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Abstract: The development of advanced electrocatalysts for oxygen reduction and evolution is of
paramount significance to fuel cells, water splitting, and metal-air batteries. Heteroatom-doped
carbon materials have exhibited great promise because of their excellent electrical conductivity,
abundance, and superior durability. Rationally optimizing active sites of doped carbons can
remarkably enhance their electrocatalytic performance. In this study, nitrogen and oxygen codoped
carbon nanotubes were readily synthesized from the pyrolysis of polydopamine-carbon nanotube
hybrids. Different electron microscopes, Raman spectra and X-ray photoelectron spectroscopy (XPS)
were employed to survey the morphological and componential properties. The newly-obtained
catalyst features high-quality nitrogen and oxygen species, favourable porous structures and
excellent electric conductivity, and thus exhibits remarkably bifunctional oxygen electrode activity.
This research further helps to advance the knowledge of polydopamine and its potential applications
as efficient electrocatalysts to replace noble metals.

Keywords: N, O-codoping; polydopamine; oxygen reduction; oxygen evolution;
electrocatalysts; bifunctional

1. Introduction

Green and sustainable energy sources play a crucial role in addressing concerns about the global
energy dilemma, pollution, and climate change [1–3]. Regenerative energy techniques involving
fuel cells, metal–air batteries, and electrocatalytic hydrogen production have attracted significant
interest as energy storage and conversion devices [4,5], which usually involve cathodic oxygen
reduction reaction (ORR) and anodic oxygen evolution reaction (OER). Both ORR and OER contain
complicated multi-electron transfer processes, which would result in sluggish reaction kinetics and
consequently compromise the whole performance of the above energy devices. Electrocatalysts can
drastically promote reaction rates and lower overpotentials. These features make electrocatalysts
indispensable components of energy devices [6,7]. The noble metal-based materials including Pt and
Ru are the most efficient electrocatalysts for ORR or OER, but their prohibitive cost and scarcity greatly
impedes the proliferation of related energy technologies. In comparison, carbon materials possess a
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series of satisfactory features, including natural abundance, superior electrical conductivity, tailorable
structures and components, and strong anticorrosion abilities, and thus have been intensively studied
as electrocatalysts during the last decade [5,8,9].

Nonmetallic heteroatom doping has been regarded as a valid strategy to increase the
electrocatalytic activity of carbon materials and even achieve a particular activity towards certain
electrocatalytic reactions [10]. Therefore, a rationally componential optimization is of paramount
importance to develop the desired electrocatalysts. N-doping can render adjacent C atoms
positive-charged, due to the greater electronegativity of N, and can also maintain the intrinsic electronic
structure on account of the presence of a lone pair of nitrogen electrons. Thus, N-doping has been
the most widely used [10]. Moreover, different N species significantly affect the catalytic activity of
N-doping carbons. For example, Ruoff et al. found that pyridinic N (p-N) mainly determines the
ORR activity of N–carbon catalysts, while graphitic N (g-N) lowers the onset potential of ORR [11].
Dai et al. suggested that g-N is responsible for ORR activity and considered p-N as active sites
for the OER [12]. Most recently, oxygen species were found to be able to remarkably improve the
bifunctional ORR and OER performance of carbon materials. Zhu et al. revealed that epoxy and ketene
oxygen moieties provide more active sites for ORR and OER [13], whereas Wang et al. considered
–COOH groups as highly bifunctionally active sites [14,15]. Although the underlying mechanisms
remain controversial, N- and O-doping indeed apparently boost the bifunctional performance of
carbon materials in ORR and OER. Meanwhile, dual-doped carbons have exhibited remarkably
better performance than their single-doped counterparts due to the synergistic coupling effect of
compatible dopants [16,17]. Significantly, N-doping within a certain range can increase the electrical
conductivity of carbons [18], while the introduction of an O species is detrimental to the inherent
electron configuration of sp2-carbons. Therefore, the effective integration of N and O dopants into the
carbon matrix requires a delicate design to achieve optimal synergistic performance.

Recently, we have exploited polydopamine (PDA) as an excellent platform for doped carbons due
to its unrivaled structural and componential virtues [17,19]. Robust adhesion can make PDA easily
grow onto the surfaces of different solids and thus realize structural regulation [5,20]. Simultaneously,
the flexible componential tunability by the post-modification of PDA facilitates the importation of
multiple kinds of heteroatoms to the derived carbons [17]. The inherent N component of PDA has
been utilized for the development of single N-doped and codoped carbons, with secondary dopants
including B, P and S [17]. Notably, besides one nitrogen-containing group, each monomer of PDA also
contains two intrinsic oxygenated groups, which can be readily available to construct the N, O-codoped
carbons, but thus far, less attention has been paid to them. However, the large amount of oxygen species
will certainly compromise the electrical conductivity of the resultant carbons. Carbon nanotubes (CNTs)
have been widely recognized as a good electronic conductor, which can be introduced as a conductive
substrate to assure a favorable electronic transfer of the integrated materials [21].

Herein, we propose a novel and simple approach to obtain N, O-codoping carbon nanotubes.
PDA was first easily grafted onto the surface of multi-walled CNTs and then subjected to
high-temperature carbonization. Compared to previous post-doping routes, this facile strategy can
directly generate in situ and uniform N, O-codoping into the resultant carbon materials together
with favorable componential and structural features. Specifically, the obtained N, O-codoped CNT
(N, O-CNT) contains 2.3% nitrogen and up to 12.6% oxygen. Impressively, the inherent pyrrolic N
of PDA can be completely converted into p-N and g-N, and the C=O and –COOH species dominate
among different oxygen groups. All of those components are electrocatalytically active for ORR and
OER. Additionally, the network structure formed by cross-stacked carbon nanotubes provide excellent
electrical conductivity and smooth mass transportation. Accordingly, the newly developed N, O-CNT
exhibits bifunctional activities for both ORR and OER with enhanced activity and excellent stability.
Because of the robust adhesion of PDA, this facile and straightforward N, O-codoping method is
significantly promising for the future energy conversion and storage applications.
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2. Results

2.1. The Structural and Componential Characterization of the Catalysts

The morphologies and nanostructures of the newly-obtained N, O-CNT were firstly investigated
by a scanning electron microscope (SEM) and transmission electron microscopy (TEM). As shown in
Figure 1A and Figure S1, SEM images show cross-stacked CNT networks. However, as presented in
the TEM images (Figure 1C), all these CNTs preserve the isolated single-tube structure. The magnified
TEM images (Figure 1C and Figure S2) further manifest a layer of continuous carbon thin-film with
~2 nm-thick coating outside the lattice fringe of the CNTs, which can be ascribed to the carbonization
of the uniform PDA wrapping. Notably, the kind of stacked networks formed by isolated CNTs
can easily deposit onto the electrode surface with abundant intrinsic inner cavities and large pores
between the CNTs, which are believed to be conducive to facile electrolyte and gas transport during
the electrocatalytic processes. As shown in Figure 1D, the elemental mapping images of N, O-CNT
suggest a homogeneous distribution of C, O, and N components, further indicating PDA evenly
wrapped onto the surface of the CNTs. The defects and structural evolution of the CNT samples can
be reflected through the intensity ratio of the D band to the G band (ID/IG) in the Raman spectra.
As displayed in Figure 1E, the p-CNT has a small ID/IG ratio of 0.38, displaying an intact, pristine
structure. After acid oxidation of p-CNT, ox-CNT shows a much higher ID/IG ratio of 1.05 arising
from the oxygenated-group-enriched CNT surface. Finally, N, O-CNT can inherit a large amount of
nitrogen and oxygen dopants from PDA, possibly resulting in its relatively high ID/IG ratio of 0.87,
even after high-temperature pyrolysis. Nitrogen adsorption of N, O-CNT shows a large surface area of
up to 165 m2 g−1. The existence of different mesopores and macropores can be verified by the pore
size distribution curve (Figure 1F), which also agrees with the electron microscopic results. Specifically,
the smaller mesopores with a size of around 3−10 nm correspond to the intrinsic hollow structures
of nanotubes, while the larger pores with sizes of around 10−150 nm are credited to the voids of the
cross-stacking CNT networks.

FTIR measurements were used to confirm the formation of CNT-PDA hybrids (Figure 2A).
The p-CNT has no characteristic peak because of its pristine structure. The peaks of ox-CNT at around
1050 and 1732 cm−1 indicated the presence of C–O and C=O moieties. The indole or indoline structure
of PDA in CNT-PDA hybrids was certified by the coexistence of characteristic peaks at 1501 and
1609 cm−1, indicating the successful wrapping of PDA onto the surface of CNT [22]. The chemical
status of different components can be clearly determined by the XPS technique (Figure 2B–D and Figure
S3). The presence of C, N (2.3 at.%) and O (12.6 at.%) was first confirmed by an XPS survey scan of N,
O-CNT, in which the high concentration of N and O dopants also accounts for the high ID/IG ratio of
N, O-CNT. Additionally, the deconvoluted spectra of N 1s consists of two peaks at 398.4 and 400.8 eV
(Figure 2C), belonging to p-N (0.9 at.%), and g-N (1.4 at.%), while the catalytically inert pyrrolic N was
not detected. The well-resolved O 1s peaks mainly comprise three peaks. More specifically, the peak at
532.5 eV is consistent with the hydroxyl (C−OH) and carbonyl (C=O) functional groups, which have a
content of 5.6%. The peak at 531.3 eV is attributed to the carboxyl group (COO−) in carboxylate and
the oxygen double bond to carbon, accounting for 1.7 at.%, and the peak at 533.9 eV corresponds to the
oxygen single bond in esters and carboxylic acids (O=C−O), reaching 5.3% (Figure 2D). Significantly,
compared with the oxygen content in p-CNT (2.3 at.%) and ox-CNT (9.5 at.%), shown in Figure S3,
Figure S4 and Figure S5 [23], the relatively large number of oxygen moieties in N, O-CNT not only
plays a critical role as active sites of electrocatalytic reactions [24–26], but also improves the wettable
capability of the surface of resultant carbons and facilitates the electrocatalytic processes [27].
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Figure 1. (A) SEM, (B) TEM and (C) the magnified TEM images of the N, O-carbon nanotube (CNT); 
PDA, polydopamine. (D) TEM elemental mapping of C, O, and N in N, O-CNT. (E) Raman spectra of 
p-CNT, ox-CNT and N, O-CNT. (F) The corresponding nitrogen adsorption–desorption isotherm of 
N, O-CNT, and the inset shows the pore size distribution curve. 

Figure 1. (A) SEM, (B) TEM and (C) the magnified TEM images of the N, O-carbon nanotube (CNT);
PDA, polydopamine. (D) TEM elemental mapping of C, O, and N in N, O-CNT. (E) Raman spectra of
p-CNT, ox-CNT and N, O-CNT. (F) The corresponding nitrogen adsorption–desorption isotherm of N,
O-CNT, and the inset shows the pore size distribution curve.
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Figure 2. (A) FTIR spectra of p-CNT, ox-CNT and CNT-PDA. (B–D) XPS survey scan and the 
deconvoluted high-resolution spectra of N 1s and O 1s in N, O-CNT. 

2.2. ORR Performance 

The electrocatalytic activity for ORR was systematically evaluated on the newly-developed 
carbons. Firstly, the cyclic voltammograms (CVs) were examined in an O2-saturated 0.1 M KOH 
electrolyte. Figure 3A displays N, O-CNT having a typical cathodic peak located at −0.28 V, and the 
peak potential is obviously much more positive than that of ox-CNT (−0.34 V) and p-CNT (−0.38 V). 
Meanwhile, the according peak current density of N, O-CNT is 3.3 mA cm−2, much larger than that 
of ox-CNT (−0.94 mA cm−2) and p-CNT (−1.54 mA cm−2), both of which indicate the best ORR activity 
on N, O-CNT. Linear sweep voltammograms (LSVs) were then collected with a rotating disk 
electrode (RDE) under 1600rpm. The onset potential (η) was defined as the potential value to achieve 
a current density of −0.5 mA cm−2. The η value of N, O-CNT is around −0.16 V, as shown in Figure 
3B—much better than that of ox-CNT (−0.23 V) and p-CNT (−0.25 V). Of particular note, at −0.6 V, a 
current density up to −6.6 mA cm−2 can be observed on N, O-CNT, which is significantly larger than 
the values of ox-CNT (−2.4 mA cm−2), p-CNT (−2.6 mA cm−2), and even Pt/C (−4.6 mA cm−2), 
suggesting superior electrocatalytic performance of N, O-CNT for ORR. Furthermore, N, O-CNT has 
no current plateau akin to that of Pt/C, caused by the limited mass transport, partly because the high 

surface area and hierarchically porous structures endow the N, O-CNT with abundantly available 
active sites and expedite diffusion ability in ORR electrocatalytic processes. The ORR catalytic kinetics 
of different catalysts were then assessed through Tafel slopes extracted from the LSV curves. Figure 
3C illustrates a Tafel slope of 80 mV dec−1 on N, O-CNT, which is much smaller than that of p-CNT 
(98 mV dec−1) and ox-CNT (124 mV dec−1); nearly approaching the value of Pt/C (74 mV dec−1), the 
small Tafel slope of N, O-CNT manifests the enhanced ORR kinetics of N, O-CNT. To gain more 
insight into the electrocatalytic ability of N, O-CNT, LSVs at different rotation speeds were recorded 
(Figure 3D and Figure S6). The respective Koutecky-Levich (KL) plots under various potentials were 
linearly fitted and the kinetic limiting current density (Jk) was obtained (Figure 3E). As presented in 
Figure 3F, N, O-CNT has relatively high and stable Jk values under the applied potential (−0.4 to −0.8 
V) compared to those of ox-CNT and p-CNT, indicating a more efficient and smooth catalytic process 
for ORR on N, O-CNT due to its structural advantages, as noted previously. 

Figure 2. (A) FTIR spectra of p-CNT, ox-CNT and CNT-PDA. (B–D) XPS survey scan and the
deconvoluted high-resolution spectra of N 1s and O 1s in N, O-CNT.

2.2. ORR Performance

The electrocatalytic activity for ORR was systematically evaluated on the newly-developed
carbons. Firstly, the cyclic voltammograms (CVs) were examined in an O2-saturated 0.1 M KOH
electrolyte. Figure 3A displays N, O-CNT having a typical cathodic peak located at −0.28 V, and the
peak potential is obviously much more positive than that of ox-CNT (−0.34 V) and p-CNT (−0.38 V).
Meanwhile, the according peak current density of N, O-CNT is 3.3 mA cm−2, much larger than that of
ox-CNT (−0.94 mA cm−2) and p-CNT (−1.54 mA cm−2), both of which indicate the best ORR activity
on N, O-CNT. Linear sweep voltammograms (LSVs) were then collected with a rotating disk electrode
(RDE) under 1600rpm. The onset potential (η) was defined as the potential value to achieve a current
density of −0.5 mA cm−2. The η value of N, O-CNT is around −0.16 V, as shown in Figure 3B—much
better than that of ox-CNT (−0.23 V) and p-CNT (−0.25 V). Of particular note, at −0.6 V, a current
density up to −6.6 mA cm−2 can be observed on N, O-CNT, which is significantly larger than the values
of ox-CNT (−2.4 mA cm−2), p-CNT (−2.6 mA cm−2), and even Pt/C (−4.6 mA cm−2), suggesting
superior electrocatalytic performance of N, O-CNT for ORR. Furthermore, N, O-CNT has no current
plateau akin to that of Pt/C, caused by the limited mass transport, partly because the high surface area
and hierarchically porous structures endow the N, O-CNT with abundantly available active sites and
expedite diffusion ability in ORR electrocatalytic processes. The ORR catalytic kinetics of different
catalysts were then assessed through Tafel slopes extracted from the LSV curves. Figure 3C illustrates
a Tafel slope of 80 mV dec−1 on N, O-CNT, which is much smaller than that of p-CNT (98 mV dec−1)
and ox-CNT (124 mV dec−1); nearly approaching the value of Pt/C (74 mV dec−1), the small Tafel
slope of N, O-CNT manifests the enhanced ORR kinetics of N, O-CNT. To gain more insight into the
electrocatalytic ability of N, O-CNT, LSVs at different rotation speeds were recorded (Figure 3D and
Figure S6). The respective Koutecky-Levich (KL) plots under various potentials were linearly fitted
and the kinetic limiting current density (Jk) was obtained (Figure 3E). As presented in Figure 3F, N,
O-CNT has relatively high and stable Jk values under the applied potential (−0.4 to −0.8 V) compared
to those of ox-CNT and p-CNT, indicating a more efficient and smooth catalytic process for ORR on N,
O-CNT due to its structural advantages, as noted previously.
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Figure 3. (A) CV curves of p-CNT, ox-CNT, and N, O-CNT in O2-saturated 0.1 M KOH solution. (B) 
LSVs at a sweep rate of 5 mVs−1, and (C) Tafel slope obtained from the LSVs of p-CNT, ox-CNT, N, 
O-CNT, and Pt/C. (D) Linear sweep voltammograms (LSVs) of N, O-CNT at different rotating speeds 
from 400 to 2400 rpm. (E) K-L plots of N, O-CNT obtained at different potentials. (F) Kinetic limiting 
current density (Jk) of different catalysts at a potential range from −0.4 to −0.8 V. 

Rotating ring disk electrode (RRDE) experiments were further conducted to quantitatively 
analyze the intermediate peroxide and investigate the ORR pathways on different catalysts [28]. As 
presented in Figure 4A,B, N, O-CNT yields 17−34% HO2− with a potential from −0.4 to −1.0 V, and its 
number of electron transfer (n) ranges from 3.3 to 3.7. In comparison, p-CNT produces ∼41–5% HO2– 
under identical conditions, with n ranging from 2.5 to 3.2. The n of ox-CNT was estimated from 2.3 
to 3.1, with the production of ∼44–84% HO2–. These results suggest a more efficient electrocatalytic 
ORR process on N, O-CNT with a 4e- dominated pathway. It is noteworthy that peroxide species 
produced in the low potential region can be continuously reduced at a high potential and contribute 
to the high reduction current density of N, O-CNT displayed in Figure 3B. 

The long-term durability of N, O-CNT was assessed against commercial Pt/C. The test was 
conducted with chronoamperometry in 0.1 M KOH saturated with O2. As displayed in Figure 4C, 
Pt/C exhibits up to a 40% loss from its initial current, while N, O-CNT retains 96.7% of the original 
current over 20 h with a neglectable attenuation, clearly manifesting the exceedingly good stability 
of carbon active sites in alkaline ORR. Furthermore, the effect of methanol crossover was investigated 
on both N, O-CNT and Pt/C (Figure 4D). After introducing methanol into the electrolyte, the original 
ORR current of N, O-CNT could persist almost unaffected, confirming its robust resistance to 
methanol crossover. Contrarily, when 3 M methanol was added, a quick response was detected on 
Pt/C with the initially cathodic current directly changing to an anodic current. Consequently, the 
obtained N, O-CNT showed prominent durability and high selectivity to ORR, and is highly suitable 
as a potential candidate to replace Pt/C. 

Figure 3. (A) CV curves of p-CNT, ox-CNT, and N, O-CNT in O2-saturated 0.1 M KOH solution.
(B) LSVs at a sweep rate of 5 mVs−1, and (C) Tafel slope obtained from the LSVs of p-CNT, ox-CNT, N,
O-CNT, and Pt/C. (D) Linear sweep voltammograms (LSVs) of N, O-CNT at different rotating speeds
from 400 to 2400 rpm. (E) K-L plots of N, O-CNT obtained at different potentials. (F) Kinetic limiting
current density (Jk) of different catalysts at a potential range from −0.4 to −0.8 V.

Rotating ring disk electrode (RRDE) experiments were further conducted to quantitatively analyze
the intermediate peroxide and investigate the ORR pathways on different catalysts [28]. As presented
in Figure 4A,B, N, O-CNT yields 17−34% HO2

− with a potential from −0.4 to −1.0 V, and its number
of electron transfer (n) ranges from 3.3 to 3.7. In comparison, p-CNT produces ∼41–5% HO2

− under
identical conditions, with n ranging from 2.5 to 3.2. The n of ox-CNT was estimated from 2.3 to 3.1,
with the production of ∼44–84% HO2

−. These results suggest a more efficient electrocatalytic ORR
process on N, O-CNT with a 4e− dominated pathway. It is noteworthy that peroxide species produced
in the low potential region can be continuously reduced at a high potential and contribute to the high
reduction current density of N, O-CNT displayed in Figure 3B.

The long-term durability of N, O-CNT was assessed against commercial Pt/C. The test was
conducted with chronoamperometry in 0.1 M KOH saturated with O2. As displayed in Figure 4C,
Pt/C exhibits up to a 40% loss from its initial current, while N, O-CNT retains 96.7% of the original
current over 20 h with a neglectable attenuation, clearly manifesting the exceedingly good stability of
carbon active sites in alkaline ORR. Furthermore, the effect of methanol crossover was investigated on
both N, O-CNT and Pt/C (Figure 4D). After introducing methanol into the electrolyte, the original
ORR current of N, O-CNT could persist almost unaffected, confirming its robust resistance to methanol
crossover. Contrarily, when 3 M methanol was added, a quick response was detected on Pt/C with
the initially cathodic current directly changing to an anodic current. Consequently, the obtained N,
O-CNT showed prominent durability and high selectivity to ORR, and is highly suitable as a potential
candidate to replace Pt/C.
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Figure 4. (A) Rotating ring disk electrode (RRDE) voltammetric response in the O2-saturated 0.1 M 
KOH at a scan rate of 5 mV s−1 and (B) HO2− yields and the corresponding electron transfer number 
of p-CNT, ox-CNT and N, O-CNT. (C) oxygen reduction reaction (ORR) current–time 
chronoamperometric response of N, O-CNT and Pt/C in O2-saturated 0.1 M KOH solution. (D) 
current–time chronoamperometric response of N, O-CNT and Pt/C before and after addition of 3 M 
methanol. 

2.3. OER Performance 

The OER catalytic performance of the obtained samples was further characterized in detail. LSVs 
were first performed in 0.1 M KOH, and the applied potential when generating a current density of 
10 mA cm−2 (Ej=10) was a metric used for the comparison of different catalysts (Figure 5A). The Ej=10 for 
N, O-CNT is 0.65 V, which is much lower than those obtained for other samples, such as p-CNT (0.73 
V) and ox-CNT (0.82 V), close to the value of IrO2-CNT (0.61 V). Compared to previously reported 
catalysts, the Ej of N, O-CNT (0.65 V) is lower than that of the various carbons, including N, O-doped 
carbon hydrogels [21] and N-doped carbon nanocables [29], and comparable to those of metal-
containing eletrocatalysts, such as Mn3O4/CoSe2 hybrids [30], Co3O4/N-graphene [31], and MnxOy/N-
doped carbon [32]. Tafel plots were also used to evaluate the catalytic kinetics for OER (Figure 5B). 
N, O-CNT has a Tafel slope of 74 mV dec−1, which is lowest among all the samples including p-CNT 
(93 mV dec−1), ox-CNT (147 mV dec−1), and even IrO2-CNT (82 mV dec−1). Compared with previously 
reported OER catalysts, the Tafel slope of N, O-CNT is much lower than those of N, O-doped carbon 
hydrogels (141 mV dec−1) [21], C3N4/carbon nanotube composites (83 mV dec−1) [33], and similar to 
some metal oxide OER catalysts, including Co3O4/carbon nanowires (70 mV dec−1) [34], CoO/N-
graphene (71 mV dec−1) [35], and Co3O4/N-graphene (67 mV dec−1) [31], implying its enormously 
beneficial catalytic kinetics for OER. The catalytic kinetics of different samples can be further 
evidenced by the electrochemical impedance spectrum (EIS). As illustrated in Figure 5C, N, O-CNT 
has a much smaller impedance compared to that of p-CNT and ox-CNT, confirming its greatly 
unimpeded reaction kinetics. An electrochemical durability test of N, O-CNT for OER was then 
carried out. As illustrated in the inset of Figure 4D, a long-time potential cycling conducted on N, O-
CNT signified insignificant reduction of the catalytic performance after 1000 cycles (Figure 5D). The 
LSV curves show that 91.2% of the initial current density remained after 1000 potential cycles, 
confirming the remarkable electrochemical stability of the N, O-CNT for OER. 

Figure 4. (A) Rotating ring disk electrode (RRDE) voltammetric response in the O2-saturated 0.1 M
KOH at a scan rate of 5 mV s−1 and (B) HO2

− yields and the corresponding electron transfer
number of p-CNT, ox-CNT and N, O-CNT. (C) oxygen reduction reaction (ORR) current–time
chronoamperometric response of N, O-CNT and Pt/C in O2-saturated 0.1 M KOH solution.
(D) current–time chronoamperometric response of N, O-CNT and Pt/C before and after addition
of 3 M methanol.

2.3. OER Performance

The OER catalytic performance of the obtained samples was further characterized in detail.
LSVs were first performed in 0.1 M KOH, and the applied potential when generating a current density
of 10 mA cm−2 (Ej=10) was a metric used for the comparison of different catalysts (Figure 5A). The Ej=10

for N, O-CNT is 0.65 V, which is much lower than those obtained for other samples, such as p-CNT
(0.73 V) and ox-CNT (0.82 V), close to the value of IrO2-CNT (0.61 V). Compared to previously
reported catalysts, the Ej of N, O-CNT (0.65 V) is lower than that of the various carbons, including
N, O-doped carbon hydrogels [21] and N-doped carbon nanocables [29], and comparable to those
of metal-containing eletrocatalysts, such as Mn3O4/CoSe2 hybrids [30], Co3O4/N-graphene [31],
and MnxOy/N-doped carbon [32]. Tafel plots were also used to evaluate the catalytic kinetics
for OER (Figure 5B). N, O-CNT has a Tafel slope of 74 mV dec−1, which is lowest among all the
samples including p-CNT (93 mV dec−1), ox-CNT (147 mV dec−1), and even IrO2-CNT (82 mV dec−1).
Compared with previously reported OER catalysts, the Tafel slope of N, O-CNT is much lower than
those of N, O-doped carbon hydrogels (141 mV dec−1) [21], C3N4/carbon nanotube composites (83 mV
dec−1) [33], and similar to some metal oxide OER catalysts, including Co3O4/carbon nanowires
(70 mV dec−1) [34], CoO/N-graphene (71 mV dec−1) [35], and Co3O4/N-graphene (67 mV dec−1) [31],
implying its enormously beneficial catalytic kinetics for OER. The catalytic kinetics of different samples
can be further evidenced by the electrochemical impedance spectrum (EIS). As illustrated in Figure 5C,
N, O-CNT has a much smaller impedance compared to that of p-CNT and ox-CNT, confirming its
greatly unimpeded reaction kinetics. An electrochemical durability test of N, O-CNT for OER was
then carried out. As illustrated in the inset of Figure 4D, a long-time potential cycling conducted on
N, O-CNT signified insignificant reduction of the catalytic performance after 1000 cycles (Figure 5D).
The LSV curves show that 91.2% of the initial current density remained after 1000 potential cycles,
confirming the remarkable electrochemical stability of the N, O-CNT for OER.
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Figure 5. (A) Oxygen evolution reaction (OER) LSVs at a sweep rate of 5 mVs−1 and (B) OER Tafel plots
of p-CNT, ox-CNT, N, O-CNT, and IrO2-CNT. (C) The electrochemical impedance spectra (recorded
at 0.65 V) of p-CNT, ox-CNT, and N, O-CNT. (D) Electrochemical durability test of N, O-CNT for
OER, the LSV plots before and after 1000 cycles, and inset are the CV plots at 50 mV s−1 for 1000
cycles. (A) The overall LSV curve of N, S-CN in the potential range of −0.8 to 0.8V, ∆E (Ej=10 − Ej=−3)
is a metric for bifunctional ORR and OER activity (Inset: The value of ∆E for various catalysts
reported previously).

To better investigate the overall oxygen electrode activity, the different metrics for OER and
ORR on various catalysts were all compared and displayed in Figure 6A and Table S1, including
onset potential, Tafel slope, the potential at −3 mA cm−2 for ORR (Ej=−3), and Ej=10 for OER [36].
The difference in potential between Ej=10 and Ej=−3 was designated as ∆E, i.e., ∆E = Ej=10 − E j=−3.
The smaller ∆E means better overall oxygen electrode activity. Notably, N, O-CNT displays a ∆E of
0.92 V, much smaller than that of p-CNT (1.40 V) and ox-CNT (1.61 V), which is also superior compared
to the previously reported non-metallic materials (e.g., N-graphene/CNT [37], ∆E = 0.96 V; C3N4-CNT,
∆E = 1.30 V) [36], noble-metals (e.g., Pt/C, ∆E = 1.16 V; Ru/C, ∆E = 1.01 V; Ir/C, ∆E = 0.92 V) [38], and
transition-metals (e.g., NiCo2S4@N/S-rGO [39], ∆E = 0.98 V; NiCo2O4/G [40], ∆E=1.13 V) [32,38], and
close to that of phosphorus-doped carbon nitride/carbon-fiber paper (PCN-CFP, 0.91 V) [36], N, S-CN
(0.88 V) [6], and Co/N-C-800 (0.86 V) [41]. Figure 6B summarizes a detailed comparison of different
bifunctional oxygen electrocatalysts, demonstrating the excellent catalytic performance of N, O-CNT
towards a bifunctional ORR and OER.
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The efficiently bifunctional performance of the N, O-CNT catalyst for ORR and OER could arise
from the following three aspects: First, N, O-CNT contains 2.3% N and 12.6% O, and thus produces a
large population of active sites. The N element has a larger electronegativity and can afford a positive
charge density to the adjacent C atoms, which are generally considered electrocatalytically active
centers [33,42]. Furthermore, N, O-CNT only consists of favored p-N and g-N, while no pyrrolic
N was found, which reportedly has little catalytic effect [11]. Meanwhile, different oxygen groups,
including the C=O and COOH moieties, have been found to facilitate OER and ORR due to the electron
withdrawing effect and enhanced adsorption of reaction intermediates [14,15,43]. A host of oxygen
groups up to 12.6% in N, O-CNT would, therefore, greatly promote the bifunctional activity of obtained
carbons. Secondly, a large surface area of catalysts can enhance the exposure of active sites and assure
their sufficient utilization. The porous structure of N, O-CNT, shown by nitrogen adsorption, can also
be assessed by electrochemical double-layer capacitance (Cdl). Figure 7 displays the Cdl of N, O-CNT
as 4.4 mF cm−2, while the values of p-CNT and ox-CNT are 1.4 and 2.5 mF cm−2. As Cdl reflects the
electrocatalytic active surface area, the bigger Cdl of N, O-CNT illustrates the larger active surface of N,
O-CNT, which can promote its apparent ORR and OER performance. Moreover, the different porous
structures of N, O-CNT can guarantee an unblocked channel for benign mass transfer [22]. Thirdly,
the employed CNT substrate can provide excellent electronic conductivity, which has been confirmed
by the EIS study. Additionally, PDA-derived defective carbons can be firmly incorporated with CNTs
because of the robustly adhesive PDA, which ensures an unimpeded charge transfer and the long-term
stability of the integrated carbons. All these manifold virtues come together to make the developed N,
O-CNT an advanced bifunctional ORR and OER electrocatalyst.
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3. Materials and Methods

3.1. Preparation of N, O-CNT

The ox-CNT was synthesized first. The purchased primitive CNTs were ultrasonicated in a mixed
solution of sulfuric acid (98%) and nitric acid (70%) with 3:1 v/v for 10 h and washed repeatedly with
copious water. The obtained sample was incubated with 5 M HCl at 50 ◦C for 24 h to eliminate metal
impurities. After lyophilization, ox-CNT was sonicated in water to obtain 1 mg mL−1 dispersion.

To prepare N, O-CNT, 100 mg of dopamine (DA) was added into 100 mL of the above ox-CNT
dispersion followed by 100 mL of phosphate buffered saline (PBS, 0.4 M, pH = 8.5) added. Under
a magnetic stirring, the reaction in the mixed solutions was kept for 24 h. The CNT-PDA samples
were obtained by centrifugation and washing with water. The N, O-CNT was synthesized by the
pyrolysis of CNT-PDA in a tube furnace under a N2 atmosphere. The pyrolysis temperature was first
set at 400 ◦C for 2 h with a heating rate of 1 ◦C min−1, then at 800 ◦C for 3 h with a heating rate of
5 ◦C min−1.

3.2. Electrochemical Characterization

The electrochemical measurements were conducted on an electrochemical workstation (CHI 760C,
CH Instruments, Austin, TX, USA). The inks of different catalysts were prepared as follows: The
catalysts of 2 mg were dispersed under ultrasonication into 1 ml water to make a well-distributed
suspension. Then, 20 µL of catalyst ink was dropped on the electrode surface. 5 µL of 0.5 wt.%
Nafion aqueous solution was pipetted on the electrode and air dried. The three-electrode cell system
was employed in a standard five-neck electrolyzer and consisted of an RDE glassy carbon working
electrode, a Ag/AgCl reference electrode in saturated AgCl-KCl solution, and a platinum wire as
counter electrode. Cyclic voltammogram (CV) and linear sweep voltammogram (LSV) tests were
performed with a scan rate of 50 and 5 mV s−1, respectively. The RRDE measurement was conducted
to evaluate the catalytic efficiency of samples for ORR, and its detailed experiments are presented in
the Supplementary Materials.
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The EIS tests of the OER were conducted under an AC voltage with 5 mV amplitude in a frequency
range from 100,000 to 1 Hz and recorded at 0.65 V vs. Ag/AgCl. The Cdl of the as-synthesized
materials was obtained from double-layer charging curves using CVs in a potential range of 0–0.05 V.
The capacitive currents, i.e., ∆J|Ja−Jc|@ 0.025 V, were plotted as a function of the CV scan rate. The linear
relationship was observed with a slope two-times larger than the Cdl value.

4. Conclusions

In conclusion, by virtue of PDA, a new and simple strategy, with attractive componential and
structural features, was presented to prepare N, O-CNT. The resultant codoped carbon is characterized
by highly efficient N and O components, favorable pore architecture, and high surface areas, and hence
exhibits a remarkably bifunctional performance for ORR and OER with outstanding activity and
excellent stability. Due to the versatile features of PDA, this work could offer a novel insight into
rationally developing PDA-derived doped carbons, which are greatly promising as substitutes for
noble metals in relevant energy conversion fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/159/
s1, Figure S1: SEM image of N, O-CNT, Figure S2: The magnified TEM images of the N, O-CNT, Figure S3:
XPS high-resolution spectra of C1s of N, O-CNT, Figures S4 and S5: XPS survey scans and the deconvoluted
high-resolution spectra of p-CNT and ox-CNT. Figure S6: LSVs at different rotating speeds from 0 to 2400 rpm
and the K-L plots obtained at different potentials, Table S1: Comparison of the different OER and ORR metrics of
the obtained catalysts.
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