
crystals

Article

Effect of 3D Representative Volume Element (RVE)
Thickness on Stress and Strain Partitioning in Crystal
Plasticity Simulations of Multi-Phase Materials

Faisal Qayyum 1,*,† , Aqeel Afzal Chaudhry 2,† , Sergey Guk 1 , Matthias Schmidtchen 1 ,
Rudolf Kawalla 1 and Ulrich Prahl 1

1 Institute of Metal Forming, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
sergey.guk@imf.tu-freiberg.de (S.G.); matthias.schmidtchen@imf.tu-freiberg.de (M.S.);
rudolf.kawalla@imf.tu-freiberg.de (R.K.); ulrich.prahl@imf.tu-freiberg.de (U.P.)

2 Geotechnical Institute, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
aqeel.chaudhry@ifgt.tu-freiberg.de

* Correspondence: faisal.qayyum@student.tu-freiberg.de
† These authors contributed equally to this work.

Received: 27 August 2020; Accepted: 9 October 2020; Published: 17 October 2020
����������
�������

Abstract: Crystal plasticity simulations help to understand the local deformation behavior of
multi-phase materials based on the microstructural attributes. The results of such simulations are
mainly dependent on the Representative Volume Element (RVE) size and composition. The effect
of RVE thickness on the changing global and local stress and strain is analyzed in this work for a
test case of dual-phase steels in order to identify the minimal RVE thickness for obtaining consistent
results. 100× 100× 100 voxel representative volume elements are constructed by varying grain size
and random orientation distribution in DREAM-3D. The constructed RVEs are sliced in depth up to
1, 5, 10, 15, 20, 25, 30, 40, and 50 layers to construct different geometries with increasing thickness.
Crystal plasticity model parameters for ferrite and martensite are taken from already published data
and assigned to respective phases. Although the global stress/strain behavior of different RVEs is
similar (<5% divergence), the local stress/strain partitioning in RVEs with varying thickness and grain
size shows a considerable variation when statistically compared. It is concluded that two-dimensional
(2D) RVEs can be used for crystal plasticity simulations when global deformation behavior is of
interest. Whereas, it is necessary to consider three-dimensional (3D) RVEs, which have a specific
thickness and number of grains for determining stabilized and more accurate local deformation
behavior. This estimation will help researchers in optimizing the computation time for accurate
mesoscale simulations.

Keywords: crystal plasticity; DAMASK; representative volume element; dual-phase steel; local
deformation behavior

1. Introduction

The micro-structure of a material plays an important role in defining the mechanical properties [1]
and service life of a component [2,3]. Numerical models can help to understand and improve
the component’s life by providing detailed insight into the local [4,5] and global [6–8] deformation
behaviors. A concept of Representative Volume Element (RVE) is used in order to numerically simulate
continuous yet locally heterogeneous materials [9,10]. A lot of work in the recent past has been
carried out to estimate the local deformation behavior of single and multi-phase materials based on
two-dimensional (2D) and three-dimensional (3D) RVEs [11–14]. 2D and 3D RVEs can be constructed
using single [15] or multilayer [16] Voronoi tessellation using measured or virtual local grain size, phase,
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and orientation distribution data [17]. They can also be constructed by processing EBSD map of a material
appropriately [18], and specifically 3D RVEs can be constructed by multi-layer EBSD mapping of a local
region while using Focused Ion Beam (FIB) milling [19].

Using RVEs in CP simulations has been common practice for quite some time, and most researchers
used 2D RVEs, as they are easier to collect and they can help compare the locally observed deformation
behavior with simulation results [20–22]. In recent studies [19,23], it was shown that 3D RVEs—compared
with 2D RVEs—yield nearly accurate local stress–strain evolution results, yet the effect of RVE thickness
on results was not analyzed in these studies. The computational costs in CP simulations are quite high
and largely depend on the size of RVE, especially for high-resolution full phase simulations, it can take
weeks to yield the desired results [24]. It is important to know the effective RVE thickness relative to
the material, average grain size, and develop a simulation model accordingly. Such estimation leads
to reduced computational cost while maintaining the accuracy of the results. In the past, researchers
analyzed the effects of RVE size and applied boundary conditions on the deformation behavior of
heterogeneous materials [4,25,26]. Scale-dependent elastic and elastoplastic deformation behaviors of
periodic [27] and random [28] composites were analyzed.

DREAM-3D [29] is an open-source tool that is available to construct RVEs from experimentally
or analytically available micro-structural data. Recently, the coupling of DREAM-3D with DAMASK
has been made easier by introducing a pipeline object in order to directly export the generated RVE
to a readable geometry file [30]. This technique is used in the current study to construct virtual
RVEs with different grain sizes. Recently, researchers suggested a methodology for calibrating the
DAMASK models using a benchmark 1000 grain RVE [18] by comparing the results with experimental
flow curves. In another work, they calibrated the model by comparing it with the in-situ acoustic
emission data [31]. In both of these publications, the calibrated model was used to carry out full
phase simulations for the TRIP steel matrix and TRIP steel Mg-PSZ composite. EBSD maps were
used as 2D geometries for simulations. Although local evolution of stress, strain, dislocation density,
transformation, and twinning were analyzed, it was reported that the results are only qualitatively
accurate for comparison as there is no third dimension for these attributes to evolve in. It was
concluded that 3D RVEs should be considered for accurate full phase simulations. Considering such
work to be capital and computationally intensive, selecting appropriate RVE thickness with respect
to the material grain size is very important. Recently, Diehl et al. [32] investigated the influence of
neighborhood on stress and strain partitioning in DP steel microstructures and showed the relevance of
subsurface microstructures in this regard. It was concluded that structural changes farther than three
times the average grain size have a negligible effect on the region of interest. However, the conclusions
were made based on a fixed grain size range and limited statistical analysis.

Considerable research has been carried out in the development of RVEs from experimental and
statistical data [33]. A very detailed review of the generation of 3D representative volume elements
for heterogeneous materials was recently published [34]. Several experimental, physical-based,
and geometrical methods were discussed, along with the available commercial and open-source
tools in this work. Researchers have also used the constructed RVEs in order to run mesoscale
simulations and they have analyzed the effect of different RVEs on the outcome of simulations [35–38].
CP simulations are increasingly being used to model and analyze complex problems from the single
crystal up to the component scale [39]. It has been reported that the simulation results get better
with increasing RVE size, as larger RVEs are better informed and incorporate more microstructural
features [34,40]. Zeghadi et al. [41,42] tried to establish such a relationship for single-phase materials.
However, it was mentioned while concluding the study to check results for a bigger data set and
more grains on the free surface. Harris et al. [43,44] carried out a detailed study for determining the
appropriate RVE size for 3D microstructural material characterization that is based on the multi-phase
composite gas separation membrane. They showed that the developed statistical model was able to
predict the experimental observations reasonably. A study that identifies the optimal finite thickness
of an RVE—relative to the material grain size—in multi-phase materials for optimal simulation time
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without compromising the accuracy of results is still missing. Different researchers in the past have
approached this problem differently. The method that is presented in the current work is unique, fast,
and effective in establishing the desired output.

In this work, the effect of RVE thickness—with the intention of identifying the amount of finite
thickness required for consistent results—on the changing global and local stress and strain is analyzed
for a test case of dual-phase steels. RVEs were constructed by varying mean feature ESD (D f )
between 3 to 18 µm using DREAM-3D with grains having randomly assigned orientation distributions.
The constructed RVEs were sliced in up to 1, 5, 10, 15, 20, 25, 30, 40, and 50 layers to produce different
geometries comprising the same microstructure—with increasing thickness. Crystal plasticity model
parameters for ferrite and martensite are taken from already published data and assigned to respective
phases. Probability Distribution Functions (PDF) and Cumulative Distribution Functions (CDF) of all
simulation results are compared in order to estimate the solution convergence with changing grain
size statistically. In the end, a simple function is proposed for calculating the sufficient RVE thickness
that is necessary for obtaining a converged solution.

Section 2 provides the details of material data, RVE construction, simulation scheme, and CP
material model parameters. Section 3 presents the results that were obtained in this study. In Section 4,
the results are discussed in comparison with state of the art, and insight into the outlook is provided.
Eventually, the study is concluded in Section 5.

2. Numerical Simulation Model Development

For the numerical simulation modeling, RVEs were virtually constructed while using open source
tool DREAM-3D [29]. The case of dual-phase steel is considered as a case study in the current work.
Micro-structural attributes were adopted from the literature [45]. 3D RVEs were constructed—with
varying grain size—using open source tool DREAM-3D [29]. These constructed RVEs were sliced
into varying thickness ranges from one layer to 50 layers and used as input geometries for numerical
simulations. Crystal plasticity based open source tool DAMASK was used to model and solve
numerical simulations by adopting already published methodology [22].

2.1. RVE Construction and Geometry Files Production

Dual-phase steel is chosen as a case study in the current work, because, on the one hand, it is a
simple material that consists of ferrite matrix and embedded martensite islands (consisting of laths
with different crystallographic orientations) in it, while, on the other hand, it is an excellent example
of multi-phase materials with two phases comprising of drastically different mechanical properties.
The microstructural attributes i.e., grain size and martensite percentage, were adopted from the
previous work of Jiang et al. [46]. It has been reported that, in DP steels, the grain size of ferrite
ranges from 5 to 25 µm, whereas martensite grain size ranges from 3 to 18 µm. Considering this upper
and lower grain size limit, DREAM-3D was used for the construction of virtual RVEs with varying
grain sizes, while keeping the ferrite and martensite grain size ratio to be 1:1 intentionally to keep the
problem at hand simple.

Table 1 provides the total number of grain in each 1003 RVE for a corresponding ESD given as
a dimensionless entity. A pipeline was built with the initialization of virtual data generation while
using a stats generator filter. The ratio of 90 vol. % primary phase(ferrite), 10 vol. % secondary
phase(martensite) was chosen for all cases to simplify the simulation model results and generalize the
comparison of statistical data. As the crystal structure of both Ferrite and Martensite is body-centered
cubic. Therefore, they were generated as “cubic equiaxed” phases. Different RVEs were generated by
varying the ESD statistical distribution data. The grain size distribution of ferrite and martensite for
each RVE taken is given in Table 1.

The synthetic volume size of all RVEs was kept 100× 100× 100 voxels (where the size of each voxel
is 1 µm3) and specified number of particles could pack in the defined volume, which means that more
grains packed in the defined volume when D f was small and lesser when D f was large as given in last
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column of Table 1. For both phases, grain shape was stated to be “ellipsoid”. The maximum number
of iterations (swaps) allowed was 100,000. Using already published methodology [30], the generated
RVEs were recorded as .xdmf file, which is readable by Paraview for visualization, and .geom files
were saved, which are readable by DAMASK. Figure 1 presents the general flow of information in the
pipeline with associated inputs and outputs.

Table 1. Grain size distribution data for ferrite and martensite used for the construction of Representative
Volume Elements (RVEs). The grain sizes are in µm and “Total Grains” is a dimensionless entity.

Nomenclature
Ferrite Grains Martensite Grains

Total Grains
Min. Max Avg. Min. Max Avg.

A 5.1 7.6 6.35 3.5 5.7 4.6 8400
B 6.6 9.9 8.25 5.2 8.4 6.8 3700
C 8.5 12.7 10.6 5.4 8.8 7.1 1900
D 9.7 14.5 12.1 8.2 13.2 10.7 1200
E 11.2 16.8 14.0 9.8 15.8 12.8 770

Stats generator

Initialize 
synthetic volume

Establish shape 
types

Pack primiary 
phases

Find feature 
neighbours

Match 
crystallography

Write data file

Export DAMASK 
file

Composition

Ferrite:        90 vol. %

Martensite:  10 vol. %

Statistical data for

A, B, C, D and E

RVE size

100 × 100 × 100 µm3

Grain shape

Ferrite:        Ellipsoid

Martensite:  Ellipsoid

Max. no. of iterations 

(swaps): 100,000

.geom file

for DAMASK sim.

.xdmf file

for visulaization

Crystal structure

Ferrite:       Cubic Equiaxed

Martensite: Cubic Equiaxed

Figure 1. Block diagram of the DREAM-3D pipeline for RVE generation with associated inputs and
outputs of various pipeline blocks. Table 1 provides details of statistical input data for A, B, C, D, and E.

Figure 2 shows a schematic diagram representing the generated 3D RVEs and their slicing
sequence for the construction of simulation geometries. RVE-A and E are shown for representation,
whereas B, C, and D were modeled in a similar fashion. Ferrite (F) and Martensite (M) are shown
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separately in the sliced images for better visualization of phase distributions. This research’s primary
objective is to identify the optimal RVE thickness with respect to the material grain size for obtaining
converged local results. For this reason, each constructed 3D RVE with varying grain size was sliced
into geometries with increasing thickness from one to 50 layers. Slicing sequence is also shown in
Figure 2 for each RVE with yellow dotted lines, whereas green dotted lines in the schematic diagram
represent more sliced geometries that are not shown in the current figure, but were constructed for
simulations. There are 100,000 gaussian mesh elements in one layer, which means that each geometry
contains 100,000 gaussian mesh elements multiplied by the number of layers considered in each
case. A complete grain comes into account with a lesser number of slices in the case of small D f ,
whereas more slices are needed in order to represent full-grain with bigger D f .

More RVEs

B, C and D

1 layer

MM

FF

MM

FF

MM

FF

More geometries 

with:

5, 10, 15, 20 

layers

More 

geometries with:

5, 10, 15, 20 

layers

30, 40 

layers

30, 40 

layers

25 layers

50 layers

Tensile load

application

25 layers

50 layers

MM

FF

MM

FF

MM

FF

M: Martensite phaseM: Martensite phase

F: Ferrite phaseF: Ferrite phase

1 layerTensile load

application

Figure 2. Schematic diagram representing the generated 3D RVEs and their slicing sequence for the
construction of simulation geometries. RVE-A and E are shown in this figure, whereas B, C, and D
were modeled similarly. The slicing sequence is also shown in the figure with a yellow dotted line,
and green dotted lines represent more sliced geometries that are not shown here but were constructed
for simulations. Ferrite (F) and Martensite (M) are shown separately in the sliced images for better
visualization of phase distribution in the RVEs.
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2.2. Material Properties and Loading Conditions

Although there is a large difference in the mechanical properties of ferrite and martensite, in current
research, both of the phases were assigned elastic-viscoplastic properties by adopting already developed
phenomenological power law available in DAMASK [47]. Details of the hardening model with equations
is provided in Appendix A for the readers who are not familiar with the constitutive equations used
in DAMASK. The elastic coefficients, variables defining plastic flow behavior and fitting parameters
for both phases were adopted from the already published literature [45]. Table 2 presents the adopted
parameters. In the spectral method each grid point is considered as a computation point which is
assigned a phase and initial crystallographic orientation before the simulations start. In the current work,
mixed boundary conditions were applied uni-axially along x-direction as follows, while keeping the
out-of-plain surfaces in all geometries stress-free:

Ḟij =

1 0 0
0 ∗ 0
0 0 ∗

× 10−3.s−1 (1)

Pij =

∗ ∗ ∗∗ 0 ∗
∗ ∗ 0

 Pa (2)

Periodicity of the solution is inherent to the spectral method due to the FOURIER approximation of
the deformation gradient field [47]. Yet, it is known that the immediate neighborhood mainly influences
the strain heterogeneity, and the influence of artificial periodicity introduced by the boundary description
is confined to a narrow zone [22]. Therefore, in the current study, this effect is ignored. For strongly
different phases i.e., ferrite and martensite, the reference stiffness has a strong influence on stability and
convergence rate, as was shown earlier by Michel et al. [48]. The readers are encouraged to refer to
the work by Diehl et al. [19] for the explanation of the assumptions in the FFT regarding the reference
stiffness that are used within the framework of the crystal plasticity provided by DAMASK.

Table 2. Parameters for ferrite and martensite adopted from literature [45] for the numerical
simulation modeling.

Parameter Definition Symbol Attributes
for Ferrite

Attributes for
Martensite Unit

First elastic stiffness constant with normal strain C11 233.3 417.4 GPa
Second elastic stiffness constant with normal strain C12 135.5 242.4 GPa
First elastic stiffness constant with shear strain C44 128.0 211.1 GPa
Shear strain rate γ̇0 1 1 10−3/s
Initial Shear resistance on [111] S0 [111] 95 406 MPa
Saturation shear resistance on [111] S∞ [111] 222 873 MPa
Initial Shear resistance on [112] S0 [112] 96 457 MPa
Saturation shear resistance on [112] S∞ [112] 412 971 MPa
Slip hardening parameter h0 1.0 563 GPa
Interaction hardening parameter hα,β 1.0 1.0 -
Stress exponent n 20 20 -
Curve fitting parameter w 2.0 2.0 -

The simulation results were post-processed by using already available subroutines in the
DAMASK installation module, and data were further statistically analyzed using the Seaborn library
in Python. The local stress–strain distributions were visualized using open source tool Paraview [49].
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3. Results

If global/averaged stress–strain behavior of all the simulations is plotted and compared for
multiple layers of a specific RVE, as shown in Figure 3, similar results with slight variation of slope are
observed for varying thickness of geometry (Figure 3a,b) or variation of grain size (Figure 3c). It can
be clearly observed in these figures that the trend of stress–strain curve is the same for all grain sizes
with slight variation (higher stress response to same strain with increasing grain size).

(a) (b)

(c)

Figure 3. Comparison of global stress–strain curves of different cases (a) RVE-A all layers’ comparison,
(b) RVE-E all layers’ comparison, (c) showing true stress strain curves for RVEs with different grain
sizes. It is observed that there is not much difference in the results and almost any geometry yields
very similar results. Some numerical simulation models crashed due to the non convergence of global
stress/strain equilibrium at the spectral code level, and therefore are presented up to that certain level
of strain.

Although stress–strain curves are used by engineers and scientists to understand the overall
material behavior, they can be very misleading in the case of such full phase simulations where the
local results may vary drastically. Still, the averages’ response remains the same. To make this point,
during the post-processing of the data, the RVEs were sectioned as schematically represented in
Figure 4. This scheme was adopted to expose the top surface and middle section of the RVE-E as an
example case. Local stress and strain values are represented with the same scale to show how they
change with varying RVE thickness at 25% of true strain.

Figure 5 shows the local von Mises true stress distribution in all geometries of RVE-E at 25% of
true strain. Only the ferrite phase is shown here for better visualization by filtering out the martensite
phase, which, due to very high stresses (≈2.5 GPa), distorts the scale. It is observed that there is a
high contrast of stress distribution in the 01-layer RVE with some areas of very high stresses and
others with very low stresses. As the thickness of the RVE is increased from 01 layers to 50 layers,
the stresses on the surface diminish and they are relatively more homogeneously distributed within
the matrix, and the high contrast for stresses diminishes. There is very less difference in the local
stress distribution of 40-layer and 50-layer simulations. In these 3D simulations, it is observed that,
although the phase interface is more prone to higher stresses, it is not always the case. In the middle
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section, it is observed that the local stress distribution becomes consistent with similar areas of high
and low stresses. This similarity in obtained results—with increased RVE thickness—represents the
convergence of the point to point local solutions.

Figure 4. Schematic diagram showing the sectioning scheme to expose the middle and top surfaces
for visual comparison of local stress and strain in the upcoming figures. Local von Mises true stress
distribution in the ferrite phase has been used here just as an example for color coding of the section
of interest.

Figure 5. Local von Mises true stress distribution—in ferrite phase—for all geometries of RVE-E at 25%
of global true strain.

Figure 6 shows local von Mises true strain distribution in all geometries of RVE-E at 25% of global
true strain. In this figure, both—ferrite and martensite—phases are shown. Embedded martensite
grains undergo negligible plastic strain during overall deformation and, hence, exhibit almost zero
strain in Figure 6 (pointed out by green arrows). In 01-layer simulation results, it is observed that the
local strain contrast is quite large with sharp strain channels around martensite grains oriented 45◦ to
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the applied load direction. As the RVE thickness increases from 01-layer to 50-layers, it is observed that
this sharp strain contrast on the top surface diminishes due to strain distribution in the third dimension.
In the middle section of simulated geometry, it is observed that the local strain distribution converges
with similar solution output in case of 40-layer and 50-layer geometries, respectively (pointed out by
red arrows). The magnitude and position of local strain distribution in these cases are identical.

Figure 6. Local von Mises true strain distribution—in ferrite and martensite phases—for all geometries
of RVE-E at 25% of global true strain. Red arrows represent areas of high strain in ferrite matrix,
and green arrows represent areas of low strain in martensite grains.

The visual comparison of local stress and strain distribution in multiple varying geometries
to observe the convergence of results—as shown in Figures 5 and 6—is a very challenging task.
Visual inspections are primarily dependent on subjective choices; therefore, statistical data analysis
tools are adopted in the current research in order to work out the convergence of the observed results.
For statistical analysis, PDFs and CDFs of true local stress and strain distributions in each phase
are constructed for each simulated geometry at the maximum global strain. Local stress and strain
distributions in each phase of each geometry are compared. This detailed comparison is shown in
Figure 7 by intelligently grouping data in different subplots.

It is observed that, with small D f , i.e., in the case of RVE-A, as shown in Figure 7a, the local stress,
and strain distribution in both phases is quite different for 01-layer geometry as compared with thicker
geometries. It is observed that, with increasing geometry thickness, the PDFs and CDFs become similar
after more than 10-layers.

When D f increases, i.e., in case of RVE-C as shown in Figure 7c, similar trend of convergence with
increasing geometry thickness is observed. The distribution varies up to 20-layer geometry for the
current case and it does not change with a further increase in geometry thickness. It is observed that,
with increasingD f in all RVEs i.e., in Figure 7a–e, the PDFs and CDFs converge with increasing geometry
thicknesses, but more geometry thickness is needed when D f is large. It is an expected response because
for RVEs with large D f more geometry thickness is needed to define a grain completely and hence the
flow of stresses and strains around it becomes possible.

The stress and strain distribution behavior of martensite in thin geometries (one-layer to 15-layers)
is different from thick geometries (20-layers to 50-layers), as observed in Figure 7(iii,iv). One-layer
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simulations in Figure 7(iii) represent a large and packed strain distribution profile compared to higher
thickness results. Distribution is relatively more dispersed over a broad strain range, independent
of D f . The stress distribution profile of one-layer simulations in Figure 7(iv) for all RVEs shows two
peaks and a wider dispersion, whereas the distribution in close to bell shape when the RVE thickness
is increased.

In Figure 7a–e, it is observed that at 50-layers geometry—due to very less change in the local
stress and strain distribution—a converged solution for all RVEs is obtained. The PDF and CDF plots
for both phases and all geometries with varying D f are compared in Figure 8. It is observed that
the curves accurately match with a slight difference in the peak values. When considering the same
composition and material properties in all cases, this comparison confirms the convergence of the
obtained results. From these data, one can interpret that with increasing layers in the RVE, the material
volume and number of mesh points increase, or more specifically, a total number of randomly oriented
grains increase. Therefore, the statistical behavior converges towards an average and, hence, produces
a false notion of local convergence. This interpretation is not correct, as it can be verified by comparing
local plots in Figures 5 and 6 that the local point-to-point convergence of the results happens, which is
captured by the statistical comparison presented in Figure 7.
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Figure 7. Cont.
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Figure 7. Comparison of (i) local strain distribution in ferrite, (ii) local stress distribution in ferrite,
(iii) local strain distribution in martensite, (iv) local stress distribution in martensite, using Probability
Distribution Functions (PDF) and Cumulative Distribution Functions (CDF) curves for RVEs with
varying D f , (a) RVE-A, (b), RVE-B (c), RVE-C (d), RVE-D (e), and RVE-E at 25% of global true strain.
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Figure 8. Comparison of (a) local strain distribution in ferrite, (b) local stress distribution in ferrite,
(c) local strain distribution in martensite, and (d) local stress distribution in martensite, using PDF and
CDF curves for RVEs with varying D f at 25% of global true strain.
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Although with increasing geometry thickness, the stress and strain distributions for both phases
in Figure 7 are observed to move in multiple dimensions with varying shape. The maxima were noted
and normalized against 50-layer geometries to simplify the convergence criteria. Peak values of PDF
normalized against the 50-layer thickness simulation for ferrite strain are shown in Figure 9a and
for ferrite stress in Figure 9b. Here, it is important to mention that the convergence of a result was
analyzed against 50-layer thickness simulations, assuming them as perfectly converged, which might
not be the case.

(a) (b)

Figure 9. Peak values of PDF normalized against the 50-layer thickness simulation for (a) ferrite
strain and (b) ferrite stress for D f between 8.2 µm to 18.2 µm at 25% of the true global strain. Dotted
lines represent normalization index of 1. It is observed that for all D f , increasing the RVE thickness
converges the solution.

4. Discussion

Full phase simulation models are extensively used to study microstructural attributes’ effects
on local and global material deformation behaviors. The validation of such simulation models
simultaneously on a global and local scale is a challenge that has not been addressed in the existing
literature [32,41,42], but with its limitations. Crystal plasticity-based full-phase simulation models rely
upon many constitutive and fitting parameters identified by comparing the experimental evolution
of deformation mechanisms with the simulation results. These averaged stress–strain curves are
compared to represent the accuracy of simulation results [17,22]. Based on such—global results based
calibrated—models, the local material behavior is analyzed and studied. This methodology is useful for
the inexpensive employment of such models. From the results of the current work, it is now clear that
such methodology can be misleading as a wide variety of microstructures, which might result in very
different local results, can yield the same global results.

It is shown in Figures 5 and 6 that the problems arise when the local deformation behaviors are
compared. Owing to time and capital-intensive critical task, not many researchers in the past have
carried out such analysis and observed that results only match qualitatively [19,31]. It has been reported
by earlier researchers [19] that, in 2D DAMASK simulations, there is a high local stress and strain
contrast due to the non-availability of the third direction. Experimental analysis of stresses and strains
in 3D is almost impossible due to which the 3D simulation results cannot be validated. Additionally,
paradoxically, if 3D EBSD data are measured, then there is no sample left to perform experimentation.
On the other hand, if in-situ tests are executed on a sample to analyze deformation behavior, 3D EBSD
data cannot be collected.

In the past, it has been elaborated that the 3D results are different from the 2D results, and realistic
3D geometries are better than the generalized 3D geometries [19]. How much of the 3D dimension
is required for a converged solution was reported by Diehl et al. [32] by running simulations with
fixed grain size RVEs. In this study, the effect of varying grain size of ferrite and martensite in DP
steel is analyzed in order to study its effect. RVEs with varying mean feature size were synthetically
constructed for dual-phase steel case in the current work. The RVEs were sliced to construct geometries
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with varying thicknesses from one to 50 layers. In 2D simulations with actual EBSD data or synthetically
constructed RVEs, non-realistic high contrast stress and strain distribution are observed. It is evident
that there is a drastic difference in the local results in 2D geometry when compared with 3D geometry.

The current work has not analyzed the effect of free surface on the convergence of the results,
which can be important when comparing the converged local solutions with in-situ test observations.
This should be kept in consideration while adopting the current methodology for such analysis.
The readers are encouraged to refer to [32,50] for such modelling methodology.

In current work, statistical probability and cumulative distribution curves were compared for
each phase in order to comprehensively analyze the local stress and strain distributions. The following
relationship can be drawn for the obtained results, which is in accordance with the previous
publications [32,42]:

converged solution f orD f ∝
1
GN

∝ LN (3)

An empirical function can be drawn and it generalizes the convergence results trend by
normalizing the peak of stress and strain PDFs in the ferrite phase. Figure 10 shows the constructed
empirical convergence criteria from the results of RVE-A, B, and C converged simulations. Only the
first three points were considered in the development of the proposed empirical model. This is
because the convergence of results here is used as a relative term against 50-layer thickness simulations,
which might be misleading in the case of larger grain size RVEs. More simulations are needed with
bigger RVEs in the future to be sure about their convergence. It is understood from previous work [18]
that a large number of grains is vital for a solution convergence and, therefore, it is not good practice
to reduce the total number of grains below 500 in an RVE.

Figure 10. Constructed empirical convergence criteria from results of RVE-A, B and C converged
simulations, where black trend line represented the function between mean feature ESD and required
number of layers for converged solution. Orange trend line represents the relationship between mean
feature ESD and number of grains that can be packed in a 100× 100× 100 µm3 geometry.

This criterion helps in setting the upper bound limit of D f to 15. The number of layers required
for a specific D f can be calculated using the following derived empirical function:

LN ≥ 5D f − 15 (4)
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this equation is very specific and it is only valid for the similar grain sizes of two phases having
1003 µm3 RVE size. To generalize the conclusions for a more general use, the equation can be
modified as:

tRVE ≥
(500D f

100
− 15

)
× 2 µm (5)

This given criterion is the new finding of the current research. It should be adopted and fulfilled
while carrying out full phase simulations and discussing the local stress and strain evolution in a
given microstructure.

5. Conclusions

In this research, the effect of RVE thickness on the changing global and local results is analyzed
for an exemplary case of dual-phase steels. This research’s primary objective is to identify the optimal
RVE thickness with respect to the defined feature size for obtaining converged local results. RVEs
were constructed by varying the mean feature sizes between 3 to 18 µm using DREAM-3D with grains
having randomly assigned orientation distributions. The constructed RVEs were sliced into 1, 5, 10,
15, 20, 25, 30, 40, and 50 layers to construct different geometries with increasing thickness. Crystal
plasticity model parameters for ferrite and martensite phases were adopted from already published
work. The global and local simulation results were directly and statistically compared in order to draw
the following conclusions from the study:

1. As long as the orientation distribution and composition of the material is the same—even with
changing mean feature size, the total number of grains and geometry thickness—the global
deformation and stress–strain behavior of the material does not change drastically (<5% divergence)

2. Although the global stress–strain behavior of different RVEs is similar, a large variation in the
local stress—strain of RVEs with varying thickness and the feature size is observed during the
visual and statistical comparison.

3. Stress and strain probability distribution in 2D RVEs is drastically different from 3D RVEs. In 2D
RVEs, the strain prediction in the soft phase is higher, in the hard phase is lower, whereas the stress
prediction in the soft phase is lower and the hard phase is higher.

4. It is necessary to consider 3D RVEs, which are at least five times larger than the average grain size
for stabilized and more accurate local deformation behavior determination. This estimation helps
in optimizing the computation time for accurate mesoscale simulations.

5. Figure 10 and Equations (4) & (5) provide a criterion for choosing the mean feature ESD and
effective RVE thickness. This criterion should be fulfilled for full phase simulations carried out
using DAMASK in the future for obtaining converged simulation results for multi-phase materials
i.e., DP steel.
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Nomenclature

Acronyms
Symbol Description Unit
RVE Representative Volume Element –
EBSD Electron Back Scatter Diffraction –
CP Crystal Plasticity –
TRIP Transformation Induced Plasticity –
Greek Symbols
Symbol Description Unit
ESD Estimated Sphere Diameter µm
Mg-PSZ Magnesium Partially Stabilized Zirconia –
PDF Probability Distribution Function –
CDF Cummulative Distribution Function –
GN Number of considered grains –
LN Number of considered layers –
D f Mean feature estimated sphere diameter µm
tRVE RVE thickness µm

Appendix A. Phenomenological Crystal Plasticity Model

The model is adopted for the body-centered cubic (bcc) crystals of the phenomenological crystal
plasticity description by Peirce et al. [51]. The microstrcuture is parametrized in terms of a slip resistance
Sα
{011} on each of the 12 {011}〈111〉 slip systems, and Sα

{211} on each of the 12 {211}〈111〉 slip systems
which are indexed by α = 1, . . . , 24. These resistances increase asymptotically towards Sα

∞ with shear γ

according to the relationship
Ṡα = h0(1− Sα/Sα

∞)whαβγ̇β (A1)

with interaction (hαβ) and fitting (w, h0) parameters. Given a set of current slip resistances, shear on
each system evolves at a rate of

γ̇α = γ̇0

∣∣∣∣τα

Sα

∣∣∣∣n sgn(τα) (A2)

with τα = S.(bα ⊗ nα), a reference shear rate γ̇0 and a stress exponent n. The superposition of shear
on all slip systems in turn determines the plastic velocity gradient:

LP = γ̇α bα ⊗ nα (A3)

where bα and nα are unit vectors along the slip direction and slip plane normal respectively.
Using the quasi-static strain rate of 1× 10−4 all RVEs were loaded in tension for 2500 s (load

direction with reference to the top surface is shown in Figure 2 with red arrows) to reach a total strain
of average 25%.
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