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Abstract: Amine dehydrogenases (AmDHs) efficiently catalyze the NAD(P)H-dependent asymmetric
reductive amination of prochiral carbonyl substrates with high enantioselectivity. AmDH-catalyzed
oxidative deamination can also be used for the kinetic resolution of racemic amines to obtain enantiopure
amines. In the present study, kinetic resolution was carried out using a coupled-enzyme cascade
consisting of AmDH and alanine dehydrogenase (AlaDH). AlaDH efficiently catalyzed the conversion
of pyruvate to alanine, thus recycling the nicotinamide cofactors and driving the reaction forward. The ee
values obtained for the kinetic resolution of 25 and 50 mM rac-α-methylbenzylamine using the purified
enzymatic systems were only 54 and 43%, respectively. The use of whole-cells apparently reduced
the substrate/product inhibition, and the use of only 30 and 40 mgDCW/mL of whole-cells co-expressing
AmDH and AlaDH efficiently resolved 100 mM of rac-2-aminoheptane and rac-α-methylbenzylamine
into the corresponding enantiopure (S)-amines. Furthermore, the applicability of the reaction protocol
demonstrated herein was also successfully tested for the efficient kinetic resolution of wide range of
racemic amines.

Keywords: amine dehydrogenase; alanine dehydrogenase; chiral amines; kinetic resolution;
whole-cell biotransformations; oxidative deamination

1. Introduction

Enantiopure chiral amines are important precursors of numerous small molecule pharmaceuticals,
agrochemicals and fine chemicals. It has been estimated that more than one third of the 200 most
prescribed small molecule drugs contain chiral amine precursors [1–3]. The asymmetric synthesis
of amines from prochiral carbonyls and ammonia has also been acknowledged as one of the most
highly desired transformations industrially by the ACS Green Chemistry Institute Pharmaceutical
Roundtable [4]. The increasing demand for enantiomerically pure compounds and the simultaneous
imposition of environmental restrictions by many countries necessitates the effective integration of
traditional chemical syntheses with biocatalytic ‘greener’ methods [5–9]. Traditional organo-catalytic
methods for the synthesis of chiral amines use toxic intermediates and require environmentally harsh
conditions. Moreover, the purification of toxic metals is warranted, which complicates the synthetic
methods and its cost [10–12].

A surge of interest has occurred in recent years in the use of superior biocatalytic alternatives to
the chemical syntheses of chiral amines [13,14]. Enzymes such as transaminases [15], imine reductases [16],
amine oxidases [17], P450 monooxygenases [18], lipases [19], and berberine bridge enzyme [20]
have been successfully employed for chiral amines synthesis. More recently, amine dehydrogenases
(AmDHs)—catalyzing the reductive amination of ketones using ammonia and generating only water
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as byproduct—have been discovered [21]. Owing to the high enantioselectivity and atom efficiency,
AmDH-mediated synthesis is very attractive and a potential biocatalytic approach for the synthesis of
chiral amines. However, AmDHs are not ubiquitously present in nature. Nevertheless, Itoh et al. first
reported the presence of AmDH in Streptomyces virginiae IFO 12827 [22]. However, this enzyme was
unexplored for another decade owing to its poor enantioselectivity and the unavailability of the genetic
information. Subsequently, thermostable AmDH from Petrotoga mobiliz DSM 10674 was discovered [23].
Furthermore, the group of Bommarius at Georgia Institute of Technology, U.S.A. generated the first
engineered AmDH using Leucine dehydrogenase (LeuDH) from Bacillus stearothermophilus [21].
Bommarius’ group developed second AmDH based on phenylalanine dehydrogenase (PheDH) from
Bacillus badius as a scaffold [24]. Furthermore, the Bommarius group generated a chimeric AmDH
by domain shuffling of LeuDH and PheDH parental scaffolds. This chimeric AmDH substantially
improved the substrate scope of the previously generated AmDHs and converted sterically hindered
substrates to their corresponding enantiopure (R)-amine products [25]. Using a similar engineering
strategy to that used previously, more AmDHs were generated from L-amino acid dehydrogenase
scaffolds from Rhodococcus sp. M4, Exiguobacterium sibiricum, Caldalkalibacillus thermarum and Lysinibacillus
fusiformis [26–29]. These engineered AmDHs have been successfully employed in tandem with other
enzymes to obtain various enantiopure compounds. For instance, AmDHs in combination with
alcohol dehydrogenases have been used in a redox-neutral two-enzyme cascade for the asymmetric
transformation of racemic secondary alcohols into chiral amines [27,30].

AmDH-catalyzed reductive amination of ketones has been widely used for the synthesis of chiral
amines. Until very recently, when Mayol et al. [31] characterized six naturally occurring AmDHs which
exhibited (S)-selectivity, all the previously generated AmDHs showed exclusive (R)-selectivity owing
to their generation from (L)-amino acid dehydrogenase parents. The scarce availability of (S)-selective
AmDHs for the generation of (S)-amines can be overcome by (R)-AmDH-mediated kinetic resolution of
racemic amines using oxidative deamination. Nevertheless, AmDH-catalyzed oxidative deamination
is also an interesting approach that can be used for the kinetic resolution of racemic amines to obtain
enantiopure (S)-amines. We have previously reported the specific deamination of the R-amines from
racemic mixtures leaving behind the unreacted enantiopure S-amines using a whole-cell biocatalyst
expressing AmDH and NADH-oxidase [32]. However, one of the major problems related with
this system was the requirement of very high quantities of a whole-cell biocatalyst. For example,
the minimum amount of whole-cells required to resolve only 20 mM racemic methylbenzylamine
(rac-MBA) into enantiopure (S)-amine was 100 mgDCW/mL. Also, the different optimum pH of AmDH
and NADH-oxidase poses a hurdle for the efficient coupled-enzyme reaction.

We envisaged the development of an improved method for the oxidative deamination of racemic
amines for the synthesis of their enantiopure (S)-amine counterparts. We herein report a two-enzyme
cascade employing AmDH and alanine dehydrogenase (AlaDH) for the kinetic resolution of racemic
amines (Figure 1). The specificity of enantioselective AmDHs was exploited for resolving a racemic
mixture to obtain only the enantiopure (S)-amines. The major advantage with the use of AlaDH is that
it efficiently converts pyruvate to alanine at the expense of NADH, thereby regenerating nicotinamide
cofactors, and ultimately, shifting the equilibrium of the primary reaction toward product formation.
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Figure 1. The oxidative deamination of racemic amines to enantiopure (S)-amines using a two-enzyme
cascade employing amine dehydrogenase and alanine dehydrogenase. (R)-AmDH catalyze the oxidative
deamination of (R)-amine to corresponding ketone, leaving behind enantiopure (S)-amine. Nicotinamide
cofactors were recycled using alanine dehydrogenase.

2. Results and Discussion

2.1. Reactivity of Amine Dehydrogenases toward Racemic Amines

To catalyze the oxidative deamination of racemic amines, two AmDHs, (1) A chimeric AmDH
(Chi-AmDH) generated by the domain shuffling of the LeuDH and PheDH [25] and (2) Rs-AmDH
(developed from L-phenylalanine dehydrogenase of Rhodococcus sp.) [26] were used in this study.
The genes encoding these AmDHs were cloned in pET-24ma vector and transformed in E. coli BL21
(DE3). Following the induction of transformants by IPTG, the His-tagged proteins were purified
as previously reported [33].

In order to explore the applicability of AmDHs for the kinetic resolution, the oxidative
deamination potential of AmDHs was evaluated toward various racemic amines (Figure 2A). Chi-AmDH
and Rs-AmDH displayed varying activity toward racemic amine substrates. While the highest activity by
Rs-AmDH was displayed toward 4-phenyl-butan-2-amine (a5), Chi-AmDH showed the highest activity
heptan-2-amine (a3). Both enzymes also displayed good activity toward 1-(4-fluorophenyl)propan-2-amine
(a6) and 1-m-tolylethanamine (a10) (Figure 2B). The successful oxidative deamination catalyzed by AmDHs
suggested their potential for the kinetic resolution of chiral amines to obtain enantiopure (S)-amines.
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Figure 2. (A) Racemic amine substrates tested for the kinetic resolution by AmDH-AlaDH system;
and (B) The oxidative deamination potential of AmDHs toward various racemic amines; Reaction
conditions for oxidative deamination: 10 mM racemic amine substrate, 1 mM NAD+, 0.2 mg/mL
AmDHs, 100 mM Glycine buffer (pH 10.0). 27 mU /mg activity was considered as 100%.

2.2. Kinetic Resolution of Racemic Amines Using a Purified AmDH/AlaDH Coupling System

In a two-enzyme cascade reported herein for the kinetic resolution, the oxidative deamination of
the R-amines from racemic mixtures to their corresponding ketones, leaving behind the enantiopure
(S)-amines, was catalyzed by (R)-AmDHs. The overall efficiency of the reaction largely depends on
the availability of nicotinamide cofactors and proficient recycling thereof. Moreover, the efficient
recycling of cofactors is necessary to overcome the product inhibition of the primary biocatalyst by
the cofactor and to shift the reaction equilibrium toward product formation. Herein, we used alanine
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dehydrogenase for the regeneration of nicotinamide cofactors. To study the kinetic resolution of
racemic amines, rac-α-MBA (rac-a7) and rac-2-aminoheptane (rac-a3) were selected as representative
aromatic and aliphatic amines, respectively.

Since the stability and activity of the biocatalysts are dependent on the pH, they can critically affect
the overall outcome of the biocatalytic reaction. Especially for reactions catalyzed by the enzymatic
cascades, wherein each constituent enzyme exhibits different optimum pH, the pH of the reaction
should be carefully determined so that activity of the enzymes is not severely compromised [10,32,33].
Thus, the effect of varying pH on the activities of AmDHs and AlaDH was evaluated (Figure 3).
In the case of AlaDH, marginal improvement in activity was observed with the increase in pH of
Tris buffer (100 mM) from pH 7.0 to 9.0. The optimum activity of AlaDH was observed at pH 10.0
(Glycine buffer, 100 mM). For AmDHs, steep increase in activity was observed with the increase in
pH beyond 9.0. The maximum activity for Chi-AmDH and Rs-AmDH was observed at pH 10.5 and 9.5,
respectively. Thus, the kinetic resolution using Chi-AmDH-AlaDH and Rs-AmDH-AlaDH was carried
at pH 10.0 and 9.5, respectively.
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Figure 3. Effect of pH on the activity of (A) AlaDH; (B) Chi-AmDH; and Rs-AmDH. Reactions
conditions: For AmDH assay: 10 mM rac-a7 (rac-a3-for Rs-AmDH), 1 mM NAD+, 0.2 mg/mL AmDH,
100 mM Tris/HCl buffer (pH 7.0–9.0), 100 mM Glycine buffer (pH 9.0–11.0); For AlaDH assay: 10 mM
pyruvate, 1 mM NADH, 0.2 mg/mL AlaDH, 100 mM Tris/HCl (pH 7.0–9.0), 100 mM Glycine buffer
(pH 9.0–11.0).

Since AlaDH-catalyzed conversion of pyruvate to alanine helps to drive forward the primary
reaction of oxidative deamination, it was necessary to determine the optimal concentration of pyruvate
needed to catalyze the efficient kinetic resolution of racemic amines. To evaluate the effect of pyruvate,
the kinetic resolution of 10 mM rac-2-aminoheptane (rac-a3) and rac-α-MBA (rac-a7) was carried out
in 100 mM Glycine buffer (pH 9.5/10.0) containing 1 mM NAD+ with AmDHs (1 mg/mL) and AlaDH
(1 mg/mL) with varying concentration of pyruvate. It was observed that increasing concentration of
pyruvate improved the enantiomeric excess (ee) of remained (S)-a3 and (S)-a7. The ee values obtained
for (S)-a3 and (S)-a7 with the use of 5 mM pyruvate (2:1 of racemic substrate: pyruvate) were 58
and 41%, respectively. The increase in concentration of pyruvate beyond 20 mM (1:2 of racemic
substrate: pyruvate) sufficed to obtain the enantiopure (S)-a3 and (S)-a7 with excellent ee values, i.e.,
>99% (Figure 4).
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Figure 4. Effect of pyruvate concentration on the kinetic resolution of (A) rac-a3 by Chi-AmDH-AlaDH
and Rs-AmDH-AlaDH; and (B) rac-a7 by Chi-AmDH–AlaDH. Reaction conditions: 10 mM rac-a7/rac-a3,
1 mM NAD+, 1 mg/mL AmDH, 1 mg/mL AlaDH, 5–30 mM Pyruvate, 100 mM Glycine buffer
(pH 10.0/9.5).

The successful resolution of 10 mM of rac-a3 and rac-a7 encouraged us to test the applicability of
the present coupled enzymatic system for the resolution of higher concentration of racemic amines.
Thus, the kinetic resolution of 25 and 50 mM rac-a3 and rac-a7 was carried out in 100 mM Glycine buffer
(pH 9.5/10.0) containing 1 mM NAD+ with AmDHs (1 mg/mL) and AlaDH (1 mg/mL) (Figure 5A).
The results of this study showed that 25 and 50 mM rac-a3 could be successfully resolved into
enantiopure (S)-a3 by both the combinations, i.e., Chi-AmDH-AlaDH and Rs-AmDH-AlaDH. As rac-a7
is not recognized as a substrate by Rs-AmDH, the resolution of 25 and 50 mM rac-a7 was studied using
Chi-AmDH-AlaDH system. The reaction profile of the kinetic resolution of rac-a7 showed that the ee
values obtained for 25 and 50 mM rac-a7 were 44 and 30%, respectively at 12 h (Figure 5B). The ee
values marginally improved with the reaction time and reached up-to 54 and 43% after 24 h with 25
and 50 mM rac-a7, respectively.
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Figure 5. (A) Kinetic resolution of increased concentration of rac-a3 and (B) Time profile of the kinetic
resolution of rac-a7 (25 and 50 mM) using AmDH-AlaDH purified enzyme system. Reaction conditions:
25/50 mM rac-a7 (or rac-a3), 1 mM NAD+, 1 mg/mL AmDH, 1 mg/mL AlaDH, 50/100 mM Pyruvate,
100 mM Glycine buffer (pH 9.5/10.0), 37 ◦C, 200 rpm for 24 h.

The unsuccessful resolution of higher concentration of rac-a7 implied that the enzymatic reactions
demonstrated herein could suffer from substrate/product inhibition. It has also been reported that
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product inhibition can limit the applicability of the enzymes even with the use of favorable substrates [28].
For instance, native L-amino acid products have been reported to impose severe product inhibition
upon various amino acid dehydrogenases [34,35]. Nevertheless, strategies such as biphasic reaction
system has been successfully used to overcome the product inhibition in AmDH-catalyzed asymmetric
synthesis of amines [36].

Our previous studies for the kinetic resolution of racemic amines using Chi-AmDH-NADH
oxidase system also reported the strong inhibition of the enzymes by racemic amine substrates and/or
corresponding ketones [32]. We herein studied the product inhibition of Rs-AmDH in the presence of
varying concentration of 2-heptanone ranging from 2–30 mM (Figure 6A). As alanine is also produced
in the AmDH-AlaDH catalyzed reactions, the effect of varying concentration of alanine (10–100 mM)
on the activity of Rs-AmDH was evaluated (Figure 6B). Rs-AmDH retained 61 and 65% of its original
activity in the presence of 15 mM 2-heptanone and 50 mM alanine, respectively.

Also, the inhibition of another constituent enzyme of the coupled enzyme reaction, i.e., alanine
dehydrogenase by substrate and product was examined (Figure 6C). The effect of 10 mM racemic
amine substrates (rac-a3 and rac-a7), the corresponding ketones (2-heptanone and acetophenone)
was studied on the activity of AlaDH. The loss of AlaDH activity in presence of ketones 2-heptanone
and acetophenone was higher than that in the presence of amines rac-a3 and rac-a7. The relative activity
of AlaDH was 63 and 84% in the presence of 10 mM rac-a3 and rac-a7, respectively. On the other hand,
the relative activities of AlaDH in the presence of 10 mM 2-heptanone and acetophenone were only 44
and 46%, respectively.
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Figure 6. Inhibition of Rs-AmDH by (A) 2-heptanone; Reaction conditions- 10 mM rac-a3, 0–30 mM
2-heptanone, 1 mM NAD+, 0.2 mg/mL Rs-AmDHs, Buffer- Glycine buffer (100 mM, pH 9.5); (B) Alanine;
Reaction conditions- 10 mM rac-a3, 0–100 mM alanine, 1 mM NAD+, 0.2 mg/mL Rs-AmDHs, 100 mM
Glycine buffer (pH 9.5) and (C) Inhibition of AlaDH by amines rac-a3 and rac-a7; and ketones
2-heptanone and acetophenone (10 mM each), Control-activity of AlaDH in the absence of amines
and ketones.
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2.3. Kinetic Resolution of Racemic Amines Using E. coli Whole Cells Co-Expressing AmDH and AlaDH

As enzymes are intracellularly produced, keeping them in their natural environment creates
apparent advantages for biocatalytic reactions [37]. The mechanical disruption of microbial cells
and subsequent downstream processing for the purification of desired protein in a homogeneous form is
very laborious and costly [38–42]. It has been reported that use of purified enzyme system for biocatalytic
purposes costs approximately ten times more than that by whole-cell biotransformations [43,44].
Although the use of purified enzymes is limited for their application on large scales, another form of
biocatalysts, i.e., cell-free extracts, is feasible if expression levels of the target protein are sufficient [45,46].
However, cell free extracts are unstable. Thus, whole cells expressing the enzyme of interest for
the biosynthetic applications are advantageous [47]. Besides the cost effective and simpler handling
of whole-cell biotransformations, an added advantage includes the utility of the enzyme production
machinery of the fully functional living organism [48,49]. Also, the implementation of biocatalytic
syntheses using whole-cell biotransformations is advantageous regarding the regeneration of the redox
cofactors [50]. Moreover, whole-cell biocatalysts show less susceptibility to substrate and/or product
inhibition due to the diffusional barrier of the cell membrane [51].

The industrial applicability of the biocatalytic processes can be greatly improved with the use
of immobilized enzyme systems owing to the improved operational stability and recyclability of
the enzymes [52,53]. Moreover, recent years have seen the development of systems comprising of
coimmobilized enzymes and cofactors to increase the operational life-span, thereby increasing the cost
effectiveness of the processes [54,55]. For example, the group of Lopez-Gallego developed a novel
system for the co-immobilization of enzymes and the requisite phosphorylated cofactors on various
porous matrices to obtain a self-sufficient heterogenous enzymatic system which is independent of
the exogenous addition of the cofactors [55].

The unsuccessful resolution of rac-a7 using the purified enzyme system implied that
the coupled-enzyme reactions could suffer from the substrate/product inhibition. Therefore, to catalyze
the efficient kinetic resolution of racemic amines, recombinant E. coli cells expressing AmDHs and AlaDH
were used as whole-cell biocatalysts. Whole cell biotransformation systems constituting two or more
cells, each expressing different protein, may impose the mass transfer limitations [56,57]. In order to
develop a single-cell system expressing AmDH and AlaDH, the genes encoding Chi-AmDH-AlaDH
and AlaDH were cloned into pET-24ma and pET-Duet vectors, respectively [Since the substrate scope of
Chi-AmDH-AlaDH is much better than Rs-AmDH, we only used Chi-AmDH-AlaDH whole cell system].
The plasmids were co-transformed into E. coli cells to generate Chi-AmDH-AlaDH system. Following
the induction of transformants by IPTG, cells were grown overnight at 20 ◦C. The cells were centrifuged
(4000× g, 20 min) and washed twice with 50 mM Tris/HCl buffer (pH 7.0). Chi-AmDH-AlaDH cells
were resuspended in 100 mM Glycine buffer pH 10.0 and used for whole-cell biotransformations.

To commence the whole-cell biotransformations, kinetic resolutions of 10 mM rac-a3 and rac-a7
were carried out using 10 mgDCW/mL cells. Since cofactor regeneration is efficient in whole cells,
these biotransformations were carried out without any external addition of NAD+. Both the racemic
substrates were efficiently resolved into corresponding (S)-amines with excellent ee of >99%
[Data not shown]. Since our previous studies reported that the kinetic resolution of rac-a7 is
more challenging [32], we attempted the kinetic resolution of higher concentrations (20, 30 and 50 mM)
of rac-a7. The results of these whole-cell biotransformations revealed that the rac-a7, even at the higher
concentrations, can be resolved into enantiopure (S)-a7. While the ee values for the resolution of 25
and 50 mM rac-a7 using the purified enzymatic system were 54 and 43%, respectively at 24 h (Figure 5B),
ee values obtained using 30 mgDCW/mL whole cells of Chi-AmDH-AlaDH were >99% after 12 h for
the resolution of 20, 30 and 50 mM rac-a7, implying that whole-cell biotransformations were highly
efficient than purified enzymatic systems (Figure 7). Also, the whole cell biotransformation could
efficiently resolve 50 mM rac-a3 with excellent ee values (>99%; data not shown). These results were in
a good agreement with previous studies by Pushpanath et al. [28], who reported that the lyophilized
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whole-cells yielded better conversion values than those by lyophilized lysate for the asymmetric
synthesis of amines from prochiral ketones.

Catalysts 2018, 8, x FOR PEER REVIEW  9 of 15 

 

lyophilized whole-cells yielded better conversion values than those by lyophilized lysate for the 
asymmetric synthesis of amines from prochiral ketones. 

 

Figure 7. Reaction profiles for the kinetic resolution of 20, 30 and 50 mM rac-a7 using 
Chi-AmDH-AlaDH whole cell system; Reaction conditions: (20/30 or 50 mM rac-a7, 40/60 or 100 
mM pyruvate), 100 mM glycine buffer pH 10.0, 30 mgDCW/mL Chi-AmDH-AlaDH cells, 37 °C, 200 
rpm for 24 h). 

The successful resolution of 50 mM rac-a3 and rac-a7 encouraged us to further evaluate the 
efficiency of this reaction cascade for the resolution of higher concentration of racemic amines. Thus, 
to determine the optimal amount of whole cell biocatalyst required to obtain enantiopure (S)-amines 
from 100 mM rac-a3 and rac-a7 substrates, reactions were carried out using varying concentration of 
whole cell catalyst ranging from 10-60 mgDCW/mL (Figure 8). The ee of (S)-amines increased with the 
increasing amount of Chi-AmDH-AlaDH whole-cell catalyst. While 30 mgDCW/mL cells sufficed to 
completely resolve 100 mM rac-a3 into enantiopure (S)-a3, the minimum number of cells required to 
resolve 100 mM rac-a7 were 40 mgDCW/mL. These results corroborated the results of the previous 
studies which exhibited the higher inhibition of Chi-AmDH by acetophenone than that by 
2-heptanone [32]. The higher efficiency of the coupled Chi-AmDH-AlaDH system demonstrated 
herein is worth emphasizing, given that the minimum number of previously reported 
Chi-AmDH-NOX cells required to completely resolve only 50 mM rac-a3 and rac-a7 were 60 and 100 
mg DCW/mL [32]. On the other hand, only 30 and 40 mg DCW/mL Chi-AmDH-AlaDH cells sufficed to 
completely resolve 100 mM of rac-a3 and rac-a7, respectively (Figure 8). 

Time (h)
0 5 10 15 20 25

ee
S  (%

)

0

20

40

60

80

100

120

20 mM
30 mM
50 mM

Figure 7. Reaction profiles for the kinetic resolution of 20, 30 and 50 mM rac-a7 using Chi-AmDH-AlaDH
whole cell system; Reaction conditions: (20/30 or 50 mM rac-a7, 40/60 or 100 mM pyruvate), 100 mM
glycine buffer pH 10.0, 30 mgDCW/mL Chi-AmDH-AlaDH cells, 37 ◦C, 200 rpm for 24 h).

The successful resolution of 50 mM rac-a3 and rac-a7 encouraged us to further evaluate
the efficiency of this reaction cascade for the resolution of higher concentration of racemic amines.
Thus, to determine the optimal amount of whole cell biocatalyst required to obtain enantiopure
(S)-amines from 100 mM rac-a3 and rac-a7 substrates, reactions were carried out using varying
concentration of whole cell catalyst ranging from 10–60 mgDCW/mL (Figure 8). The ee of (S)-amines
increased with the increasing amount of Chi-AmDH-AlaDH whole-cell catalyst. While 30 mgDCW/mL
cells sufficed to completely resolve 100 mM rac-a3 into enantiopure (S)-a3, the minimum number of
cells required to resolve 100 mM rac-a7 were 40 mgDCW/mL. These results corroborated the results of
the previous studies which exhibited the higher inhibition of Chi-AmDH by acetophenone than that by
2-heptanone [32]. The higher efficiency of the coupled Chi-AmDH-AlaDH system demonstrated herein
is worth emphasizing, given that the minimum number of previously reported Chi-AmDH-NOX
cells required to completely resolve only 50 mM rac-a3 and rac-a7 were 60 and 100 mg DCW/mL [32].
On the other hand, only 30 and 40 mg DCW/mL Chi-AmDH-AlaDH cells sufficed to completely resolve
100 mM of rac-a3 and rac-a7, respectively (Figure 8).

In order to investigate the applicability of the coupled-enzyme system designed herein, the kinetic
resolution of various racemic amine substrates to their corresponding enantiopure (S)-amines was
performed [Table 1]. All the racemic substrates, except a1 and a2, were successfully resolved into their
corresponding (S)-amine form with excellent ee of >99% (Figures S3–S11). The kinetic resolution of
a1 and a2 resulted in ee values of 19 and 59%, respectively. Although substrate specificity suggested
the varying activity of AmDH toward various racemic amine substrates, a clear correlation between
conversion and the reactivity of substrates could not be demonstrated. Nevertheless, it can be
stated that AlaDH-catalyzed conversion of pyruvate to alanine efficiently shifted the equilibrium
of the oxidative deamination in such a fashion that the kinetic resolution of racemic substrates was
catalyzed independent of their activity toward AmDH.
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Figure 8. Effect of concentration of whole-cell catalyst on the kinetic resolution of 100 mM rac-a3
and rac-a7. Reaction conditions: (100 mM rac-a3 or rac-a7, 200 mM Pyruvate), 100 mM glycine buffer
pH 10.0, 10–60 mgDCW/mL Chi-AmDH-AlaDH cells, 37 ◦C, 200 rpm for 24 h).

Table 1. Kinetic resolution of various racemic amines.

Substrate Conv. (%) [a] eeS (%)

a1 [b] 17 18.5
a2 [b] 37 59
a4 [b] 51 >99
a5 [b] 51 >99
a6 [b] 51 >99
a8 [c] 51 >99
a9 [c] 51 >99

a10 [c] 52 >99
a11 [c] 51 >99

Reaction conditions: 20 mM rac-a1–a11, 40 mM pyruvate, 100 mM glycine buffer pH 10.0, 30 mgDCW/mL
Chi-AmDH-AlaDH cells, 37 ◦C, 200 rpm for 24 h; a1–a6 were analyzed by C18 symmetry column after derivatization
with GITC; a8–a11 were analyzed by Crownpack CR (+) column. [a] Conversion was defined as percentage ratio
of the difference between initial racemic amine substrate and final enantiopure amine to initial racemic amine

substrate; Conv. = [Initial racemic amine substrate− f inal enantiopure amine product]
[Initial racemic amine substrate] × 100. [b] Conversions and ee were determined

by C18 symmetry column after derivatization with GITC. [c] Conversions and ee were determined by Crownpack
CR (+) column.

3. Materials and Methods

3.1. Chemicals and Media

All the racemic amine substrates (rac-a1–a11), derivatizing agent 2,3,4,6-Tetra-O-acetyl-β
-d-glucopyranosyl isothiocynate (GITC), nicotinamide cofactors (NADH and NAD+) were purchased
from Sigma-Aldrich (Yongin, Korea). All the other chemical and reagents used were of analytical grade.

3.2. Enzyme Expression and Purification

The gene encoding Chi-AmDH [25] and Rs-AmDH [26] was synthesized by Bionics (Seoul, Korea).
The genes were cloned into IPTG-inducible pET-24ma vector, expressed and purified as previously
reported [33,51].
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3.3. Co-Expression of Chi-AmDH and AlaDH

The gene encoding AmDH was cloned into pET24ma vector and AlaDH in pET-duet vector.
Both the plasmids were transformed by heat shock method to E. coli BL21 cells. The cells were
grown in the presence of Ampicillin (100 µg/mL) and kanamycin (50 µg/mL). Once OD600 of the cells
reached 0.6–0.8, IPTG was added (0.1 mM final concentration) and cells were cultivated overnight.
The cells were centrifuged and washed with tris buffer (20 mM, pH 7.0). Cells were centrifuged again,
resuspended in Glycine buffer (100 mM, pH 10.0) and used for whole-cell transformations.

3.4. Representative Procedure for Whole-Cell Biotransformations for the Kinetic Resolution of Racemic Amines

E. coli cells co-transformed with plasmids pET-24ma and pET-duet harboring Chi-AmDH
and AlaDH, respectively were cultivated overnight following their induction by IPTG. The induced
cells were centrifuged (4000× g, 20 min, 4 ◦C). The cell pellet was washed twice with tris buffer (20 mM,
pH 7.0) and recollected by centrifugation. The washed were resuspended in Glycine buffer (100 mM,
pH 10.0) and used for whole-cell biotransformations. To assess the kinetic resolution of racemic amine
substrates, reaction was carried out containing 10 mM substrate (rac-a1–a11; stock in DMSO), 20 mM
pyruvate, 30 mgDCW/mL E. coli cells co-expressing Chi-AmDH and AlaDH and Glycine buffer (100 mM,
pH 10.0) in a final volume of 1 mL in 1.5 mL microcentrifuge tubes. This reaction mixture was incubated
at 37 ◦C and 200 rpm for 24 h. Biotransformation were initiated. After 24 h, the reaction mixture was
centrifuged (10,000× g, 20 min) to remove the cellmass and the supernatant was quantified by HPLC
for the remaining (S)-amines.

3.5. Analysis of Amines

The analysis of kinetic resolution of racemic amines to their enantiopure (S)-amines was performed
as previously reported [32,33].

4. Conclusions

Since their generation by protein engineering strategies from L-amino acid dehydrogenase parent
scaffolds, amine dehydrogenases have been used for the reductive amination of prochiral ketone to
chiral amines. Nevertheless, (R)-AmDH-catalyzed oxidative deamination can also be efficiently used for
the kinetic resolution of racemic amines to enantiopure (S)-amines. Kinetic resolution was performed
using a coupled-enzyme reaction cascade consisting of AmDH and AlaDH. The use of AlaDH was
advantageous not only for cofactor regeneration, but also for the effective conversion of pyruvate to
alanine, thereby shifting the reaction equilibrium of the primary reaction toward product formation.
Another advantage of this reaction protocol is that the optimum pHs for both the enzymes are close
to each other, implying that reactions using coupled-enzyme systems can be efficiently performed
without compromising the activities of the constituent enzymes. Although a purified enzyme system
could not resolve higher concentrations of challenging racemic substrate such as a7, the whole-cell
biotransformations efficiently resolved racemic amines substrates. By using the whole-cell system
expressing AmDH and AlaDH, 100 mM each of rac-2-aminoheptane and rac-α-MBA were successfully
resolved into (S)-form with >99% ee, respectively. Furthermore, this reaction protocol enabled
the kinetic resolution of wide range of chiral amines to their corresponding (S)-amines with excellent
enantioselectivity (ee > 99%). One of the major disadvantages with the use of pyruvate is its cost,
which ultimately affects the overall cost of the biocatalytic process. Nevertheless, the recent discovery
of enantiocomplementary (S)-AmDHs [31] suggests that the applicability of the protocols such as that
demonstrated herein could also be efficiently extended to generate enantiopure (R)-amines.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/7/600/s1,
Figure S1: SDS-PAGE analysis of purified AmDHs and AlaDH, Figure S2: SDS-PAGE analysis of whole-cells
expressing AmDHs and AlaDH, Figures S3–S13: HPLC analyses of kinetic resolution of rac-a1–rac-a11 (red line)
to (S)-a1–(S)-a11 (black line), Table S1: Amine retention times.
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