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Abstract: The photocatalytic activity of sepiolite was examined for degradation of several dye
compounds under visible light irradiation. Higher adsorption capacities and greater photocatalytic
performance of cationic dyes (rhodamine B and methylene blue) were observed on sepiolite, in
comparison with anionic dyes (orange II and trypan blue). Superiority in the photocatalytic activity
of cationic dyes is attributed to the strong electrostatic attraction and photosensitization properties
of cationic dye molecules. Sepiolite has degraded 45.3% rhodamine B within 120 min, which is the
greatest photocatalytic degradation efficiency when compared with other dyes. Subsequently, the
reusability of spent sepiolite after adsorption of rhodamine B was evaluated by the degradation
of trypan blue under the visible light irradiation. The photocatalytic degradation performance of
trypan blue by spent sepiolite after adsorption of rhodamine B increased about twice as much as
with pristine sepiolite, indicating that the dye-sensitized photocatalytic process could enhance the
photocatalytic degradation ability of sepiolite. Through radical scavenger tests, it was found that
a superoxide radical is mainly responsible for rhodamine B degradation. The possible mechanism
of rhodamine B degradation under visible light irradiation was proposed. The sepiolite could be a
potential catalyst for the degradation of organic pollutants in wastewater under solar light.
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1. Introduction

Naturally abundant 2:1 type of clay minerals, representatively smectite, have been extensively
used as support materials for semiconductors or other photocatalysts due to its natural abundant
availability and characteristics features, such as, fibrous or layered morphology, large specific surface
areas, superior cation exchange capacity, negative surface charge, and a hydroxyl group rooted at the
bottom in the octahedral sheet [1–5]. Comprehensively, all these natural properties can be utilized for
several types of organic and inorganic types of modifications which are benefited to the development
of clay-based photocatalyst [6,7]. In recent years, natural sepiolite, belonging to the 2:1 type of clay
minerals, has gained great interest in different fields of application, including the development of
photocatalyst [8–10]. Sepiolite is a hydrous magnesium silicate that is widespread due to its unusual
fibrous morphology and intracrystalline tunnels [11,12]. The ideal chemical formula is expressed as
Si12Mg8O30(OH)4·12H2O for the half-unit cell. In the structure of sepiolite, there is an alternation
of blocks and tunnels around 200 Å in pore size that grows up in the direction of fibers belonging
to a chain type of clay mineral [13]. Each structural block is composed of a central octahedral sheet
containing magnesium sandwiched by two tetrahedral silicate sheets. The structure of sepiolite
results in zeolite-like channels [14]. The peculiar pore structure with interior channels contributes to
voluminously adsorb cationic organic molecules and ions. In addition, these channels might contain
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zeolitic water and exchangeable metal ions. The structural and textural physicochemical properties of
sepiolite offer its exclusive role compared to other clay materials.

So far, sepiolite has been considered as an effective hole transporter between known
semiconductor materials and degrading targets in the photocatalytic reaction to decompose organic
pollutants, including organic dyes and pharmaceutical wastes. Many TiO2-based composites have
been developed to improve photodegradation using a sepiolite matrix: ternary heterogeneous
BiOCl/TiO2/sepiolite composite for tetracycline degradation [15], sepiolite-TiO2 nanocomposites
for the orange G dye degradation [16], TiO2/sepiolite composites for the degradation of acid red G
and 4-nitrophenol [17], and TiO2/sepiolite composites to decompose phenol [18]. Composites with
other metallic oxides and hydroxides have been also synthesized for photodegradation of organic
dye compounds: Sepiolite@LDH composite for simultaneous photocatalytic degradation of methyl
orange (MO) and methylene blue (MB) dye [19], ternary ZnO/Fe3O4-sepiolite nanostructured material
for MB dye degradation [20,21], and quantum-sized ZnO particles on sepiolite for the degradation
of reactive blue 4 [22]. So far, from the above reports, sepiolite has been generally utilized as an
efficient supporting material for well-known semiconductors and other types of photocatalytically
active species under UV light irradiation.

Fibrous morphologies of sepiolite offer the rigid and active surfaces for the adsorption of
cationic dye molecules through electrostatic interaction or complexation. Successful adsorption of
dye molecules on clay surfaces is indispensably the first step for photocatalytic reactions [23–25].
Siloxane bonds are existing at the edge of the outer surface, and broken and terminated Si–O,
and Mg–O bonds are on lateral surfaces of sepiolite. Since these unprotected metallic ions at the
edges are electron-deficient, they are expected to act as natural electron acceptors. The adsorbed
cationic dye species, which are electro-statistically bound with the broken bond surface, should be
responsible for the generation of dye radical species. It is predictable that the formed dye radicals
can react with active oxygen species present within the system, which may lead to a disintegration
of the dyes [26]. In addition, it is well-known that the highly polar surface of the clay material is
advantageous to stabilize the generated radical species, which prolongs lifetime and ultimately causes
better photocatalytic performance [6].

As aforementioned, sepiolite was utilized as supporting material for well-known photocatalysts
(TiO2, BiOCl, ZnO, etc.). As per our knowledge, there was no report available on the dye-sensitization
of natural sepiolite. In this work, we tried to fulfill the understanding of natural sepiolite as a
dye-sensitized photocatalyst for dyes degradation. The observed phenomenon was proved by several
physiochemical and photocatalytic experimental studies in the presence of different dyes with various
size and charges, e.g., anionic or cation colorants organic pollutants. One of the important findings in
the present work was that natural sepiolite material without any modification could be utilized for the
photocatalytic degradation of organic dye via the dye-sensitization mechanism.

The detail objectives in the present study were to investigate the visible light-driven photocatalytic
degradation performance of the natural, pristine sepiolite for cationic (rhodamine B (RhB) and MB
and anionic (orange II (OII) and trypan blue (TB)) dyes and to propose the mechanism based on the
experimental results.

2. Results and Discussion

2.1. Characterizations

As received, the sepiolite was confirmed by several characterization techniques, including XRD,
FTIR, TEM, XRF, specific surface area measurement, and XPS analysis. As shown in Figure 1a, the
specimen had an apparently single phase of sepiolite in the XRD pattern (Joint Committee on Powder
Diffraction Standards (JCPDS) 13-0595). There were trace amounts of impurities of Ti, Fe, and Al,
confirmed by XRF (Table 1). The purity as sepiolite (Si12Mg8O30(OH)4) could be estimated to 89.9%,
based on Mg content. The XRD results showed several reflections, such as the strong diffraction peaks,
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for pure sepiolite observed around d-spacing value 1.2 nm at 2θ = 7.3◦ (110), which represent the
characteristics interlayer distance reflection for sepiolite clay. And another characteristics reflection
peaks for the pure phases of sepiolite clay was observed at 0.75 nm.at 2θ 11.83◦ (130), 0.66 nm at
2θ 13.12◦, (040), 0.45 nm.at 2θ 19.71◦ (060), 0.43 nm.at 2θ 20.66◦ (031), 0.375 nm.at 2θ 23.74◦ (221),
0.334 nm.at 2θ 26.71◦ (400), and 0.25 nm.at 2θ 35.01◦ (191), which confirmed the presence of pure
phases of sepiolite [27].

Figure 1. (a) PXRD patterns and (b) FTIR spectra of sepiolite and the spent sepiolite after photocatalytic
degradation in various organic dye compounds.

Table 1. The elemental compositions of sepiolite in wt.%.

Component C N O F Na Mg Al Si P S

wt.% 6.817 0.339 53.459 0.864 0.047 13.182 1.087 23.235 0.007 0.011

Component Cl K Ca Ti Mn Fe Cu Zn Zr Ba

wt.% 0.017 0.435 0.135 0.054 0.011 0.265 0.002 0.009 0.001 0.019

The FTIR spectrum of the pristine sepiolite clay mineral was observed in Figure 1b similarly to that
reported in the literature for 2:1 smectite clay minerals by a slight variation in the frequencies [28,29].
The bands observed in the range of 3000 and 3800 cm−1 were assigned to the stretching vibration
mode of the hydroxyl groups in Mg–OH. The peak centered at 3625 cm−1, attributed to OH stretching
mode. The absorption bands centered at about 3423 and 3251 cm−1 corresponded to the vibration
mode of physisorbed water (surface and zeolitic); a band at 1673 cm−1 due to the bending mode of
zeolitic water; bands in the 1200–400 cm−1 range characteristic of silicate; bands centered at 1014 and
462 cm−1 due to stretching in the vibration mode of Si–O–Si groups in the tetrahedral sheet; bands at
1217 and 975 cm−1 due to Si–O bonds; and bands at 690 and 639 cm−1 corresponding to the vibration
mode of Mg–OH bond [29].

TEM images for the pristine sepiolite showed straightly fibrous shapes with several hundred
nm to 1 µm in length and 50–60 nm in width (Figure 2). It was clear that the crystal was developed
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in a one-dimensional direction [30]. The nitrogen sorption isotherm plot is presented in Figure 3a.
The isotherms represented type IV isotherm nature, with a narrow H3-type of hysteresis loop, according
to the International Union of Pure and Applied Chemistry (IUPAC) classification [31,32]. The H3 type of
hysteresis loop is characteristic of the pore channels in the layers of smectite clay minerals [29,33,34]. A
comparative pressure range from 0.7 to 1.0 would indicate that a crack-type mesoporous structure exists
in pristine sepiolite [35]. Additionally, the isotherm was unsaturated near to 1.0 relative pressure (P/P0).
The Barrett, Joyner, and Halenda method (BJH) pore size distribution plot is presented in Figure 3b,
suggesting that pore structure in the sepiolite was an irregular type. The Brunauer–Emmett–Teller
(BET) specific surface area of pristine sepiolite was observed around 230 m2/g and the total pore
volume of 0.686 cm3/g was determined by BET method.

Figure 2. TEM images of sepiolite. (a) Bright-field and (b) dark-field; scale bars indicate 500 nm.

Figure 3. (a) Nitrogen adsorption-desorption isotherm and (b) BJH pore size distribution for sepiolite.

The XPS measurements were carried out to elucidate the elemental compositions and electronic
properties of sepiolite. In Figure 4a, the survey spectrum for the pristine sepiolite shows the
predominant peaks assigned to Si 2p, O 1s, and Mg 2p orbitals and a small peak assigned to Al
2p. The valence band (VB) energy can be estimated to around 2.81 eV by drawing the straight tangent
line to the VB spectrum of the sepiolite as shown in Figure 4b [36,37].
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Figure 4. XPS spectrum of sepiolite. (a) Survey scan and (b) valence band (VB) energy region.

Figure 5a shows the UV-Vis diffuse reflectance spectrum (UV-DRS) of sepiolite. It was observed
that the absorption of sepiolite had photo-responses from the UV to the visible light region. In addition,
sepiolite has shown a light absorption predominantly around 300–350 nm, indicating that sepiolite can
be excited under the ultraviolet light irradiation. The optical band gap energy (Eg) of a semiconductor
photocatalyst can be evaluated by using the Kubelka–Munk equation [38]:

αhν = A (hν − Eg)n/2 (1)

where α, h, ν, Eg, and A are the absorption coefficient, Planck constant, light frequency, band gap
energy, and the proportionality constant, respectively. In addition, n is dependent on the type of optical
transition of semiconductor (n = 1 for direct transition and n = 4 for indirect transition). The band gap
energy value was calculated by the linear part of the (αhν)2 versus energy (Eg) plot. Based on the
UV-DRS results, the band gap energy of sepiolite could be estimated to be 3.7 eV through the Tauc plot
(Figure 5b). Therefore, the conduction band energy (CB) of sepiolite could be calculated to be −0.89 eV.

Figure 5. UV-Vis spectrum of sepiolite. (a) Diffuse reflectance spectrum (DRS) spectrum and (b)
Tauc plot.

2.2. Photocatalytic Activity for Organic Dye Degradation

Organic dyes, MB, RhB, OII, and TB were used as models of organic pollutants to estimate the
photocatalytic performance of sepiolite under the visible light irradiation. The adsorption capacity
of each organic dye compound on sepiolite was determined under the dark condition without the
visible light irradiation. Figure 6a displays the removal efficiency results of organic dyes by sepiolite
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under the dark (dotted lines) and visible light (solid lines) irradiation. In dark control, the sepiolite
showed a higher adsorption capacity of cationic dyes, MB and RhB, than anionic dyes, OII and
TB. It could be explained by electrostatic interaction of the cationic dyes with sepiolite, which is
negatively charged so that the cationic dye molecules are strongly attracted through ion exchange
with mainly K+ [3,4,39]. However, the adsorption density was saturated within 30 min under the dark
condition. Prior to photocatalytic reaction under the visible light, the suspension of sepiolite particles
was well-dispersed by stirring under dark for 30 min in order to achieve the adsorption–desorption
equilibrium. Immediately after the visible light was irradiated, sepiolite particles exhibited the
photocatalytic degradation of cationic dyes in contrast to anionic dye molecules.

Figure 6. (a) Adsorption and photocatalytic degradation of various organic dyes over sepiolite as
a function of time; (b) removal efficiency of various organic dyes over sepiolite after 120 min; (c)
pseudo-first-order kinetic plot of various organic dyes over sepiolite; and (d) time-dependent changes
in UV-Vis spectra of rhodamine B (RhB) in suspension of sepiolite under the visible light irradiation.

Figure 6b summarized the final organic dye removal (%) after 120 min of irradiation time under
the visible light. The highest removal efficiency of MB was observed with 83.3%, in which 61.5%
was from adsorption and 21.7% was from photocatalytic degradation. The reason why RhB was less
adsorbed on sepiolite despite the same charge as MB would be the larger molecular size of RhB than
MB and the higher electron density localized in S of MB than N of RhB (Figure S1). Regarding of
photocatalytic degradation, RhB was the most effectively photocatalytically-degraded, with 45.3%.
The lower photocatalytic performance of MB than RhB was caused by the shielding effect from
supernumerary adsorbed dye molecules, which may have changed the rate of production of active
species (e.g., •O2

−). Negligibly trace degradation was observed with anionic dyes (OII and TB),
indicating photodegradation of dyes hardly happens without adsorption.
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To evaluate the kinetics of organic dye degradation over sepiolite, the degradation results after
the visible light irradiation were fitted to pseudo-first-order equation (Equation (2)):

−ln(C/C0) = kt (2)

where C0 is the initial concentration of organic dye, C is the remaining concentration of organic dye at
time t (min), and k is the pseudo-first-order rate constant (min−1) [40–42]. The plots of reaction time
(t) versus −ln(C/C0) provided a linear line, suggesting that the organic dye degradations were well
fitted to the pseudo-first-order kinetic model, as shown in Figure 6c (R2 = 0.9938 and 0.9956 for MB-V
and RhB-V). In addition, it could be seen that the degradation rate constants under the visible light
irradiation were greater than those under the dark conditions about 45 and 6 times in case of RhB
and MB, respectively, indicating a synergetic effect of cationic dye and sepiolite under visible light
irradiation. Moreover, the synergistic effect was more excellent for the degradation of RhB than MB
over sepiolite.

By focusing on the photocatalytic degradation of RhB on sepiolite, time-dependent UV-Vis
absorption spectra were observed (Figure 6d). After photocatalytic degradation of RhB on sepiolite
happened, the adsorption intensity clearly decreased around 554 nm, and the absorption peak position
of RhB had shifted to the lower wavenumbers, indicating that the degradation of ethyl groups in RhB
occurred during the photocatalytic degradation [37,43–45]. Moreover, the decomposition of RhB was
monitored over time by HPLC, as shown in Figure 7. The peak at 18.5 min of retention time was
assigned to RhB, and the peak intensity relatively decreased over time. A distinctive new peak at 14.6
min of retention time was observed within 30 min after photocatalytic degradation, and its intensity
increased relatively with time. The other tiny peaks around 8.9 min and 11.8 min of the retention time
were gradually observed over time. Appearance of the new peaks in HPLC was in accordance with
the degradation of RhB, which could be confirmed by the determination of the remaining RhB by
UV-Vis spectrometry (Figure 6a) and the wavenumber-shift of an absorption peak in UV-Vis spectrum
(Figure 6d). In the previous reports, N-deethylated byproducts (N,N-diethyl-N’-ethylrhodamine,
N,N-diethylrhodamine, and N-ethylrhodamine) were confirmed as byproducts in photocatalytic
degradation of RhB using LC–MS [46–48], suggesting decomposition of ethyl groups from xanthene
rings in the molecular structure of RhB.

After 120 min-photoreaction, XRD patterns and FTIR spectra for the solid resides were collected
in the same manner as the pristine sepiolite (Figure 1). XRD patterns were mostly identical with the
pristine sepiolite. In FTIR for the solid resides after reaction with MB, there were additional peaks in a
region of 1300 to 1600 cm−1, which were assigned to the aromatic ring structure in MB molecule, and
the peaks at 1500 cm−1 were attributed to C=N stretching vibration mode (Figure S1). It was consistent
with the largest amounts of MB, which were adsorbed on sepiolite (Figure 6b). In other FTIR spectra,
there were no significant changes. These results supported that the photocatalytic reaction happened
without any degradation of sepiolite.

The previous reports regarding of photocatalytic degradation of organic dyes using composites,
including sepiolite, were summarized in Table 2 to compare with the present work. From the
comparative results of dye degradation, we could clearly signify our research work from the reported
results. In the previous reports, sepiolite was utilized as supporting material for known photocatalysts,
such as TiO2, and showed ~80% RhB dye degradation, whereas we observed that pristine sepiolite
material could show comparable degradation efficiency under visible light irradiation. We believe that
the present finding might be useful for detailed understanding in the upcoming research scope of the
sepiolite-based photocatalyst materials for organic dye degradation.
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Figure 7. Time-dependent changes in HPLC spectra of RhB and degradation products on sepiolite
under the visible light irradiation.

Table 2. Comparison of photocatalytic efficiency of sepiolite composites with other reported
photocatalysts for organic dye degradation.

Catalyst Active
Compound Target C0 (mol/L) Loading

(g/L)
Efficacy

(%)
Time
(min) Ref.

Bi2O3/sepiolite Bi2O3
Malachite

green 14 × 10−5 0.5 98.2 180 [49]

Sepiolite-TiO2 TiO2 Orange G 2.2 × 10−5 0.8 97.8 150 [50]

Sepiolite/Cu2O/Cu Cu2O/Cu Congo red 1.4 × 10−5 0.2 95.1 50 [51]

Eu-TiO2/sepiolite Eu-TiO2 Orange G 2.2 × 10−5 0.8 ~70 600 [52]

ZnCr
LDH/Sepiolite ZnCr LDH MB 3.1 × 10−5 1.25 93.1 120 [19]

Sepiolite –TiO2 TiO2 RhB 8.3 × 10−5 0.85 ~80 120 [53]

Sepiolite Adsorbed MB
on sepiolite MB 2.0 × 10−5 0.25 83.3 120 This

work

Sepiolite Adsorbed RhB
on sepiolite RhB 2.0 × 10−5 0.25 65.5 120 This

work

2.3. Radical Scavenger Test

In order to elucidate the role of responsible reactive species for RhB degradation, several scavenger
reagents were tested, as shown in Figure 8, where isopropyl alcohol (IPA), benzoquinone (BQ), and
potassium iodide (KI) were used as the scavenger reagents for h+, •O2

−, and •OH, respectively [54–57].
The photocatalytic degradation efficiency of RhB significantly decreased after trapping •O2

− by BQ,
but the presence of KI and IPA had shown negligibly small decreases in RhB degradation efficiency,
indicating that •O2

− was dominantly responsible for the photocatalytic degradation of RhB, but the h+

and •OH did not play an important role in the degradation of RhB over sepiolite under the visible
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light irradiation. These results implied that •O2
− was the main oxidant species in the photocatalytic

degradation of RhB.

Figure 8. Photocatalytic degradation of RhB over sepiolite in the presence of different radical scavengers.
IPA: isopropyl alcohol; BQ: benzoquinone; and KI: potassium iodide.

2.4. Stability Test

One of the important factors of photocatalyst material is stability. The photocatalytic stability
of sepiolite for RhB degradation under visible light irradiation was examined by the recycling test
three times. From the observed results in Figure 9, it could be seen that the photocatalytic efficiency of
sepiolite for RhB degradation still maintained for three cycles, suggesting the sepiolite showed high
stability for photocatalytic degradation of organic dye.

Figure 9. Recycling test in the photocatalytic degradation of 2 × 10−5 M RhB over sepiolite (catalyst
loading = 0.25 g/L) under visible light irradiation.

Moreover, the reusability of spent sepiolite after adsorption of RhB for 30 min in dark condition
without any pretreatment was examined by applying to photocatalytic degradation of an anionic
dye, TB, under the visible light irradiation. TB can be utilized for staining of cells in cytotoxicity
measurements due to the negative charge of TB. The removal efficiency of TB after 2 h was displayed
in Figure 10. Little adsorption capacity (~1%) of TB was observed on sepiolite and spent RhB–sepiolite
under the dark condition. However, after the visible light irradiation, the spent RhB–sepiolite
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shows greater than twice photocatalytic degradation than pristine sepiolite. This suggests that the
RhB adsorbed on the surface of sepiolite enhanced the photocatalytic degradation of TB through
photosensitization property of RhB–sepiolite. Based on the results, the sequential photodegradation of
cationic and anionic dye molecules are possible on sepiolite under the visible light to contribute to
green chemistry in dye-contaminated water treatment.

Figure 10. Removal efficiency of TB by sepiolite and spent RhB-sepiolite after adsorption of RhB under
the visible light irradiation. The initial concentrations of RhB and TB were 2 × 10−5 M.

2.5. Mechanism of Organic Dye Degradation over Sepiolite

The photosensitization of organic dye molecules is an important step for starting the photocatalytic
reaction because the dye molecule can provide the electron to sepiolite through the photo-irradiation
process [58–61]. In the case of RhB degradation over sepiolite under the visible light irradiation, the
electron in the pristine sepiolite could not be excited under the visible light due to the wide energy
band gap (Eg = 3.7 eV, Figure 5b). Firstly, cationic organic dye molecules (RhB) were adsorbed on
the surface of the sepiolite, and then the electrons of RhB were excited under the visible light to
generate the excited electrons. The electrons in the LUMO of RhB (ELUMO = −1.10 eV versus NHE)
were transferred to the CB of sepiolite (ECB = −0.89 eV) due to the more positive energy level of the
CB of sepiolite, compared with LUMO state of RhB [62]. The photo-excited electron on the CB of
sepiolite could reduce the dissolved O2 to •O2

− because the standard reduction potential of O2 to
•O2

− (E0(O2/•O2
−) = −0.046 eV versus NHE [63,64]) was more positive than the CB potential of

sepiolite. Then, the oxidation of RhB by •O2
− occurred to degrade RhB to smaller molecules. Based

on the above results, the mechanism for degradation of RhB over sepiolite under the visible light
irradiation could be proposed as follows:

RhB@sepiolite + hν→ RhB* (h+ + e−)@sepiolite, (3)

RhB* (h+ + e−)@sepiolite→ RhB* (h+)@sepiolite (e−), (4)

sepiolite (e−) + O2 → •O2
−, (5)

•O2
− + RhB→ degradation products. (6)

Aforesaid in Section 2.2, the obtained degradation results of anionic dyes (OII and TB) showed
less degradation efficiency by using sepiolite. This was explained due to the less adsorption behavior
of anionic dyes on the negative surface of sepiolite. This reconfirmed the role of adsorbed cationic dye,
which is influenced by the dye photosensitized degradation mechanism. For the confirmation of this
phenomena, the RhB adsorbed solid residual sepiolite from the dark conditions is further used for
the degradation of anionic dye (TB) and showed better photocatalyst efficiency than pristine sepiolite.
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Here adsorbed RhB residue showed similar dye-sensitized mechanistic approach (as explained in
Equations (3)–(5)) providing an electron to sepiolite and generated the •O2

− species responsible for
the degradation of TB as in Equation (7):

•O2
− + TB→ degradation products. (7)

According to the above sequence, photocatalytic degradation mechanisms of organic dye (both
cationic and anionic dyes) over sepiolite under the visible light irradiation, as illustrated in Scheme 1.
Consequently, the cooperative function through the combination of cationic organic dye molecules
with sepiolite through electrostatic interaction resulted in the improved photocatalytic degradation of
organic dye molecules. The electrostatic interaction of cationic organic dye (i.e., RhB) with sepiolite
was much more favorable than anionic dye (i.e., TB). Although anionic dye was less favorable for
adsorption on sepiolite, a small amount of adsorbed anionic dye would still have been involved in
photocatalytic degradation by •O2

− species on the surface of the sepiolite.

Scheme 1. Proposed mechanism of photocatalytic degradation RhB over sepiolite and TB over spent
sepiolite after adsorption of RhB under the visible light irradiation.

3. Materials and Methods

3.1. Materials and Reagents

Sepiolite (13% Mg, ≤ 10% loss on drying) was obtained from Sigma Aldrich Japan Co. Ltd
(Tokyo, Japan) with the color of grayish white. RhB (C28H31ClN2O3, 97% dye content, RhB) was also
obtained from Sigma Aldrich Japan. MB (C16H18N3SCl· 3H2O, MB) was purchased from Waldeck
GmbH & Co. KG (Münster, Germany). Orange II (C16H11N2NaO4S, OII) and TB (C34H28N6O14S4, TB)
were purchased from Wako Chemicals (Osaka, Japan). The chemicals were directly utilized without
further purification. Ultrapure water was used in the preparation of the organic dye solutions and
their experiments.

3.2. Characterization

The crystal phases of the original and spent sepiolite after photocatalytic reactions were
characterized by powder X-ray diffraction (PXRD) on Ultima IV diffractometer (Rigaku, Akshima,
Japan), using Cu Kα radiation with 40 kV acceleration voltage and 40 mA applied current at a 2◦/min
scanning speed and 0.02◦ step size. The elemental compositions of sepiolite were determined by X-ray
fluorescence (XRF) spectroscopy Rigaku ZSX Primus II in the wavelength dispersive mode (Akishima,
Japan). The functional groups of pristine sepiolite and spent sepiolite after the photocatalytic reaction
were characterized by FTIR on Jasco FTIR-670 Plus (Tokyo, Japan). TEM images of the solid products
were observed on a transmission electron microscope (JEM-2100HCKM, JEOL (Akishima, Japan).
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The X-ray photoelectron spectrum (XPS) for the original sepiolite was collected on an ESCA 5800
(ULVAC-PHI, Inc. Kanagawa, Japan) using a monochromated Al Kα X-ray source at 200 W. The data
analysis was performed by Casa XPS software (version 2.3.12.8). Binding energy was calibrated using
EB(C 1s) = 284.6 eV assigned to the contamination peak derived from vacuum oil in the apparatus.
To estimate the band gap energy (Eg) of sepiolite, UV-Vis/DRS was applied using a Shimadzu
UV-2450 spectrophotometer equipped with ISR-2200 integrating sphere attachment (Kyoto, Japan).
The degradation products were determined on a Jasco LC-netII/ADC HPLC system PU-2089 plus
pump, C0-2065 plus column oven, and UV-2075 plus detector equipped with a C18 column (K009450,
Shodex, Japan). The mobile phase was prepared by mixing deionized water and methanol with the
volumetric ratio of 3:7. The specific surface area (SSA) and pore size distribution of sepiolite were
determined by Japan BEL-Max, BEL (Osaka, Japan).

3.3. Photocatalytic Activity

Photocatalytic performances were evaluated toward the photocatalytic degradation of various
organic dyes under the visible light (λ > 400 nm) irradiation (Scheme 2). Typically, 50 mg of
sepiolite powder was magnetically stirred in 50 mL of 2 × 10−5 M organic dye aqueous solution
in the dark condition for 30 min to reach the adsorption-desorption equilibrium. The suspensions
were then irradiated using a 500 W Xe lamp with a cut-off filter. During the light illumination,
solutions were collected and filtrated by 0.45 µm membrane filters to remove the suspended particles.
The concentrations of the remaining organic dyes of MB, RhB, OII, and TB were determined by UV-Vis
spectrometry at 665, 554, 483, and 575 nm, respectively. Moreover, photocatalytic stability of sepiolite
for RhB degradation under visible light irradiation was examined by the recycling test for three
cycles. After every cycle, the spent sepiolite was separated from the suspension by centrifugation,
followed by a wash with ethanol and water three times to remove covered, unreacted RhB and
degradation products. The spent sepiolite was dried and used in the next cycle under identical
photocatalytic experiment.

Scheme 2. Schematic of the photocatalytic experimental setup.

4. Conclusions

In the present work, we reported the photocatalytic activity of natural sepiolite by the
dye-sensitized process to degrade organic dyes under the visible light irradiation. The photocatalytic
activity of sepiolite was shown through electrostatistic coverage on the surface of sepiolite by the
cationic organic dye compound. The role of covered cationic organic dye molecules on the surface
of sepiolite was to produce the excited electrons under the visible light. Then the electrons could
be transferred to CB of sepiolite, enhancing the photocatalytic degradation efficiency of organic
dyes mainly through oxidation by •O2

− which was generated by reduction of O2. The function of
RhB-adsorbed sepiolite in the system is called as “photosensitizer”. RhB was the most efficiently
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photo-degraded on the sepiolite compared with MB, TB, and OII. All the kinetic data of removal of
RhB, MB, TB, and OII on sepiolite were fitted to the pseudo-first-order reaction model. The greatest
kinetic constant was found with RhB. The photocatalytic degradation of RhB on sepiolite under the
visible light irradiation could be explained by adsorption and ELUMO and EHOMO in RhB. The spent
sepiolite after adsorption of RhB successfully acted to photocatalytically degrade even anionic organic
dye (TB) through dye-sensitization of RhB on sepiolite. Especially, we confirmed that the natural
sepiolite represents a new class of visible light-responsive photocatalyst from naturally occurring
minerals. It is unique as it absorbs visible light without modification. The acceptable performance
with regard to photocatalytic activity and its low-cost characteristics make it a suitable candidate for
application in environmental treatments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/3/235/s1,
Figure S1: Chemical structures of dyes: (a) methylene blue (MB); (b) Rhodamine B (RhB); (c) Orange II (OII);
(d) trypan Blue (TB).
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