase diagram of the BiFe1-yScyO3 series plotted based on the data of
the in situ temperature powder diffraction studies demonstrates a sequence of the perovskite-type
structures different in respect of combinations of the oxygen octahedral tiltings [19]. It should be
pointed out that the octahedral tilting not only determines the structure distortion (symmetry) but
also has an effect on the long-range magnetic order in perovskites. In particular, it has been recently
shown that the component of the Dzyaloshinskii–Moriya vector, which couples the G-type AFM and
orthogonal FM modes, is imposed by anti-phase octahedral tiltings [20,23].

Here we report the compositional behavior of magnetic properties of the BiFe1-yScyO3

solid solutions (0.1 ≤ y ≤ 0.9) before and after annealing that results in the irreversible
polymorphic transformations. The obtained magnetic diagram is considered in comparison with the
temperature–composition phase diagram of the BiFeO3-BiScO3 system.
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2. Materials and Methods

Ceramics of the BiFe1-yScyO3 series (0.1 ≤ y ≤ 0.9) were synthesized under high-pressure from the
precursor prepared via either a solid-state reaction or a sol-gel combustion route. Details of the precursor
preparation and the high-pressure synthesis can be found in References [18] and [21]. Annealing of the
obtained ceramic samples was done in air at 870 K for 3 h.

Phase analysis of the samples before and after annealing was performed using a PANalytical
X’Pert Powder X-ray diffractometer (XRD, Ni-filtered Cu Kα radiation) at room temperature. Before the
XRD measurements, the samples were reduced into powders.

Neutron powder diffraction data were collected at the ISIS pulsed neutron and muon facility
of the Rutherford Appleton Laboratory (UK) on the WISH diffractometer [24]. The studied samples
were loaded into a cylindrical 3 mm diameter vanadium can and measured in a temperature range
of 1.5–300 K. The crystal structure and the magnetic structure of the samples were refined using the
FULLPROF package [25].

Magnetic properties of the ceramic samples were measured in the range of 5–300 K using
a commercial Quantum Design MPMS-3 magnetometer in applied fields up to 70 kOe in both
zero-field-cooled (ZFC) and field-cooled (FC) modes. High temperature (over the range of 300–700 K)
measurements were done using a commercial Quantum Design MPMS-XL magnetometer equipped
with oven insert.

3. Results and Discussion

Magnetic behavior of the BiFe1-yScyO3 perovskites with the relative iron content above and below
30 mol.% (which corresponds to y < 0.70 and y≥ 0.70, respectively) were found to be essentially different.

Regardless of the structure modification, C2/c or Pnma (II), BiFe0.3Sc0.7O3 exhibits no sign of a
long-range magnetic ordering down to the low temperatures. It is expectable since the iron content in
this compound is below the percolation threshold of 31 mol.% (y = 0.69) for perovskite structures [26],
when magnetic Fe3+ still can form a continuous path throughout the crystal to produce a long-range
magnetic ordering.

Indeed, the neutron diffraction study has revealed no additional contributions to nuclear reflections
that could indicate an onset of magnetic ordering. As an example, Figure 1 demonstrates the results of
the crystal structure refinement of the Pnma (II) polymorph of BiFe0.3Sc0.7O3 at 1.5 K.
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Figure 1. Neutron diffraction pattern of the annealed BiFe0.30Sc0.70O3 sample collected at 1.5 K and
refined in the Pnma (II) structural model (RBragg = 3.01%). No magnetic ordering was required to achieve
the good refinement quality. The cross symbols and solid line (red) represent the experimental and
calculated intensities, respectively, and the line below (blue) is the difference between them. Tick marks
(green) indicate the positions of Bragg peaks.
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The diffraction data are consistent with the results of the magnetic measurements.
The temperature-dependent ZFC and FC curves of BiFe0.3Sc0.7O3 coincide down to about 25 K and
slightly diverge below this temperature. The magnetic moment of its monoclinic C2/c modification as
a function of temperature is shown in Figure 2. The Curie–Weiss fitting gives the effective magnetic
moment µeff ~2.99 µB/Fe3+, which is close to the experimental value for the low-spin Fe3+ in the
octahedral environment. Further decrease of the iron content in the BiFe1-yScyO3 system results in
reduction of the paramagnetic response, which vanishes completely in BiScO3 (y = 1).
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Figure 2. (a) Temperature-dependent dc magnetic moment of the monoclinic C/2c (as-prepared)
polymorph of BiFe0.30Sc0.70O3 measured in the magnetic field of 50 Oe in the zero-field-cooled (ZFC)
(open symbols) and field-cooled (FC) (solid symbols) modes; (b) field dependent magnetization loops
measured at different temperatures.

The magnetic behavior of the BiFe1-yScyO3 perovskites with the relative iron content of 60 mol.%
and above (y < 0.7) was revealed to be typical for antiferromagnets. Dilution of the iron magnetic
subsystem by scandium leads to the near-linear decrease of the Néel temperature, TN, from about 635 K
in the parent bismuth ferrite (y = 0) down to about 150 K in the composition with y = 0.60 (Figure 3).
The presence of the long-range antiferromagnetic ordering has also been confirmed by the neutron
diffraction in the compositions with y = 0.3 [19], y = 0.4 (see Figure 4) and y = 0.5 [20]. The TN values
were found to be practically the same for the non-annealed and annealed perovskites, independent on
their crystal structure modification. The magnetization of the all studied perovskites is far from the
saturation up to the highest applied field of 70 kOe.
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Figure 3. The normalized temperature dependent dc magnetic susceptibility for the Pnma (I) polymorphs
(as-prepared) of BiFe1-yScyO3 (0.30 ≤ y ≤ 0.60) measured in 50 Oe in the FC mode.
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Figure 4. Neutron diffraction pattern of the annealed BiFe0.60Sc0.40O3 sample collected at 1.5 K and
refined in the model contained two phases, namely the rhombohedral R3c (70%, RBragg = 2.13%) and
the orthorhombic Ima2 (30%, RBragg = 4.14%). The cross symbols and solid line (red) represent the
experimental and calculated intensities, respectively, and the line below (blue) is the difference between
them. Tick marks (green) indicate the positions of Bragg peaks (from top to bottom) for the nuclear
rhombohedral, magnetic rhombohedral, nuclear orthorhombic and magnetic orthorhombic phases.
Magnetic phases in both cases were G-type antiferromagnets (AFMs) with the moment direction along
the c-axis in the rhombohedral phase (Rmagnetic = 3.12%) and along the a-axis in the orthorhombic
phase (Rmagnetic = 4.17%). Inset shows the diffraction patterns at the vicinity of the strongest magnetic
peaks collected above and below TN.

In the BiFe1-yScyO3 solid solutions with the composition in the range of 0.20 ≤ y ≤ 0.60, a weak FM
component was detected. Figure 5 shows the static magnetic moment of a non-annealed BiFe0.70Sc0.30O3

sample, which is the orthorhombic Pnma (I) [19], as functions of temperature and field. It is seen from
Figure 5b that the orthorhombic polymorph of BiFe0.70Sc0.30O3 demonstrates weak ferromagnetism
down to the low temperatures: its remnant magnetization and the coercive field are non-zero.
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Figure 5. (a) Temperature dependent dc magnetic moment for the as-prepared BiFe0.70Sc0.30O3

perovskite (the polymorph Pnma (I)) measured in 50 Oe in the ZFC (open symbols) and FC (solid symbols)
modes. (b) Field dependent magnetization loops at different temperatures below TN.

Annealing of the as-prepared metastable BiFe1-yScyO3 phases (0.20 ≤ y ≤ 0.60) leads to the decrease
of their magnetic moment in the magnetically ordered state, the remnant magnetization, and the
coercive field. In other words, the annealing results in a reduction of the weak ferromagnetism and
the magnetic anisotropy. It is known that annealing of the high-pressure synthesized ceramics is
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accompanied by a release of the mechanical stress induced by the quenching from high temperature and
pressure down to ambient conditions [27]. In the samples of the BiFe1-yScyO3 system with 0.20 ≤ y ≤ 0.60,
a gradual stress release leads to the irreversible polymorphic transformations. [19].

Upon annealing, BiFe0.70Sc0.30O3 transforms into a rhombohedral R3c polymorph, which is
isostructural to the undoped bismuth ferrite. BiFeO3 is known to be AFM with an incommensurate
cycloidal magnetic structure below TN ~ 635 K [1]. The neutron diffraction study [19] revealed that
the magnetic structure of the rhombohedral modification of BiFe0.70Sc0.30O3 just below TN ~ 375 K is
incommensurately modulated in the same manner as that in BiFeO3. However, while the cycloidal
structure in bismuth ferrite remains upon cooling, the magnetic structure of BiFe0.70Sc0.30O3 below the
transition temperature Tm ~ 230 K becomes a collinear G-type AFM with the spins polarized along the
threefold axis [19]. This structure allows no spin-canting and is the unique example of a BiFeO3-derived
composition, in which the collinear magnetic structure does not activate the anti-symmetric exchange.
In contrast with BiFe0.70Sc0.30O3, the rhombohedral phase of BiFe0.60Sc0.40O3 perovskite adopts the
collinear AFM structure just below TN ~ 300 K and this type of magnetic ordering remains stable over
the whole temperature range (see Figure 4). The irreversible transformation of the BiFe0.60Sc0.40O3

composition into the R3c polymorph upon annealing was not complete and the annealed species
contained 30% of the polar Ima2 phase. The magnetic structure of the polar phase was found to be
canted AFM similar to the Ima2 phase of BiFe0.50Sc0.50O3 [20].

Variations of the static magnetic moment of the rhombohedral polymorph of BiFe0.70Sc0.30O3 with
temperature and the applied field are shown in Figure 6. The material demonstrates a usual AFM
behaviour with a magnetization linearly dependent on the magnetic field (Figure 6b). One can notice
two distinct regions in the temperature dependence of the magnetic moment below TN (Figure 6a).
(1) Between TN and Tm, the moment grows fast enough on cooling and a small difference between
the ZFC and the FC curves is observed. (2) Below Tm, the moment changes slower and there is the
evident near-constant difference between the ZFC and FC curves. Such a behavior is associated with
a highly anisotropic state of the material below Tm. It should be also noticed that both magnetic
transitions observed in the annealed BiFe0.70Sc0.30O3 at TN and Tm are both reversible with no visible
temperature hysteresis.
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Figure 6. (a) Temperature-dependent dc magnetic moment for the annealed BiFe0.70Sc0.30O3 perovskite
(the polymorph R3c) measured in 50 Oe in the ZFC (open symbols) and FC (solid symbols) modes.
(b) Field dependent magnetization loops at different temperatures below TN.

Very similar temperature behavior of the static magnetic moment below TN ~ 370 K was revealed
in the annealed sample with y = 0.25 (Figure 7). Following the description done for the temperature
dependence of the magnetic moment of the R3c polymorph of BiFe0.70Sc0.30O3 (see above), the transition
between two magnetically ordered states at Tm ~ 175 K can be suggested. It is important to emphasize
here that, as opposed to the BiFe1-yScyO3 composition with y = 0.30, BiFe0.75Sc0.25O3 was found to
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exhibit no annealing-stimulated transformation [19]. The crystal structure of the latter remains the
same, namely rhombohedral with the R3c symmetry over the entire heating/cooling cycle. Nevertheless,
the magnetic ground states of BiFe0.75Sc0.25O3 before and after annealing are different. This suggests
that the phenomenon of conversion polymorphism is more general than considered previously:
annealed-stimulated irreversible transformations of the magnetic structure are possible without change
of the crystal structure, within the same structural polymorph.
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Figure 7. Temperature dependent dc magnetic moment for the annealed BiFe0.75Sc0.25O3 perovskite
(the polymorph R3c) measured in 50 Oe in in the ZFC (open symbols) and FC (solid symbols) modes.

The same type of the magnetic transformation was then found in other annealed BiFe1-yScyO3

perovskites with a lower content of scandium, namely those corresponded to y = 0.10 and 0.20
(with Tm ~ 105 and 185 K, respectively).

In addition to the magnetic phase transition at Tm, an anomaly in the temperature dependence
of the magnetic moment, which indicates another magnetic transformation (at Ta), was observed in
both as-prepared as well as annealed BiFe1-yScyO3 samples with scandium content in the range of
0.10 ≤ y ≤ 0.25. The suggested magnetic transition at Ta is strongly hysteretic, which implies that it is
likely to be of the 1st order (Figure 7).

Based on the obtained data, a magnetic phase diagram of the BiFe1-yScyO3 system has been plotted
(Figure 8).

There are at least three types of magnetically ordered structures in the system and all three are
AFM. Two of those structures are the incommensurate cycloid and the collinear one as detected in the
rhombohedral polymorph of BiFe0.70Sc0.30O3 above and below Tm, respectively. A question about a
possible magnetic transition at Ta in this polymorph remains open: whether it is very close to that at
TN or does not exist. The exact nature of the suggested AFM structures and transition between them in
the range of 0.10 ≤ y ≤ 0.30 certainly requires a particular study. Neutron diffraction experiments are
planned and their results will be published elsewhere.
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Figure 8. Magnetic phase diagram and schematic representation of the magnetic structures observed
in the BiFe1-yScyO3 perovskites synthesized under high-pressure followed by annealing. The TN value
for the composition with y = 0 was taken from Reference [1]. The lines between the points are guides to
the eye. The phase transitions at Tm in the compositions with y = 0.1, 0.2 and 0.25 are less pronounced
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therefore the corresponding points are shown as open symbols. The area labelled as “collinear + canted”
specifies the compositional-temperature range of two structural phases: the rhombohedral R3c with
the collinear AFM structure and the polar orthorhombic Ima2 with the canted AFM one.

4. Conclusions

The static magnetic moment of the as-prepared and the annealed BiFe1-yScyO3 solid solutions with
the relative scandium content y in the range of 0 < y < 1 have been studied. Annealing of the as-prepared
monoclinic C2/c perovskite polymorph in the solutions with y ≥ 0.70 results in the irreversible
transformation (conversion polymorphism) to the antipolar orthorhombic Pnma (II) modification;
nevertheless, the magnetic behaviors of both polymorphs are essentially similar: they are paramagnetic
down to the low temperatures with no sign of magnetic ordering. The BiFe1-yScyO3 perovskites with
y ≤ 0.60 are all antiferromagnets with a near-linear dependence of TN on y. Although these perovskites
in the range of 0.30 ≤ y ≤ 0.55 exhibit the annealing-stimulated polymorphism, their TN values are
practically independent on the type of polymorph (before and after the annealing). In the perovskites
with the composition in the range of 0.20 ≤ y ≤ 0.60, a weak ferromagnetic contribution to the AFM
state was detected. The annealing was found to lead to a reduction of this contribution.

In the BiFe1-yScyO3 solid solution with y = 0.30, the conversion from the as-prepared antipolar
orthorhombic Pnma (I) phase to the polar rhombohedral R3c polymorph results in the appearance of
a reversible phase transition (at Tm < TN) from the BiFeO3-like incommensurate cycloidal magnetic
structure to a collinear G-type AFM with the spins polarized along the threefold axis. The solid
solutions with a lower scandium content, 0.10 ≤ y ≤ 0.25, exhibit no conversion polymorphism.
Nevertheless, the annealed perovskites from this compositional range demonstrate the magnetic
transition, which is very similar to that observed in the solid solution with y = 0.30 at Tm.
Moreover, the indications of another magnetic transition (at Ta, where Tm < Ta < TN) were observed in
these solid solutions. The magnetic phase diagram suggests the presence of at least three different
AFM structures in the BiFe1-yScyO3 system.
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