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Abstract: Decomposition of lignin-related model compound (benzyl phenyl ether, BPE) to phenol and
toluene was performed over carbon-supported noble metal (Ru, Pd, and Pt) catalysts in supercritical
ethanol without supply of hydrogen. Phenol and toluene as target products were produced by the
hydrogenolysis of BPE. The conversion of BPE was higher than 95% over all carbon-supported noble
metal catalysts at 270 ◦C for 4 h. The 5 wt% Pd/C demonstrated the highest yield (ca. 59.3%) of the
target products and enhanced conversion rates and reactivity more significantly than other catalysts.
In the case of Ru/C, BPE was significantly transformed to other unidentified byproducts, more so
than other catalysts. The Pt/C catalyst produced the highest number of byproducts such as alkylated
phenols and gas-phase products, indicating that the catalyst promotes secondary reactions during
the decomposition of BPE. In addition, a model reaction using phenol as a reactant was conducted to
check the secondary reactions of phenol such as alkylation or hydrogenation in supercritical ethanol.
The product distribution when phenol was used as a reactant was mostly consistent with BPE as a
reactant. Based on the results, plausible reaction pathways were proposed.

Keywords: benzyl phenyl ether; solvolysis; supercritical ethanol; carbon-supported noble
metal catalysts

1. Introduction

Lignin from lignocellulose, which is one of the most abundant carbon sources on the earth
along with cellulose, is a three-dimensional amorphous co-polymer composed of methoxylated
phenylpropane units such as coniferyl, ρ-coumaryl and sinapyl alcohols [1–3]. Isolated industrial lignin
undergoes the formation of oligomeric intermediates before it is converted to aromatic monomers
in biorefineries [4,5]. Various light aromatic platform chemicals which are obtained from these
intermediates can be used in plastic, medicine, and fuels [6,7]. For example, phenol is used as
an additive to inhibit formation of coke in petroleum refinery processes [8]. Also, toluene is used as a
precursor for a variety of polymers whose demand is continuously increasing [9]. However, it can be a
challenge to selectively obtain desired aromatic chemicals from lignin intermediates, because lignin
has a complex and recalcitrant structure compared to other biomass resources. Thus, studies on lignin
depolymerization are underway to obtain target products with high selectivity [10]. In this regard,
selective cleavage of ether bonds in lignin intermediates remains a big challenge.

Ether bonds such as α–O–4, β–O–4 and 4–O–5 bond are the most abundant types in lignin
structure [11]. Lignin intermediates are also likely to have the bonds [4]. Thus, it is of great
importance to investigate the decomposition pathways of lignin intermediates and the selectivity
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of products [12–14]. Among the bonds, α–O–4 bond has the lowest bond dissociation energy of the
aliphatic ether bonds (218 kJ/mol), so it is the most active and thermally unstable [15,16]. Hence,
the reaction of a model compound containing α–O–4 bond can be of fundamental importance in
understanding selective cleavage of ether bonds. In this respect, benzyl phenyl ether (BPE), which has
an ether bond similar to α-O-4 bond without other functional groups, can be the simplest model to
indirectly predict α–O–4 bond cleavage [15,17–19].

Many methods, such as pyrolysis, solvolysis and gasification, have been applied for lignin
depolymerization [20–23]. These methods are also applicable to cleavage of lignin-related ether
bonds. Solvolysis by supercritical alcohol is similar to pyrolysis in that a reactant decomposes by
heating. However, there are differences with pyrolysis: A solvent is added to act as a nucleophile,
and the reaction temperature is relatively low. It is also possible to decompose lignin without
supplying additional hydrogen gas [24–26]. Güvenatam et al. reported that lignin depolymerization
in supercritical ethanol without the addition of external hydrogen could produce monomers
abundantly [27]. This self-supply of hydrogen for hydrogenolysis is expected to have enough efficiency
in the industrial aspects of a biorefinery. However, the solvolysis using supercritical ethanol has a
disadvantage in that the selectivity of target products is somewhat deteriorated because it is focused
on the conversion of lignin.

Catalytic cracking can also be an attractive process for selective cleavage of lignin-related ether
bonds, because the reaction is able to be controlled depending on a heterogeneous catalyst [28,29].
Among various catalyst supports, carbon materials have been generally considered as one of the
promising catalyst supports because of their excellent physical properties, high resistance to acidic
and basic environments, and relative chemical inertness [30,31]. Hydrogenolysis of biomass resources
has been studied over activated carbon-supported noble metal catalysts. For instance, Kusunoki et al.
reported that Ru/C provided a higher glycerol conversion than the other catalysts, whereas Pt/C and
Pd/C showed low glycerol conversion and high hydrogenolysis selectivity [32]. Thus, the selectivity
of the target products produced from BPE decomposition could be determined depending on various
noble metal-based catalysts.

Most previous studies on cleavage of ether bonds separated the effect of catalysts and supercritical
fluids [17–19,33]. Though studies on catalytic solvolysis have been carried out over metal-based
catalysts in supercritical fluids, a study on metal-based catalyst selection for the selectivity of liquid
phase products have been lacking [25,34–36]. It is expected that catalytic solvolysis in supercritical
ethanol has a complementary effect during BPE decomposition at a relatively low temperature without
pressurizing hydrogen to obtain high selectivity of target products [37,38]. Accordingly, the aim of this
study is to evaluate the catalytic solvolysis of BPE over the carbon-supported catalysts with various
noble metals (Ru, Pd and Pt) in supercritical ethanol without supplying hydrogen.

2. Results and Discussion

2.1. Catalyst Characterization

Table 1 displays physical properties of all catalysts analyzed with the N2 adsorption-desorption
measurement apparatus. The decrease of surface area due to metal loading is the least over Pd/C
which has the largest pore volume and the smallest pore diameter among the metal/C catalysts,
whereas Ru/C has the smallest pore volume and the largest pore diameter.
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Table 1. Physical properties of the catalysts.

Catalyst

N2 Physisorption

Surface Area
(m2/g) 1

Micropore
Area (m2/g) 2

External
Surface Area

(m2/g) 2

Pore Volume
(cm3/g) 3

Pore Diameter
(nm) 3

Ru/C 789.51 463.30 326.21 0.61 3.09
Pd/C 953.70 524.26 429.44 0.68 2.84
Pt/C 834.12 449.17 384.95 0.61 2.94
AC 1032.47 596.05 436.42 0.72 2.81

1 Calculated by BET (Brunauer-Emmett-Teller) method; 2 Determined by t-plot method; 3 Calculated by BJH
(Barret-Joyner-Hallender) method.

As seen in TEM images (Figure 1a), a very narrow distribution of particle size in the range of 1 nm
to 2.5 nm is observed over Ru/C, with the mean Ru particle size of about 1.5 nm. It may suggest that
the Ru particles in activated carbon support are highly dispersed. Meanwhile, both Pd/C (Figure 1b)
and Pt/C (Figure 1c), with their mean particle sizes of about 2.8 nm, display slightly broader particle
size distributions from 2 nm to 4 nm than Ru/C.
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Figure 1. High-resolution transmission electron microscopy images of fresh Ru/C (a), Pd/C (b), and
Pt/C (c).

2.2. Conversion Rates and Reactivity over Noble Metal-Based Catalysts in Supercritical Ethanol

In this work, BPE decomposition was performed in supercritical ethanol at 270 ◦C up to 4 h
over noble metal-based catalysts on activated carbon support (Ru/C, Pd/C, and Pt/C) and activated
carbon (AC) without loading any metal. As displayed in Figure 2, the conversion of BPE was high
(~95%) regardless of the type of metals, whereas the conversion of BPE in the reactions without noble
metal was relatively low when it was performed at 270 ◦C for 4 h. Song et al. demonstrated that BPE
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can be decomposed into phenol and toluene by hydrogenolysis in hydrogen atmosphere [19]. On
the other hand, the high conversion obtained when external hydrogen was not pressurized results
from hydrogen generated from supercritical ethanol over noble metal-based catalysts [27,39]. For
comparison, the result was obtained under non-supercritical condition (Table S1, Entry 9), where
ethanol did not promote the hydrogenolysis of BPE. It is inferred that the decomposition of BPE is
related to the chemical change of supercritical ethanol, which is transformed into hydrogen over all
metal/C catalysts. Hence, it is enough evidence to show the essential role of noble metal in catalyzing
BPE decomposition under supercritical ethanol condition.

Catalysts 2019, 9, x FOR PEER REVIEW 4 of 13 

 

decomposed into phenol and toluene by hydrogenolysis in hydrogen atmosphere [19]. On the other 
hand, the high conversion obtained when external hydrogen was not pressurized results from 
hydrogen generated from supercritical ethanol over noble metal-based catalysts [27,39]. For 
comparison, the result was obtained under non-supercritical condition (Table S1, Entry 9), where 
ethanol did not promote the hydrogenolysis of BPE. It is inferred that the decomposition of BPE is 
related to the chemical change of supercritical ethanol, which is transformed into hydrogen over all 
metal/C catalysts. Hence, it is enough evidence to show the essential role of noble metal in catalyzing 
BPE decomposition under supercritical ethanol condition. 

 

Figure 2. The conversion of BPE over various catalysts at 270 °C in supercritical ethanol as a function 
of reaction time. 

In the main reaction, all metal catalysts had high conversion for 4 h, but conversion rates were 
different depending on the catalysts. The Pd/C was superior to other catalysts in terms of the reaction 
rate and the yield of target products whereas Ru/C and Pt/C had low reaction rate. AC was slightly 
active for BPE conversion but had limitations on the activity of BPE decomposition compared to metal 
catalysts. Meanwhile, the type of product was also different depending on the catalysts. The analysis 
of the products obtained from BPE was mainly focused on liquid phase products by which 
distribution will be addressed more in detail. 

2.3. The Effect of Noble Metal over Activated Carbon Support on Product Distribution 

The alkylation of liquid phase products is activated by hydrogen derived from supercritical 
ethanol over the metal/C catalysts. The yield of phenol decreased after the yield reached a certain 
level over all metal/C catalysts (Figure 3). In particular, it was clearly observed that the formation of 
alkylated phenols such as 2-ethylphenol (2-EP) and 4-ethylphenol (4-EP) over Pd/C and Pt/C 
increased more significantly after the yield of phenol was maximized (Figure 3b,c). The above result 
implies that the alkylation between phenol and ethanol occurs during BPE decomposition, which 
converts the target products to other byproducts depending on the type of noble metal in the catalyst. 

Figure 2. The conversion of BPE over various catalysts at 270 ◦C in supercritical ethanol as a function
of reaction time.

In the main reaction, all metal catalysts had high conversion for 4 h, but conversion rates were
different depending on the catalysts. The Pd/C was superior to other catalysts in terms of the reaction
rate and the yield of target products whereas Ru/C and Pt/C had low reaction rate. AC was slightly
active for BPE conversion but had limitations on the activity of BPE decomposition compared to metal
catalysts. Meanwhile, the type of product was also different depending on the catalysts. The analysis
of the products obtained from BPE was mainly focused on liquid phase products by which distribution
will be addressed more in detail.

2.3. The Effect of Noble Metal over Activated Carbon Support on Product Distribution

The alkylation of liquid phase products is activated by hydrogen derived from supercritical
ethanol over the metal/C catalysts. The yield of phenol decreased after the yield reached a certain
level over all metal/C catalysts (Figure 3). In particular, it was clearly observed that the formation
of alkylated phenols such as 2-ethylphenol (2-EP) and 4-ethylphenol (4-EP) over Pd/C and Pt/C
increased more significantly after the yield of phenol was maximized (Figure 3b,c). The above result
implies that the alkylation between phenol and ethanol occurs during BPE decomposition, which
converts the target products to other byproducts depending on the type of noble metal in the catalyst.
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Figure 3. The selectivity of the quantified liquid phase products after the decomposition of BPE over
Ru/C (a), Pd/C (b), Pt/C (c), and AC (d) at 270 ◦C for 4 h in supercritical ethanol.

The Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed to observe the
secondary reactions of liquid phase products as a function of catalyst and reaction time (Figure 4a,b). As
the reaction proceeds, saturated cyclohexanes which could be produced by hydrogenation of aromatic
compounds were rarely detected. On the other hand, over Pt/C, various alkylated phenols were
produced more abundantly than other catalysts, which indicates that platinum produces hydrogen
more actively from supercritical ethanol among the noble metals as confirmed by gas analysis, as
described later. In the case of AC, dimers such as 2-benzylphenol were produced unlike other catalysts.
Hence, it can be deduced that noble metal also plays a critical role in inhibiting the repolymerization
of mono-aromatic compounds.
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In order to understand the alkylation of phenol during BPE decomposition, phenol was used as a
reactant instead of BPE. The reaction of phenol proceeded for 2 h, considering the reaction time when
BPE was converted to phenol. The GC chromatograms of the products are displayed in Figure 4c.
Except for phenol (as the reactant), a variety of alkylated phenols were mainly identified, which are
similar to the alkylated phenols produced from BPE. It could be inferred that the byproducts during
BPE decomposition reaction are derived from phenol, not toluene. The alkylation of the aromatic
compounds including hydroxyl group is catalyzed by hydrogen arising from supercritical ethanol,
which may act as an electrophile [40]. Likewise, the hydroxyl group of phenol has high activity for
electrophilic substitution reactions. The Pt/C produced larger amounts of various alkylated phenols
than other catalysts with high peak intensities. As in the case of using BPE as a reactant, the peak
intensities of cyclohexanes are too small to quantify over all catalysts. Hence, it could be concluded
that various alkylated phenols as well as 2-EP and 4-EP are produced during BPE decomposition in the
presence of noble metal, and these are derived from the alkylation of phenol in supercritical condition.

Other secondary reactions during BPE decomposition also led to the formation of gas phase
products, with different amounts and distributions depending on the catalysts (Figure 5). However,
AC without metal did not generate sufficient gas phase products to be analyzed. This indicates that
the noble metals catalyze not only the alkylation of liquid phase products but also other secondary
reactions which produce gas phase products. The Pt/C produced the highest amount of hydrogen
among the catalysts, which is in line with the results showing that it had highest pressure during the
reactions among the catalysts (Figure S1). Furthermore, Pt/C converted phenol to alkylated phenols
the most actively, as mentioned earlier. It could be inferred that the formation of hydrogen is also



Catalysts 2019, 9, 158 7 of 13

involved by the alkylation of phenol as well as gasification. Hence, Pt/C which produced the most
hydrogen among the catalysts activates the secondary reactions such as gasification and alkylation
more prominently than other catalysts. Also, the formation of methane was dominant over Pt/C and
Ru/C catalysts. In case of Pd/C, it can be concluded that the gasification was suppressed as compared
with other metal catalysts, whereas the hydrogenolysis of BPE was catalyzed. It is in line with the
result showing that Pd/C had the highest yield of liquid phase products.Catalysts 2019, 9, x FOR PEER REVIEW 7 of 13 
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Figure 5. The amount and distribution of gas phase products after the decomposition of BPE at 270 ◦C,
4 h in supercritical ethanol.

Various aliphatic compounds are derived from self-condensation reactions of supercritical ethanol,
which depends on the catalyst [7,41]. Also, the production of these compounds could have an
influence on the consumption of the solvent. The amount of consumed ethanol after reaction, which
correlated with the amount of produced aliphatic compound, was calculated from the change in the
concentration of n-dodecane used as an internal standard (ISTD). This is explained by the fact that
supercritical ethanol, which is ionized or radicalized by the catalysts, not only reacts with phenol to
produce alkylated phenols but also causes the self-condensation reactions of the ethanol molecules [7].
Figure 6 displays GC-MS chromatograms of the aliphatic compounds over the catalysts in supercritical
ethanol. Formation of these compounds involves types of dehydration like acetalization, Guerbet
reaction, esterification, and etherification, which are named depending on the functional group of the
compounds. [42–46]. Then, the products from the dehydration of ethanol are evolved as longer or
more branched products through subsequent alkylation of the aliphatic compounds [43]. A prediction
of these pathways can also be reasonable in the sense that compounds with longer or branched
chains were produced in smaller amounts. The Pd/C and Pt/C produced a large amount of aliphatic
compounds, and Pt/C produced additional long-chain aliphatic compounds through subsequent
alkylation, in particular. However, Ru/C and AC rarely produced other compounds except for 1,
1-diethoxy ethane (4). It suggests that Ru/C showed less activity in the conversion of ethanol as well
as the conversion of aromatic compounds.
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2.4. The Plausible Pathways Of BPE Decomposition

The reaction pathways of BPE decomposition by metal/C are suggested in Figure 7. All kinds
of noble metal-based catalysts increase the conversion of BPE with hydrogen from supercritical
ethanol. Various alkylated phenols as well as 2-EP and 4-EP were produced via BPE decomposition in
supercritical ethanol over all metal/C catalysts, implying that the alkylation of the products is activated
by hydrogen derived from supercritical ethanol over all metal/C catalysts. In particular, Pt/C promotes
secondary reactions, resulting in the formation of alkylated phenols from phenol and the production
of various kinds of aliphatic compounds via the self-condensation reactions of ethanol. Meanwhile,
given that cyclohexanes were not observed during BPE and phenol decomposition, hydrogenation
of aromatic compounds hardly occurs over metal/C in supercritical ethanol. In addition, it can be
confirmed that the gasification of BPE and/or ethanol over Ru/C and Pt/C is accelerated as it was
already confirmed through the pressure profiles during the reaction (Figure S1). In case of Ru/C,
the total amount of identified products was the lowest, although BPE conversion reached more than
95%, which provides evidence that Ru/C also transforms BPE to other unidentified byproducts in
supercritical ethanol. Thus, it can be deduced that the reaction pathways of BPE decomposition depend
on the noble metals.
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3. Materials and Methods

3.1. Materials

Benzyl phenyl ether (BPE, 97%) and phenol (≥99.5%) as model compounds were purchased from
Alfa Aesar (Seoul, Korea), and Sigma-Aldrich (Yongin, Korea), respectively. Ethanol (Sigma-Aldrich,
200 proof, ACS reagent, ≥99.5%) was selected as a solvent and a hydrogen donor in supercritical
condition. Absolute ethanol (HPLC grade) purchased from Fischer Chemical (Seoul, Korea) was used
for GC-FID calibration and TEM sample preparation. Toluene, 2-ethylphenol, and 4-ethylphenol of
analytical grade from Sigma-Aldrich were used as received.

3.2. Catalyst Preparation

Carbon-supported catalysts such as 5 wt% Ru/C, 5 wt% Pd/C, and 5 wt% Pt/C were purchased
from Alfa Aesar. They were dried in an oven overnight and used without further treatment. Activated
carbon was purchased from Sigma-Aldrich and was used in the same way as described above.

3.3. Characterization

Physical properties of the catalysts were analyzed by using N2 adsorption-desorption apparatus
(Micrometritics ASAP 2010, Norcross, GA, USA) at constant temperature (77 K). Prior to analysis, all
samples were pretreated at 200 ◦C for at least 4 h under the evacuation condition. A transmission
electron microscope (TEM, JEM-2100F, 200 kV, JEOL Ltd., Tokyo, Japan) was used to analyze the size
distribution of metal particle in the sample. For TEM analysis, a solution prepared by dispersing a
small amount of catalysts in absolute ethanol was dropped on a carbon-coated Cu grid and then dried
at room temperature. This process was then repeated 3 to 5 times.

3.4. Experimental Setup and Procedure

A 50 mL stainless-steel high-pressure autoclave was used for the reaction of lignin-related model
compounds. Briefly, 0.5 g of reactant and 0.2 g of catalyst were charged with 25 mL of ethanol in the
autoclave. The reactor was purged with nitrogen to remove air. Prior to the reaction, nitrogen was
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pressurized to a total pressure of 10.5 bar at room temperature. A certain amount of nitrogen was used
as a gaseous ISTD for analysis of gas produced during the reaction. The autoclave was heated to the
target temperature at the rate of 12 ◦C/min while stirring at 500 rpm for 0–8 h. After the reaction, the
reactor was quickly quenched to below 130 ◦C in ice water and the product was extracted when it
reached 40 ◦C. Considering that the supercritical condition of ethanol is about 241 ◦C and 6.1 MPa,
the target temperature of the supercritical reaction was set to 270 ◦C and the target temperature of the
non-supercritical reaction was set to 240 ◦C. The conversion, the selectivity, and the yield for aromatic
compounds were calculated by using the following equations:

Conversion (X, %) = {(weight of reactant)reacted/(weight of reactant)in} × 100 (1)

Selectivity (S, %) = {(weight of product)/(weight of reactant)reacted} × 100 (2)

Yield (Y, %) = (X × S)/100 (3)

3.5. Product Analysis

Gas chromatography-mass spectrometry (Agilent 6890N, DB-5ms, 30 m × 0.25 mm × 0.25 µm,
Santa Clara, CA, USA) and GC-FID (Agilent 6890A, DB-5, 60 m × 0.25 mm × 0.25 µm) analysis of
liquid phase products were conducted without any dilution. In this work, n-dodecane was used as an
ISTD for GC-FID analysis. Then, the concentration change ratio before and after reaction of ISTD was
utilized as a constant to correct the amount of solvent changed by supercritical condition. The gas phase
products were analyzed by GC-TCD (Agilent 6890N, Carboxen 1000, 30 m × 0.53 mm × 0.25 µm).

4. Conclusions

Solvolysis over the carbon-supported noble metal catalysts was applied for the decomposition of
BPE in supercritical ethanol, and plausible reaction pathways were proposed. Hydrogen was generated
via reforming of supercritical ethanol over the catalysts and the generated hydrogen was used for
cleavage of α–O–4 bond in BPE. It was revealed that noble metals such as Ru, Pd, and Pt loaded
on activated carbon can effectively convert BPE in supercritical ethanol. The highest yield of target
products (phenol and toluene, ca. 59.3%) was obtained at 270 ◦C for 0.5 h over 5 wt% Pd/C, which
also showed a faster reaction rate compared with other catalysts. The Pt/C catalyzed the production
of alkylated phenols, whereas Ru/C suppressed the alkylation of the aromatics. The carbon-supported
catalysts with Pt or Pd metals produced various aliphatic compounds through the self-condensation
reactions of supercritical ethanol. In particular, it was found that Pt/C produced more aliphatic
compounds with longer chains than other catalysts. Meanwhile, no cyclohexanes were produced over
all catalysts and gas products were produced more abundantly over Pt/C and Ru/C than over Pd/C
and AC. Further studies are needed to understand the reaction mechanism on the surface of noble
metal catalysts. At the same time, there will be new opportunities for the design of a heterogeneous
catalyst for more selective production of value-added chemicals in the biorefineries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/158/s1.
Figure S1: Pressure profiles during the decomposition of BPE over the catalysts at 270 ◦C for 4 h in supercritical
ethanol; Table S1: The selectivity of products and the yield of target products during BPE decomposition over
various catalysts at 270 ◦C in supercritical ethanol as a function of reaction time.
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