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Abstract: For the first time, we developed a method which enables a functionalized alkane to
be metathesized to its lower and higher homologues. For this metathesis reaction, we used
[(≡Si-O-)W(CH3)5] as a catalyst precursor and 9-hexyl-9H-carbazole as a reactant.
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1. Introduction

Since the discovery of alkane metathesis reaction by well-defined silica supported [Ta]-H
catalyst [1], many groups, including us, have been continuously working on the development of
well-defined catalysts for “functionalized” alkanes metathesis reaction or alkyl chains bearing any
functionality, along with improved reactivity in alkane metathesis reaction [2–8]. While significant
progress was achieved in improving the catalyst activity (e.g., by changing catalyst support and by
employing a tandem system, where two catalysts act back to back for cascade reaction), metathesis
of a functionalized alkane remains elusive in the scientific community [7,9–12]. To metathesize
a functionalized alkane, the reactant should undergo dehydrogenation to a functionalized olefin,
functionalized olefin metathesis, and finally reduction of the newly-formed, functionalized olefins to
new functionalized alkanes. The main difficulty in functionalized alkane metathesis reaction is the
functional moiety, which is expected to poison the catalyst by coordinating with the metal, and hence
deactivating the system for further reaction. Therefore, it is a tremendous challenge to metathesize
an alkane having a functional group. Herein we present the first example of functionalized alkane
metathesis using silica supported W(CH3)5 1 as a catalyst precursor and 9-Hexyl-9H-carbazole 6 as
a reactant.

2. Results and Discussion

From previous publications it was known that ligands that have a lone pair of electrons
coordinate with electron-deficient early-transition metals, making them electron-rich and blocking the
coordination site for C-H bond activation [13]. As the metal is more electron-rich and coordinatively
more saturated, its affinity towards alkane decreases [14]. Considering, that alkane metathesis occurs
first by sigma-bond metathesis with a d0 system, this becomes increasingly important [15].

To avoid this problem, while carrying out the functionalized alkane metathesis reaction, our
first aim was to focus on the protection of the functional group. To implement this idea, we chose
N-Alkyl pyrroles, with the assumption that the lone pair of electrons on the nitrogen atom is involved
in the formation of an aromatic system and thus is poorly available for coordination. To our surprise,
after many attempts, we only observed a starting material along with its decomposition products.
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A literature report shows that pyrroles interact with Lewis acids to produce pyrrole oligomers through
the activation of its α position [16]. To avoid this, and to carry out the reaction, we thought to protect
the most reactive α position of the pyrrole ring by methyl groups, in order to avoid unwanted reactions
of the pyrrole ring while carrying out the metathesis. We synthesized 1-Hexyl-2,5-Dimethyl-1H-pyrrole
2 and 1-Propyl-2,5-Dimethyl-1H-pyrrole 3 [17,18] (Scheme 1) and carried out the metathesis reaction
using [(≡Si-O-)W(CH3)5] 1 as a catalyst precursor (Figure 1).
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It has been already observed that 1 leads to [(≡Si-O-)W(H)3(=CH2)] during catalyst activation [19].
While testing this family of molecules, expecting the metathesis products of the reactants 2 and 3, we
ended up with unreacted starting material along with traces of decomposition, and isomerization of
both the substrates without any metathesis product.

The alkane metathesis consists of mainly three subsequent paths—dehydrogenation, olefin
metathesis, and hydrogenation—as we did not observe any expected metathesis products from the
above two reactants, we decided to investigate if the olefin metathesis step could be performed in our
catalytic system. We synthesized 1-Allyl-2,5-Dimethyl-1H-pyrrole 4, which is the olefinic analogue of
the 1-Propyl-2,5-Dimethyl-1H-pyrrole 2, for olefin metathesis reaction using catalyst 1 (Figure 2).

The product was analyzed by gas chromatography (GC), gas chromatography coupled with
mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy, confirming the
formation of expected product 1,4-bis-(2,5-Dimethyl-1H-pyrrole-1yl)but-2-ene, with 85% conversion
and a turnover number (TON) of 850 (Figure 2) [20–22]. These results clearly indicated that our catalyst
was capable of carrying out the olefin metathesis reaction for this particular substrate, whereas in the
case of 1-Propyl-2,5-Dimethyl-1H-pyrrole 2 or 1-Hexyl-2,5-Dimethyl-1H-pyrrole 3, no metathesis was
observed. The limiting step in the latter case was the alkyl chain C-H activation (as an entry into the
alkane metathesis productive cycle). During the catalytic reaction, we understood that isomerization
of the substrates occurs because of walking of α-methyl groups on the ring [23]. To avoid that, we
thought to synthesize 9-Hexyl-9H-carbazole (a rigid molecule) to carry out the metathesis reaction.
9-Hexyl-9H-carbazole was obtained by the reaction of carbazole and hexyl bromide in the presence of
KOH, by following a literature procedure (Scheme 2) [24].
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Scheme 2. Synthesis of 9-Hexyl-9H-carbazole 6.

In a typical reaction, 9-Hexyl-9H-carbazole 6 and [(≡Si-O-)W(CH3)5] 1, in 50:1 molar ratio, based
on loading of W, were mixed. The mixture was sealed in an ampoule tube under high vacuum
and the reaction continued at 150 ◦C. The first sample was quenched with dichloromethane and
injected in GC after one day of reaction. To our surprise, neither any considerable amount of product
nor decomposition of the starting material (9-Hexyl-9H-carbazole) were observed. We continued
the reaction for another four days. After five days, the reaction mixture was taken, quenched with
dichloromethane, filtered, and analyzed by GC. We could observe a range of alkylated carbazoles,
starting from cC2 to cC10, with a conversion of starting material of 2.5% and the formation of carbazole
itself (Figures 3 and 4). While carrying out the reaction with 1, we thought the reaction would go
smoother, as the lone pair was delocalized in the carbazole conjugated system and there was no
labile group on the ring. To our surprise, we only obtained 5.0% conversion, even after 30 days.
While analyzing the reaction mixture, we observed linear alkanes (alkane metathesis products),
N-Alkyl carbazoles and the dimer of 9-Hexyl-9H-carbazole (functionalized alkane metathesis products)
(Figures 3 and 4; Supplementary Material Figures S15–S17), along with a considerable amount
of carbazole.
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is the self-metathesis product of the 9-(hex-5en-1-yl)-9H carbazole (Supplementary Material
Figures S15 and 16). Initially, 9-(hex-5en-1-yl)-9H carbazole (dehydrogenation product of 9-
Hexyl-9H-carbazole) was formed by the reaction of [(≡Si-O-)W(CH3)5] 1 and 9-Hexyl-9H-
carbazole (Figures S13 and 14). Other N-Alkyl carbazoles and alkanes were formed due to 
chain walking (our active catalyst contains W-H) followed by cross metathesis with linear 
olefins, and, at the end, reduction of newly formed olefins to new alkanes. Looking at the 
product distribution, we observed that, along with all the metathesis products of the 
functionalized alkanes, a considerable amount of N-alkane metathesis products and carbazole 
were formed. In N-alkane metathesis products, the concentration of the C6 (hexane) was 
higher, as compared to its lower and higher homologues. These products could only form if 
the catalyst attacks the position 1 of the 9-Hexyl-9H-carbazole (Scheme 2 and Figure 5), 
forming the W-C bond followed by reduction of the N-C bond to generate carbazole and the 
W-Alkyl chain (Figure 5). Furthermore, the W-Alkyl chain underwent an α-H abstraction and 
β-H elimination, generating W-carbene and olefin. Additionally, W-carbene and olefin 
underwent an olefin metathesis reaction, generating a range of N-alkane products (C3–C10), 
after reduction of the newly-formed olefins (Figure 5). The various N-Alkyl carbazoles were 
formed by activation of position 6 (Scheme 2) of the alkyl chain of the 9-Hexyl-9H-carbazole. 
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The formation of the dimer [1,10-di(9H-carbazole-9-yl-)decane] was understandable as it is the
self-metathesis product of the 9-(hex-5en-1-yl)-9H carbazole (Supplementary Material Figures S15
and S16). Initially, 9-(hex-5en-1-yl)-9H carbazole (dehydrogenation product of 9-Hexyl-9H-carbazole)
was formed by the reaction of [(≡Si-O-)W(CH3)5] 1 and 9-Hexyl-9H-carbazole (Figures S13 and S14).
Other N-Alkyl carbazoles and alkanes were formed due to chain walking (our active catalyst contains
W-H) followed by cross metathesis with linear olefins, and, at the end, reduction of newly formed
olefins to new alkanes. Looking at the product distribution, we observed that, along with all the
metathesis products of the functionalized alkanes, a considerable amount of N-alkane metathesis
products and carbazole were formed. In N-alkane metathesis products, the concentration of the C6

(hexane) was higher, as compared to its lower and higher homologues. These products could only
form if the catalyst attacks the position 1 of the 9-Hexyl-9H-carbazole (Scheme 2 and Figure 5), forming
the W-C bond followed by reduction of the N-C bond to generate carbazole and the W-Alkyl chain
(Figure 5). Furthermore, the W-Alkyl chain underwent an α-H abstraction and β-H elimination,
generating W-carbene and olefin. Additionally, W-carbene and olefin underwent an olefin metathesis
reaction, generating a range of N-alkane products (C3–C10), after reduction of the newly-formed olefins
(Figure 5). The various N-Alkyl carbazoles were formed by activation of position 6 (Scheme 2) of the
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alkyl chain of the 9-Hexyl-9H-carbazole. Even though we metathesized a functionalized alkane, we
could only achieve 5.0% conversion with a TON of 2. We believe the low conversion was due to the
poisoning of the catalyst by the formation of carbazole (Figure 5) during the reaction (since the N-H of
carbazole was no longer protected, it could attack the catalyst and deactivate it for further reaction).
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3. Conclusions

For the first time, we carried out a functionalized alkane metathesis reaction using silica-supported
catalyst [(≡Si-O-)W(CH3)5] 1, with a conversion of 5.0%; N-alkane metathesis was also observed due
to the reaction course. To avoid catalyst decomposition, we chose 9-Hexyl-9-H-carbazole, whereby the
lone pair was delocalized in the conjugated system. Our study shows that the catalyst decomposes
because of the reaction of the N-H of the carbazole with the catalyst. Currently, we are focusing on the
development of a robust catalyst for the functionalized alkane metathesis reaction.

4. Materials and Methods

4.1. General Experimental Procedures

All experiments were carried out by using standard Schlenk and glove box techniques under
an inert nitrogen atmosphere. The syntheses and the treatments of the surface species were carried
out using high vacuum lines (<10−5 mbar) and glove-box techniques. Pentane was distilled from
a Na/K alloy under N2 and dichloromethane from CaH2. Both solvents were degassed through
freeze-pump-thaw cycles. SiO2-700 was prepared from Aerosil silica from Degussa (Frankfurt,
Germany) (specific area of 200 m2/g), which were partly dehydroxylated at 700 ◦C under high
vacuum (<10−5 mbar) for 24 h to give a white solid, having a specific surface area of 190 m2/g and
containing around 0.5–0.7 OH/nm2. W(CH3)6 (Figures S1–S3) and supported pre-catalyst 1 were
prepared according to literature procedures (Figure S4) [25–27]. 2,5-hexanedione, hexylbromide,
hexylamine, propylamine, allylamine, carbazole, C2-C13-alkylbromides, and 1,10-dibromodecane were
purchased from Aldrich.

NMR spectra were recorded on Bruker Avance III 500 MHz NMR spectrometer (Bruker Biospin
AG, Fallanden, Switzerland) equipped with a BBFO CryoProbe (Bruker). IR spectra were recorded
on a Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) by using a
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DRIFT cell equipped with CaF2 windows (Figure S4). The IR samples were prepared under argon
within a glove box. Typically, 64 scans were accumulated for each spectrum (resolution 4 cm−1). GC
measurements were performed with an Agilent 7890A Series (FID detection; Santa Clara, CA, USA).
Method for GC analyses: Column HP-5; 30 m length × 0.32 mm ID × 0.25 µm film thickness; flow rate,
1 mL/min (N2); split ratio, 50/1; inlet temperature, 250 ◦C, detector temperature, 250 ◦C; temperature
program, 40 ◦C (3 min), 40–250 ◦C (12 ◦C/min), 250 ◦C (3 min), 250–300 ◦C (10 ◦C/min), 300 ◦C
(3 min); 9-hexyl-9H-carbazole retention time, tR = 21.67 min. GC-MS measurements were performed
with an Agilent 7890A Series coupled with an Agilent 5975C Series. A GC-MS, equipped with a
capillary column coated with none polar stationary phase HP-5MS, was used for molecular weight
determination and identification, which allowed the separation of chemical compounds according to
their boiling point differences. Method for GC-MS analyses: Column HP-5MS; 30 m length × 0.25 mm
ID × 0.25 µm film thickness; flow rate, 1 mL/min (N2); split ratio, 100/1; inlet temperature, 220 ◦C,
detector temperature, 300 ◦C; temperature program, 150 ◦C (0 min), 150–300 ◦C (20 ◦C/min), 300 ◦C
(30 min).

HPLC-MS analysis was performed at Core Lab ACL KAUST. The separation of the
1,10-di(9H-carbazole-9yl-)decane from the metathesis reaction mixture was performed using an Accela
HPLC System and a hypersil gold 2.1 × 50 mm (Thermo Fisher Scientific, Waltham, MA, USA). 1 mg
of the sample was dissolved in 1 mL (methanol:chloroform), the liquid compound was then diluted
×1000 in 1 mL of methanol. The separation was achieved using a gradient composed of water and
methanol. The mobile phase solvents were composed of (a) 100% water plus 0.1% formic acid, and
(b) 100% methanol plus 0.1% formic acid. The gradient elution program is summarized in Table S1.
The injection volume was 10 µL. The flow rate was 400 µL/min. The data processing was performed
using Xclaibur Software (Thermo Fisher Scientific). The mass analysis was performed using a Thermo
LTQ Velos Orbitrap mass spectrometer (Thermo Scientific, Pittsburgh, PA, USA) equipped with a
heated electron spray ionization (ESI) ion source. The mass scan range was set to 100–1000 m/z, with
a resolving power of 100,000. The m/z calibration of the LTQ-Orbitrap analyzer was performed in
the positive ESI mode, using a solution containing caffeine, MRFA (met-arg-phe-ala) peptide, and
Ultramark 1621 according to the manufacturer’s guidelines. The ESI was performed with a heated
ion source equipped with a metal needle and operated at 4 kV. The source vaporizer temperature was
adjusted to 350 ◦C, the capillary temperature was set at 250 ◦C, and the sheath and auxiliary gases
were optimized and set to 40 and 20 arbitrary units.

4.2. Synthesis of N-Hexyl-Pyrrole

N-Hexyl-pyrrole was synthesized according to literature procedure [17,18].

4.3. Synthesis of N-Hexyl-2,5-Dimethyl-Pyrrole 2, N-Propyl-2,5-Dimethyl-Pyrrole 3 and
N-Allyl-2,5-Dimethyl-Pyrrole 4

Compounds 2, 3, 4 were synthesized according to the Paal-Knorr method of pyrrole synthesis
(Scheme 3).
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2,5-hexanedione (10 mmol) was dissolved in MeOH (50 mL) and the respective primary amine
(10 mmol) was added at room temperature (RT). The reaction was slightly exothermic and the cooling
by ice bath was recommended when higher quantities were used for reaction. Reaction mixture
(RM) was stirred for 10 min at RT and evaporated in vacuum. Hexane was added to the RM and
the water phase separated from the organic phase. The organic phase was dried over MgSO4,
filtered, and evaporated to dryness. The product was purified by flash-column chromatography
(Hexane:EtOAc = 4:1), distilled over sodium in vacuum, and degassed prior to use. The reference
N-Alkyl-2,5-Dimethyl-pyrroles (C2–C9) were synthesized with the same procedure and used as
standards in GC-MS analysis. Yields were in range 60–70%.

N-Hexyl-2,5-Dimethyl-pyrrole 2. 1H NMR (C6D6), δ, ppm (J, Hz): 6.04 (2H, s, CH Ar), 3.35–3.32 (2H, t,
J = 7.2, N-CH2), 2.09 (6H, s, 2 × Ar CH3), 1.36–1.30 (2H, m, CH2), 1.18–1.14 (2H, m, CH2), 1.07–1.04
(4H, m, 2 × CH2), 0.85–0.82 (3H, t, J = 7.2, CH3). 13C NMR (C6D6): 126.7, 106.2, 43.5, 31.8, 31.4, 26.8,
22.9, 14.2, 12.7.

N-Propyl-2,5-Dimethyl-pyrrole 3. 1H NMR (C6D6), δ, ppm (J, Hz): 6.02 (2H, s, CH Ar), 3.27–3.24 (2H, t,
J = 7.5, N-CH2), 2.05 (6H, s, 2 × Ar CH3), 1.34–1.27 (2H, m, J = 7.4, CH2), 0.63–0.60 (3H, t, J = 7.3, CH3).
13C NMR (C6D6): 126.8, 106.1, 44.9, 24.5, 12.7, 11.2.

N-Allyl-2,5-Dimethyl-pyrrole 4. 1H NMR (C6D6), δ, ppm (J, Hz): 6.03 (2H, s, CH Ar), 5.50–5.43 (1H, m,
CH Allyl), 4.85–4.82 (1H, dd, 1J = 10.3, 2J = 1.8 Hz), 4.57–4.53 (1H, dd, 1J = 10.3, 2J = 1.8 Hz), 3.82–3.80
(2H, m, CH2), 2.01 (6H, s, 2 × CH3). 13C NMR (C6D6): 134.8, 127.1, 114.9, 106.1, 45.2, 12.3.

4.4. 1,4-Bis(2,5-Dimethyl-1-H-Pyrrole-1yl)But-2-Ene

1,4-bis(2,5-dimethyl-1-H-pyrrole-1yl)but-2-ene was separated from N-Allyl-2,5-Dimethyl-pyrrole
metathesis reaction mixture as a white solid and characterized by NMR (Figures S11 and S12).

1H NMR (C6D6), δ, ppm (J, Hz): 6.04 (4H, s, CH Ar), 4.70–4.69 (2H, t, J = 1.2 Hz, 2 × CH), 3.59
(4H, d, J = 1 Hz, 2 × CH2), 1.95 (12H, s, CH3). 13C NMR (C6D6): 127.0, 126.9, 106.1, 43.8, 12.3.

4.5. Synthesis of 9-Hexyl-9H-Carbazole 6

9-Hexyl-9H-carbazole 6 was synthesized according to the literature method with a modification [24].
Procedure: carbazole (37 mmol) was dissolved in DMF (85 mL) under argon, potassium

hydroxide (232 mmol) was added to a solution, and the mixture was stirred for 40 min at RT.
Hexylbromide (37 mmol) was added dropwise and the RM was stirred for an additional 9 h at RT.
After that, RM was poured into water (100 mL). In order to extract the product from the DMF/water
mixture, 100 mL of n-hexane and 100 mL of EtOAc were added. The resulting four-component
(DMF/water/hexane/EtOAc) mixture was intensively shacked in the separation funnel. The upper
organic phase was separated and washed with water (2 × 50 mL). The lower DMF/water phase was
additionally extracted by a mixture of hexane (100 mL) and EtOAc (100 mL), and the organic phase
was washed with water (2 × 50 mL). The combined organic phase (pure from DMF) was dried over
Na2SO4 and evaporated in vacuum. The product was purified by column chromatography (petroleum
ether:DCM = 3:1), recrystallized from hexane (−30 ◦C) and dried on high-vacuum line HVL. Yield:
86%, white needle-like crystals. NMR spectra were in accordance with the literature data (Figures S13
and S14).

1H NMR (C6D6), δ, ppm (J, Hz): 8.08 (2H, d, J = 7.8 Hz, H Ar), 7.44–7.40 (2H, m, H Ar), 7.25–7.22
(2H, m, H Ar), 7.20–7.18 (2H, m, H Ar), 3.79 (2H, t, J = 7.2 Hz, CH2), 1.51–1.48 (2H, m, CH2), 1.08–1.02
(6H, m, 3 × CH2), 0.79–0.76 (3H, t, J = 7 Hz, CH3). 13C NMR (C6D6): 140.9, 125.9, 123.5, 120.8, 119.2,
109.0, 42.9, 31.8, 29.0, 27.1, 22.8, 14.2.
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4.6. Synthesis of 9-Hexyl-9H-Carbazole Metathesis Products

The metathesis products (N-Alkyl-carbazoles, C2–C13) were additionally prepared as reference
compounds, according to the procedure from Section 4.5. and used for GC-MS analysis without further
purification. The retention time and fragmentation of the reference compounds exactly matched the
products from the 9-Hexyl-9H-carbazole metathesis reaction, proving their linear structure. Retention
times for N-alkylated carbazoles: C2 4.73 min, C3 5.11 min, C4 5.55 min, C5 5.98 min, C6 (starting
material) 6.51 min, C7 6.87 min, C8 7.27 min, C9 7.67 min, C10 8.13 min, C11 8.63 min, C12 9.20 min, and
C13 9.86 min.

4.7. 1,10-Di-(9H-Carbazole-9yl-)-Decane (C34H37N2)

1,10-di-(9H-carbazole-9yl-)-decane was synthesized as a reference compound, according to the
procedure from Section 4.5., with 1,10-dibromodecane as an alkylation agent, and used for HPLC-MS
analysis of the reaction mixture (Figures S15–S17).

1H NMR (C6D6), δ, ppm (J, Hz): 8.07 (4H, d, J = 7.7, H Ar), 7.43–7.40 (4H, m, H Ar), 7.24–7.19 (8H,
m, H Ar), 3.81 (4H, t, J = 7, 2 × N-CH2), 1.54–1.48 (4H, m, 2 × CH2), 1.05–0.95 (12H, m, 6 × CH2). 13C
NMR (C6D6): 140.9, 125.9, 123.5, 120.9, 119.3, 109.0, 42.9, 29.6, 29.1, 27.4.

Theoretically predicted isotopic distribution of C34H37N2: 473.29513, 474.29848, 475.30184 (δ =
0 ppm). Experimentally found isotopic distribution of the reference compound: 473.29497, 474.29824,
475.30157 (δ = −0.335 ppm). Experimentally-found isotopic distribution of the dimer found in the
reaction mixture: 473.29506, 474.29837, 475.30188 (δ = −0.147 ppm).

4.8. Catalytic Reactions

9-Hexyl-9H-carbazole 6 (200 mg, 0.8 mmol) and [(≡Si-O-)W(CH3)5] 1 (100 mg, 0.016 mmol W)
were mixed in the ampule tube in the glove box; the ampule tube was connected to a high-vacuum
line and sealed in a vacuum. The ampule was then heated at 150 ◦C with stirring (50 rpm). Quenching:
the ampule was cooled down in liquid nitrogen, opened, 1 mL of DCM was added, the mixture was
filtered through a syringe filter (1 µm), and the sample was analyzed by GC.

1-Hexyl-2,5-Dimethyl-1H-pyrrole 2, 1-Propyl-2,5-Dimethyl-1H-pyrrole 3, and 1-Allyl-2,5-
Dimethyl-1H-pyrrole 4 were analyzed with the same procedure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/3/238/s1,
Table S1: Gradient elution program, Figure S1: 1H NMR spectrum of WMe6 in CD2Cl2 at 203 K, Figure S2: 13C
NMR spectrum of WMe6 in CD2Cl2 at 203 K, Figure S3: 2D solution 1H-13C Heteronuclear Single Quantum
Correlation (HSQC) NMR spectrum of WMe6 in CD2Cl2 at 203 K, Figure S4: FT-IR spectroscopy of silica
partially dehydroxylated at 700 oC (SiO2–700) (blue curve) and W(CH3)6 grafted on SiO2–700 (1) (orange curve),
Figure S5: 1H NMR spectrum of N-Hexyl-2,5-Dimethyl-pyrrole 2 in C6D6, Figure S6: 13C NMR spectrum
of N-Hexyl-2,5-Dimethyl-pyrrole 2 in C6D6, Figure S7: 1H NMR spectrum of N-Propyl-2,5-Dimethyl-pyrrole
3 in C6D6, Figure S8: 13C NMR spectrum of N-Propyl-2,5-Dimethyl-pyrrole 3 in C6D6, Scheme S1: No
functionalized alkane metathesis product was observed using substrate 2 and 3, Figure S9: 1H NMR spectrum
of N-Allyl-2,5-Dimethyl-pyrrole 4 in C6D6, Figure S10: 13C NMR spectrum of N-Allyl-2,5-Dimethyl-pyrrole
4 in C6D6, Figure S11: 1H NMR spectrum of 1,4-bis(2,5-dimethyl 1-H-pyrrole-1yl)but-2-ene in C6D6, Figure
S12: 13C NMR spectrum of 1,4-bis(2,5-dimethyl 1-H-pyrrole-1yl)but-2-ene in C6D6, Figure S13: 1H NMR
spectrum of 9-Hexyl-9H-carbazole in C6D6, Figure S14: 13C NMR spectrum of 9-Hexyl-9H-carbazole
in C6D6, Figure S15: 1H NMR spectrum of 1,10-di(9H-carbazole-9yl-)decane in C6D6, Figure S16: 13C
NMR spectrum of 1,10-di(9H-Carbazole-9yl-)decane in C6D6, Figure S17: Comparison of the reference
1,10-di-(9H-carbazole-9yl-)-decane (C34H37N2) with the dimer found in 9-Hexyl-9H-carbazole metathesis
reaction mixture.
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