Supplementary Materials: Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation

Marco Rabuffetti, Teodora Bavaro, Riccardo Semproli, Giulia Cattaneo, Michela Massone, Carlo F. Morelli, Giovanna Speranza and Daniela Ubiali

Supplementary Material

Table of contents

S1.	¹³ C-NMR	monitori	ng	of	7-methyl-2'-de	oxyguanosin	e ic	odide (8)	
stability2									
S2. (9)	¹ H-NMR	and ¹³ C-NM	MR s .3	spectra	of 7-meth	ylguanine	arabinos	side iodide	
S3. (2)		¹ H-NMR		spectr	um	of 4		Tecadenoson	
S4. (1)	HPLC	monitoring	of	the 5-6	enzymatic	synthesis	of	Ribavirin	
S5. (17)	HPLC	monitoring	of	the 7-9	enzymatio 9	synthes	sis o	of CCPA	
S6. (18)	HPLC	monitoring	of	the .11-13	enzymatic	synthesis	of	Acadesine	
S7. (2)	HPLC	monitoring	of 14	the 4-15	enzymatic	synthesis	of	Tecadenoson	

S1. ¹³C-NMR monitoring of 7-methyl-2'-deoxyguanosine iodide (8) stability

Figure S1. Comparison of ¹³C-NMR spectra of 8 in DMSO-d₆ (0.05 M): a) after 2 h; b) after 4 h.

S2. ¹H-NMR and ¹³C-NMR spectra of 7-methylguanine arabinoside iodide (9)

S3. ¹H-NMR spectrum of Tecadenoson (2)

S4. HPLC monitoring of the enzymatic synthesis of Ribavirin (1)

a) t=0

tr: 2.52 min (solvent); 3.53 min (1,2,4-triazole-3-carboxamide, 15); 6.64 min (7-methylguanosine iodide, 7)

b) t=24 h

tr: 2.54 min (solvent); 3.53 min (1,2,4-triazole-3-carboxamide, **15**); 4.53 min (Ribavirin, **1**); 6.65 min (7-methylguanosine iodide, **7**); 8.06 min (tentatively attributed to 7-methylguanine, **19**)

c) 7-Methylguanosine iodide (7) (standard)

tr: 2.54 min (solvent); 6.64 min (7-methylguanosine iodide, 7); 7.98 min (unknown)

d) 1,2,4-Triazole-3-carboxamide (15) (standard)

tr: 3.61 min

S5. HPLC monitoring of the enzymatic synthesis of CCPA (17)

This reaction was performed according to a "fed batch" mode as reported in the Table below:

				-	0	
Reaction time (h)	Reaction volume (mL)	[Donor] (mM)	Overall added volume of 12 (mL) ¹	[12] (mM)	DMSO (% v/v)	Conversion (%; mM)
0	4.625	1.08	0.125	0.27	2.5	0
2	4.750	1.05	0.250	0.52	5	71% (0.19 mM) ²
4	4.875	1.03	0.375	0.77	7.5	64% (0.49 mM)
6	5.000	1.00	0.500	1.00	10	54% (0.54 mM)

r.1.1.	E		CCDA						
i abie.	Enzymatic s	ynthesis of	CCPA (17)	: reaction	set-up	and	monitoring	5

¹A 10 mM stock solution of **12** in DMSO was used. Time monitoring (HPLC): 0.5, 1, 2, 3, 4, 5, 6, 7, 24 h. The supernatant was diluted 1:1 with the mobile phase and analyzed by HPLC as reported in the main text (Materials and Methods, paragraph 3.3). ²Conversion was calculated before the addition of the second portion of **12**

Chromatograms at t=0, 0.5 h, 6 h, 24 h

a) t=0

tr: 6.65 min (7-methylguanosine iodide, 7); 27.60 min (2-chloro-N⁶-cyclopentyladenine, 12)

b) t=0.5 h

tr: 6.62 min (7-methylguanosine iodide, 7); 7.97 min (tentatively attributed to 7-methylguanine, **19**); 26.43 min (CCPA, **17**); 27.64 min (2-chloro-*N*⁶-cyclopentyladenine, **12**)

c) t=6 h (before adding the last portion of 12)

tr: 6.61 min (7-methylguanosine iodide, 7); 7.97 min (tentatively attributed to 7-methylguanine, **19**); 26.39 min (CCPA, **17**); 27.60 min (2-chloro-*N*⁶-cyclopentyladenine, **12**)

tr: 6.62 min (7-methylguanosine iodide, 7); 7.98 min (tentatively attributed to 7-methylguanine, **19**); 26.39 min (CCPA, **17**); 27.60 min (2-chloro-*N*⁶-cyclopentyladenine, **12**)

e) t=24 h

tr: 6.60 min (7-methylguanosine iodide, 7); 7.95 min (tentatively attributed to 7-methylguanine, **19**); 26.40 min (CCPA, **17**); 27.61 min (2-chloro-*N*⁶-cyclopentyladenine, **12**)

f) 2-Chloro-N⁶-cyclopentyladenine (12) (standard)

tr: 27.60 min

tr: 3.69 min (5-amino-1H-imidazole-4-carboxamide,16); 6.64 min (7-methylguanosine iodide, 7)

b) t=6 h

tr: 3.71 min (5-amino-1*H*-imidazole-4-carboxamide,**16**); 6.62 min (7-methylguanosine iodide, **7**); 7.98 min (tentatively attributed to 7-methylguanine, **19**)

c) t=24 h

tr: 3.90 min (5-amino-1*H*-imidazole-4-carboxamide,**16**); 6.96 (7-methylguanosine iodide, **7**); 8.43 min (tentatively attributed to 7-methylguanine, **19**)

A peak at tR 6.80 min was detected (<2%).

d) 5-Amino-1H-imidazole-4-carboxamide (16) (standard)

tr: 3.72 min

e) Acadesine or AICAR (18) (standard)

tr: 6.47 min

S7. HPLC monitoring of the enzymatic synthesis of Tecadenoson (2)

tr: 7.69 min (7-methylguanosine iodide, 7); 18.48 min (6-(3-aminotetrahydrofuranyl)purine (14)

b) t=24 h

tr: 8.62 min (7-methylguanosine iodide, 7); 11.26 min (tentatively attributed to 7-methylguanine, **19**); 20.20 min (6-(3-aminotetrahydrofuranyl)purine (**14**); 22.08 (Tecadenoson, **2**)

d) Tecadenoson (2) (standard)

