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Abstract: A modified zeolite/TiO2 composite (MZTC) was prepared through a method of saturated
infiltration and synthesis in situ. The crystalline phase, micromorphology, elementary composition,
specific surface area, pore size distribution, chemical bond and band gap variation of the products
were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS), BET specific surface area and pore size distribution analysis (BET), Fourier
transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy (UV-vis DRS),
respectively. The microscopic characterization results showed that TiO2 was homogeneously dispersed
in the structure of zeolite at the nanoscale range, and a strong chemical bond was established between
TiO2 and zeolite. The photocatalytic performance of MZTC was evaluated by studying the degradation
rate of methylene blue (MB) dye in aqueous solution under UV-light irradiation. The results of the
degradation experiment showed that the MB degradation rate of MZTC-2.5 was the highest, reaching
93.6%, which was 2.4 times higher than hydrolysis TiO2 powder (HTOP) containing the same mass of
pure TiO2. The MB degradation rate of MZTC-2.5 still maintained 86.5% after five tests, suggesting the
excellent recyclability of MZTC-2.5. The possible mechanism of MB degradation was also discussed.

Keywords: modified zeolite/TiO2 composite; saturated infiltration; synthesis in situ; photocatalytic
performance

1. Introduction

In recent decades, the water pollution caused by organic contaminants, such as dyes, antibiotics,
polycyclic aromatic hydrocarbons and phenols, is becoming a serious concern worldwide [1–4].
Scientists have carried out numerous solutions to control the water pollution and several achievements
have been made [5–10]. Nowadays, whatever technique is applied to purify the contaminated water,
consideration must be given to purification efficiency, cost, operability, and durability. Photocatalytic
oxidation (PCO) based on TiO2 displays excellent prospects in environmental purification owing
to its high efficiency, non-toxicity, low cost, and chemical stability [11–14]. It is well known that
reactive oxygen species (ROS) like ·OH radicals generated on the surface of TiO2 bear strong oxidative
power, so most organic-based compounds undergo complete mineralization to end products such as
H2O and CO2. To enhance the photocatalytic activity, TiO2 is usually fabricated into nanoparticles
or a one-dimensional (1-D) fibrous structure and modified by doping heteroatoms or introducing
noble metals [15–17]. Although the photocatalytic performance has been improved, there are new
challenges appearing along with the wide application of nano-TiO2. The TiO2 nanoparticles are
easily agglomerated in water due to high surface energy, which leads to a reduction in photocatalytic
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efficiency [11]. There is evidence that TiO2 nanoparticles are discharged into aquatic ecosystems during
their application [18]. If the nanoparticle can not be removed from water, TiO2 will enter drinking
water sources and natural aquatic environments, increasing the risk of exposure to plants, animals and
humans [19]. The adsorption capacity of the catalyst towards the pollutant governs the photocatalytic
decomposition efficiency, especially at low concentrations. The photocatalytic efficiency of TiO2 is
often limited due to its low adsorption ability as well as the low concentration of pollutants in ambient
water [20–22]. To deal with these new challenges, it is vital to firmly immobilize TiO2 nanoparticles on
the substrate and improve the adsorption of the catalyst.

Many materials have been utilized for supporting TiO2 [21,23–26], among which natural zeolite
(NZ) was proven to be the most desirable supporting material due to its high specific surface area,
high adsorption capacity, and high stability [27–29]. Zeolite supported nano-TiO2 composites have been
intensively studied for years and research shows that the hybrid zeolite/TiO2 composites exhibit good
photocatalytic degradation performance [24,30–33]. According to previous works, the outstanding
adsorptive ability of zeolite has been commonly used to enhance the photocatalytic activity of
zeolite/TiO2 composites, because zeolites act as electron donors and acceptors of moderate strength
to the guest species based on the adsorption site and could enrich the pollutants around TiO2 and
then accelerate the photocatalytic rate [34–36]. The level and nature of the interaction of zeolite
and TiO2 determine the microstructures of the zeolite/TiO2 composite, which deeply influence the
photocatalytic performance. Domoroshchina et al. [20] thought the interaction between components
depends on the methods and conditions for obtaining nanocomposites. There are numerous cavities in
the framework of zeolite which can not only act as adsorbers, but provide the possibility to enhance
the interaction of TiO2 and zeolite. Currently, most zeolite/TiO2 composites have been synthesized
through the sol-gel method at normal pressure and temperature, which is easy to realize [37–40].
However, most zeolite/TiO2 composites are a mixture of TiO2 and zeolite with altered microstructural
characteristics, which is not enough to exploit the advantages of zeolite/TiO2.

In the present study, the aim is to synthesize a composite with high efficiency and stable properties.
The method of saturated infiltration and synthesis in situ was proposed. Different from the conventional
sol-gel method, NZ was firstly immersed in the TiO2 sol under negative pressure to ensure every cavity
was filled with sol and then nanocrystal TiO2 was formed in situ under heat treatment. The physical
and chemical properties of MZTC were investigated using a variety of micro characterization methods.
The photocatalytic efficiency of MZTC was evaluated by degrading methylene blue (MB) in aqueous
solution, which is a representative organic pollutant in the textile wastewater industry.

2. Results and Discussion

2.1. Physicochemical Properties

X-ray diffraction (XRD) patterns of the samples are shown in Figure 1. Compared with commercial
TiO2 (P25), HTOP prepared by the sol-gel route is proved to be anatase TiO2. The crystallite size of the
HTOP and P25 are about 10 nm and 25 nm, respectively, as calculated by the Scherrer equation [17].
The phase compositions of NZ, MZ and MZTC-2.5 are SiO2 and K2.04Na0.06Al2Si7.8O20.7. The intensity
of the diffraction peaks of MZ and MZTC-2.5 are weaker than NZ, because the Si in the zeolite
skeleton was selectively dissolved and the chemical-bonding water was destroyed. The X-ray pattern
of MZTC-2.5 is almost the same as MN and the characteristic peaks of TiO2 are not observed in the
diffraction patterns of MZTC-2.5, which may contribute to the low content and small size of TiO2.
The absence of TiO2 characteristic peaks indicate that the nanocrystal TiO2 are well dispersed on the
zeolite surface and the growth of large-size TiO2 crystallites is prevented [41], which is conductive to
improve the photocatalytic activity of MZTC [42].



Catalysts 2019, 9, 502 3 of 13
Catalysts 2018, 8, x FOR PEER REVIEW  3 of 13 

 

 91 
Figure 1. X-ray diffraction patterns. (a.u. = arbitrary units) 92 

Figure 2(a) and Figure 2(b) show the scanning electron microscopy (SEM) images of P25 and 93 
HTOP, respectively. It can be observed that P25 is stacked with nanoparticles with a diameter of 94 
approximately 25 nm, which is in accordance with the XRD result. The HTOP is of block shape and 95 
the TiO2 particles are compacted after calcination of 400 °C. Figure 2(c) and 2(d) show the 96 
morphologies of NZ and MZ, respectively. It can be clearly seen that NZ is formed from stacking 97 
plate-like units and the surface is regular and smooth. After modification, the surface of MZ is 98 
irregular and rough and many micron-sized cavities can be observed. This is because the impurities 99 
in the pore were removed, leading to an open and clear pore system, which contribute to the diffusion 100 
and adsorption of the pollutant. Figure 2(e) shows the morphologies of MZTC-2.5. It can be seen that 101 
the microstructures of MZTC-2.5 were almost same as MZ and the agglomeration of TiO2 was not 102 
observed on the surface of MZTC-2.5, which was also identified by the XRD results. Combined with 103 
the micrograph of HTOP, it can be inferred that the absence of the agglomeration of TiO2 was due to 104 
the interaction of TiO2 and zeolite, which inhabits the growth of large-size TiO2 crystallites and the 105 
agglomeration of TiO2 particles. Three random points on the surface of MZTC-2.5 were selected for 106 
energy dispersive spectroscopy (EDS) analysis, the results of which are shown in Figure 2(f), Figure 107 
2(g) and Figure 2(h). The content of Ti at each point exceeded 10%, which confirmed that the nano-108 
TiO2 had already been deposited on the structure of MZTC-2.5. The Ti content of the three points was 109 
approximately equal to each other, indicating the uniform distribution of TiO2. 110 
 111 

Figure 1. X-ray diffraction patterns. (a.u. = arbitrary units).

Figure 2a,b show the scanning electron microscopy (SEM) images of P25 and HTOP, respectively.
It can be observed that P25 is stacked with nanoparticles with a diameter of approximately 25 nm,
which is in accordance with the XRD result. The HTOP is of block shape and the TiO2 particles are
compacted after calcination of 400 ◦C. Figure 2c,d show the morphologies of NZ and MZ, respectively.
It can be clearly seen that NZ is formed from stacking plate-like units and the surface is regular and
smooth. After modification, the surface of MZ is irregular and rough and many micron-sized cavities
can be observed. This is because the impurities in the pore were removed, leading to an open and clear
pore system, which contribute to the diffusion and adsorption of the pollutant. Figure 2e shows the
morphologies of MZTC-2.5. It can be seen that the microstructures of MZTC-2.5 were almost same
as MZ and the agglomeration of TiO2 was not observed on the surface of MZTC-2.5, which was also
identified by the XRD results. Combined with the micrograph of HTOP, it can be inferred that the
absence of the agglomeration of TiO2 was due to the interaction of TiO2 and zeolite, which inhabits the
growth of large-size TiO2 crystallites and the agglomeration of TiO2 particles. Three random points on
the surface of MZTC-2.5 were selected for energy dispersive spectroscopy (EDS) analysis, the results of
which are shown in Figure 2f–h. The content of Ti at each point exceeded 10%, which confirmed that
the nano-TiO2 had already been deposited on the structure of MZTC-2.5. The Ti content of the three
points was approximately equal to each other, indicating the uniform distribution of TiO2.
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also demonstrated by its corresponding pore-size distribution curve in Figure 3(b). The shape of the 123 
hysteresis loop is of type H3, which is associated with the stack of plate-like particles, generating slit-124 
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Figure 2. Scanning electron microscopy (SEM) images: (a) P25; (b) HTOP; (c) NZ; (d) MZ; (e) MZTC-2.5;
energy dispersive spectroscopy (EDS) results of MZTC-2.5: (f–h).
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The nitrogen adsorption–desorption isotherms of MZ and MZTC-2.5 are presented in Figure 3a.
For MZ, the isotherm is of type III and IV (BDDT classification) [43,44]. At low relative pressure,
the adsorbed volume of N2 is small, indicating the absence of micropores or the weak force between MZ
and N2 (type III). However, at a high relative pressure range (between 0.3 and 0.9), the isotherm displays
a small hysteresis loop, confirming the presence of mesopores (type IV). This is also demonstrated
by its corresponding pore-size distribution curve in Figure 3b. The shape of the hysteresis loop is
of type H3, which is associated with the stack of plate-like particles, generating slit-like pores [44].
This is also confirmed by the SEM images of MZ. Loading nano-TiO2 on the surface of MZ causes
a certain influence on the isotherm. The shape of the isotherm of MZTC-2.5 is similar to MZ, but the
hysteresis loop of MZTC-2.5 is larger, suggesting that the pore size distribution range of MZTC-2.5 is
wider. This is in accordance with the pore-size distribution curves in Figure 3b. Moreover, the specific
surface area of MZTC-2.5 (293 m2g−1) is lower than that of MZ (392 m2g−1), as shown in Table 1. This is
closely related to the changes of the pore system of MZ. After saturated infiltration and calcination,
the mesopores in MZ were filled with nano-TiO2 particles, thus leading to the formation of stack holes,
so the specific surface area of MZ was reduced. The schematic diagram of the nano-TiO2 distribution
in MZTC-2.5 is shown in Figure 4. It can be inferred that TiO2 particles are homogeneously dispersed
in MZTC-n (n = 0.5, 1, 2.5, 5) at the nanoscale range.
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Table 1. Specific surface area (S), pore volume (V) and average pore diameter (D) for MZ and MZTC-2.

Sample S (m2g−1) V (cm3g−1) D (nm)

MZ 392 0.29 12.02
MZTC-2.5 293 0.21 9.27

The infrared spectrum of MZTC-2.5 is shown in Figure 5. The middle infrared spectrum region
(400–2000 cm−1) displays the features of the chemical bonds of zeolite [45]. The absorption peaks
at the range of 400–1200 cm−1 are associated with the Si–O(Si) and Si–O(Al) stretching vibrations
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inside the (Al,Si)O4 tetrahedrons [46]. The infrared peaks at 1060 cm−1 and 1090 cm−1 are correlated
with the Si–O–Si anti-symmetric stretch region of zeolite [47]. The absorption peaks at 400–600 cm−1

are attributed to pseudo-lattice vibrations of structural units [48]. There is a weak absorption peak
at 960 cm−1 which is attributed to the anti-symmetric Ti–O–Si stretching modes of a corner-sharing
tetrahedral [49,50]. It is confirmed that there is a chemical bond between TiO2 and zeolite. TiO2 particles
are firmly fixed on the surface of zeolite with the force of a chemical bond, which is beneficial for the
reclamation of photocatalysts.
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Figure 5. Infrared spectrum of MZTC-2.5.

The results of the UV–vis diffuse reflectance spectra (UV-vis DRS) of HTOP (anatase TiO2) and
MZTC-2.5 are shown in Figure 6a. It is obvious that both HTOP and MZTC-2.5 could absorb the
UV-light (200–400 nm) and the absorption intensity of HTOP was almost equal to that of MZTC-2.5.
The absorption peaks of HTOP and MZTC-2.5 appeared at the wavelengths of 310 nm and 345 nm,
respectively. The diffuse reflectance spectra of MZTC-2.5 had a slight shift to longer wavelengths
compared with that of HTOP. Similar results could be observed in other research [51,52]. It is
indicated that the band-gap of MZTC-2.5 was narrowed and light with lower energy could excite
the photoelectron reaction, which was probably ascribed to the existing Ti–O–Si. According to the
Kubelka–Munk theory, the band-gap energies of HTOP and MZTC-2.5 could be calculated by a plot of
[Ahν]1/2 as a function of hν, as shown in Figure 6b. The calculated band-gap energies of HTOP and
MZTC-2.5 are 3.23 eV and 3.10 eV, respectively. Compared with HTOP, the band-gap of MZTC-2.5
had a slight shift towards visible light, which indicated that more light could be used to excite the
photocatalysis. Hence, a better photocatalytic performance of MZTC-2.5 could be expected due to the
additional state of Ti–O–Si.
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2.2. Evaluation of the Photocatalytic Efficiency

The results of the MB degradation experiment are shown in Figure 7a. In order to exclude the
influence of the non-photocatalytic effects that could decrease the concentration of MB, the blank
experiment was conducted. The result shows that the MB can barely be degraded by UV irradiation
without a catalyst. So, the effects of photodegradation can thus be neglected in photocatalysis. The MB
concentration has a slight decline with MZTC-0 added, indicating that MZ has a certain adsorption
capacity, which contributes to enhance the pollutant concentration around TiO2 [11]. Obviously,
the MB degradation rate increased with the amount of loaded TiO2, and MZTC-2.5 showed the highest
photocatalytic activity, which could remove MB up to 93.6% within 60 min. However, when the amount
of loaded TiO2 was up to 5%, the degradation rate of MZTC-5 was lower. This could be explained as
the condition of low TiO2 content, more active sites of TiO2 would be exposed with more TiO2 addition,
while on the condition of high TiO2 content, excess TiO2 particles would stack and agglomerate leading
to a reduction of exposed active sites. The MB degradation rate of HTOP (68%) was much lower than
that of MZTC-2.5 (93.6%). This is because HTOP is prone to agglomeration in water due to the large
surface energy, thus leading to a serious reduction of surface area and active sites. The MB degradation
rate of NZTC-2.5 was also lower than that of MZTC-2.5, which was related with the mass transfer
process. In detail, the micron-sized pores of NZTC-2.5 were obstructed due to impurities, so the transfer
efficiency of MB molecules was limited. The first-order reaction kinetics model was used to fit the data
obtained from the degradation experiment. The fitting curves are shown in Figure 7b, which display
a good linear relationship (R2 > 0.98), indicating that the photocatalytic degradation process of MB
conforms to the first-order reaction kinetics. According to the fitting equation (-ln(C/C

0
) = k·t), the slope

represents the reaction rate constant k (min−1). The degradation parameters are shown in Table 2.
The reaction rate constant (k, 0.04694 min−1) of MZTC-2.5 is 2.4 times and 1.47 times higher than that
of HTOP (k, 0.01959 min−1) and NZTC-2.5 (k, 0.03204 min−1), respectively. The enhanced reaction
rate is attributed to the synergistic effect caused by modified zeolite and nano-TiO2. The modified
zeolite/TiO2 composite provides abundant TiO2 active sites and a high concentration of pollutant,
thus accelerating the photocatalysis reaction.

The results of the recycle degradation experiment of MZTC-2.5 are shown in Figure 8. The first
degradation rate reached up to 93.6% for MB within 60 min. However, from the second cycle onwards,
the degradation rate decreased slightly and gradually become steady. When the tests were recycled
five times, the fifth degradation rate was 86.5%, which indicates the excellent recyclability of MZTC-2.5.
The slight decrease in degradation rate is probably due to the occupation of TiO2 active sites by remnant
MB or the reaction products.Catalysts 2018, 8, x FOR PEER REVIEW  8 of 13 
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Table 2. The parameters of the photocatalytic degradation reactions. (k = reaction rate constant;
R2= goodness of fit).

Specimen k (min−1) R2

Blank 9.74 × 10−4 0.98574
MZTC-0 8.05 × 10−4 0.98691
HTOP 0.01959 0.98693

NZTC-2.5 0.03204 0.99422
MZTC-0.5 0.02930 0.99492
MZTC-1 0.03512 0.99140

MZTC-2.5 0.04694 0.98633
MZTC-5 0.04214 0.99194
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According to the degradation experiment results, the process of the degradation of MB can be
divided into several stages in this study. Firstly, a mass of MB molecules migrate to the surface of
MZTC-2.5 from the aqueous environment. Because the MB molecules have an effective molecular
diameter of about 0.77 nm, which is smaller than that of MZTC-2.5 with an average pore size of
approximately 9.27 nm, the MB molecules could transfer to the pores of MZTC-2.5. Due to the huge
specific surface area, the adsorption equilibrium was established in a short time and MB could be
stored in the large internal surfaces and on the external surfaces of MZTC-2.5, so the concentration
of MB around TiO2 was very high. Once the TiO2 particles were illuminated by UV light, electron
(e−)–hole (h+) pairs would be generated on the surface of TiO2, which would react with OH− and
the dissolved O2 in the aqueous solution in order to generate ROS such as hydroxide radicals (·OH),
superoxide radicals (O2

−) and hydrogen peroxide (H2O2) in different chain reactions. The MB would
be oxidized into inorganic matter by hydroxide radicals (·OH) as shown in Equation (1) [53,54]:

MB + ·OH→ products (CO2 + H2O + NH4
+ + NO3

− + SO4
2− + Cl−) (1)

When the adsorbed MB were degraded by hydroxide radicals (·OH), the adsorption equilibrium
was broken so that more MB molecules would be captured by MZTC-2.5 and then more MB would be
photocatalytically degraded. The process of degradation is shown in Figure 9.
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3. Experimental Procedure

3.1. Preparation of MZTC

A certain amount of NZ was immersed in the NaOH aqueous solution (2 mol·L−1) for 6 h with
continuous stirring. After alkaline erosion, the zeolite was washed using distilled water until the pH
value was 7 or 8 and subsequently calcined at 400 ◦C for 2 h. The preparation of TiO2 sol was carried
out according to the literature [55]. A certain mass of Tetrabutyl Orthotitanate (TBOT) was added into
distilled water dropwise with stirring. Nitric acid was also added to inhibit the hydrolysis. The weight
ratio of TBOT, distilled water and nitric acid was 1:8:0.08. The white slurry was then heated in the
water bath at 40 ◦C for 24 h until the sol turned light blue and transparent. Some modified zeolite (MZ)
and as-prepared TiO2 sol were mixed together with stirring and then treated with ultrasonication for
0.5 h. Afterwards, the mixture was treated in a stainless steel still under negative pressure of 0.07 MPa
for 5 h. Finally, the products were dried at 105 ◦C for 2 h and then calcined at 400 ◦C for 2 h to obtain
the MZTC [42]. The samples were labeled as MZTC-n (n% is the weight percentage of TiO2 sol, i.e.,
n = 0, 0.5, 1, 2.5, 5). As a control study, the natural zeolite supported TiO2 was also fabricated and
labeled as NZTC-2.5 (NZTC=natural zeolite/TiO2 composite). A certain amount of the TiO2 sol was
dried at 105 ◦C for 2 h and then calcined at 400 ◦C for 2 h to obtain the TiO2 powder, namely hydrolysis
TiO2 powder (HTOP). The chemical composition of NZ is shown in Table 3. The composition of all
specimens are shown in Table 4.

Table 3. The chemical composition of natural zeolite (wt%).

SiO2 Al2O3 Na2O CaO K2O MgO Fe2O3 FeO TiO2 P2O5

60~70 17.8 4.2 2.6 3.2 0.8 1.6 1.2 0.6 0.26
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Table 4. Composition of the specimens. (NZTC = natural zeolite/TiO2 composite; MZTC = modified
zeolite/TiO2 composite; HTOP= hydrolysis TiO2 powder).

Specimen NZ Content/wt% MZ Content/wt% TiO2 Content/wt%

HTOP - - 100
NZTC-2.5 93.92 - 6.08
MZTC-0 - 100 0

MZTC-0.5 - 98.72 1.28
MZTC-1 - 97.48 2.52

MZTC-2.5 - 93.92 6.08
MZTC-5 - 88.53 11.47

3.2. Characterization

The phase composition of the samples was characterized by X-ray diffraction (D/max2550,
RIGAKU, Tokyo, Japan) with a Cu Ka ray source (40 kV and 100 mA) at the speed of 4◦ min−1 between
10◦ and 60◦. The morphology of the products was observed by a scanning electron microscope
(Quanta 200F, FEI, Hillsboro, OR, USA). The surface chemical composition of the samples was
analyzed with an energy dispersive spectrometer (Genesis Apollo X/XL, EDAX, Berwyn, PA, USA).
The specific surface area and pore size distribution of the as-prepared material were evaluated by
a BET automatic nitrogen adsorption specific surface area detector (Beishide 3H-2000PS2, BEISHIDE,
Beijing, China). The chemical bond between TiO2 and zeolite was detected by Fourier transform
infrared spectroscopy (EQUINOX55, BRUKER, Karlsruhe, Germany). The UV–vis diffuse reflectance
spectra (DRS) were measured using a UV–VIS-NIR spectrophotometer (LAMBDA 950, PERKINELMER,
Waltham, MA, USA).

3.3. Evaluation of Photocatalytic Degradation Efficiency

The photocatalytic performance of MZTC was evaluated by the MB degradation experiment. One
gram of MZTC-n (n = 0, 0.5, 1, 2.5 or 5) was added into 30 mL MB aqueous solution (50 ppm), then the
mixture was stirred and left in the dark for about 60 min to establish the adsorption equilibrium. Once
the UV-light (125 W, 365 nm) irradiation occurred, the photocatalysis reactions started immediately.
During the photocatalysis process, about 1 mL of supernatant was collected every 10 min and transferred
to a quartz cuvette for the measurements of the maximum absorbance at 665 nm. According to the
Lambert–Beer law, we get the relationship of C = k′A, so the degradation rate of MB was calculated
using Equation (2):

C
C0

=
At

A0
(2)

where C is the concentration of MB at time t and C0 is the concentration of initial MB. At is the
absorbance of the MB aqueous solution at time t and A0 is the absorbance of the initial MB aqueous
solution. For comparison, 1 g NZTC-2.5 and 0.06 g HTOP were also tested. The mass of the HTOP
used was equal to that of the TiO2 contained in 1 g MZTC-2.5.

4. Conclusions

(1) After the modification of alkali erosion and calcination, the modified zeolite is rough and
porous, which is suitable for the sedimentation of nano-TiO2 and the diffusion of pollutants.

(2) Through the method of saturated infiltration and synthesis in situ, the modified zeolite/TiO2

composite has been synthesized. The nano-TiO2 are homogeneously dispersed in the structure of the
modified zeolite at the nanoscale range. TiO2 particles are firmly bonded with zeolite with the force of
the chemical bond.

(3) Due to the synergistic effect comprising the uniform distribution of TiO2 and the enhanced
adsorption capacity, the MB degradation rate of MZTC-2.5 is higher than that of the equal mass of
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pure TiO2. The MB degradation rate increases with the content of TiO2. MZTC-2.5 performs the best in
terms of degradation efficiency, which could reach up to 93.6%.

(4) After five tests, the MB degradation rate of MZTC-2.5 is still 86.5%, proving that MZTC-2.5 has
good recyclability.
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