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Abstract: Single-atom catalysis has rapidly progressed during the last few years. In 2017, single-atom
catalysts (SACs) were fabricated with higher metal loadings and designed into more delicate
structures. SACs also found wide applications in C1 chemical conversion, such as selective oxidation
of methane and conversion of carbon dioxide. Both experimental characterizations and computational
modeling revealed the presence of tunable interactions between single atom species and their
surrounding chemical environment, and thus SACs may be more effective and more stable than
their nanoparticle counterparts. In this mini-review, we summarize the major achievements of
SACs into three main aspects: (a) the advanced synthetic methodologies, (b) catalytic performance
in C1 chemistry, and (c) strong metal-support interaction induced unexpected durability. These
accomplishments will shed new light on the recognition of single-atom catalysis and encourage more
efforts to explore potential applications of SACs.

Keywords: single-atom catalysis; catalyst fabrication; C1 chemical conversion; strong metal-support
interaction; reaction mechanism

1. Introduction

Single-atom catalysis, which was proposed a few years ago [1], has now become a new frontier
in heterogeneous catalysis [2]. Compared with supported nanoparticle (NP) catalysts that consist
of various kinds of active sites (corners, defects, etc.) [3], “single-atom catalysts” (SACs), containing
only individual metal atoms on the solid support, can provide uniform, structurally well-defined
active sites [4]. In recent years single-atom catalysis has attracted considerable attention and made
very rapid progress [5–9]. Wang et al. summarized recent experimental and computational reports
to illuminate the bonding in SACs and its relationship with catalytic performance [10]. During 2017,
Liang et al. moved and controlled the atoms on the surface with the aid of a scanning tunneling
microscope (STM), helping to understand catalysis at single-atom level [11]. In addition, various other
remarkable accomplishments have come to light in 2017. First, synthetic approaches became more
rational to tune the electronic property of active metal species and construct ordered morphology of
support. Second, SACs found more applications in C1 chemical (methane, methanol, CO2, and CO)
conversion. Moreover, SACs exhibited unexpected durability compared with the NP counterparts,
which can be attributed to the unusual strong interaction between metal atoms and supports. Last
year, we summarized the major progress in 2015 and 2016 [12]. In this review, we would like to talk
about the above respects in detail for the convenience of readers in order for them to know about the
most recent progress.
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2. The Preparation Strategies of Single-Atom Catalysts (SACs)

The fabrication of stable SACs has, at least at the present state, been considered as a great challenge
since single-atom catalysts are believed to be somewhat thermodynamically unstable. However, some
cases have proved that this may not be true. For example, Au atoms were found to form strong
covalent metal-support interaction with FeOx which showed superior reaction durability than their
NP counterparts [13]. Others reported that heating Pt NP with CeO2 support at high temperature in
the presence of oxygen can generate Pt SACs [14,15]. Therefore, appropriate preparation methods to
synthesize stable SACs with unique structures are summarized below.

2.1. SACs with Ordered Structure

Thermal treatment, usually under an inert atmosphere, of carbon-based materials with uniform
pore sizes and controllable shapes has been gradually developed as a reliable strategy to prepare
SACs with the desired morphology. Li et al. anchored Fe atoms on the inner wall of hollow N-doped
carbon (CN) tubes by sacrificing nanorod template [16], as shown in Figure 1. The synthetic procedure
included three steps: (1) coating ferric oxide nanorod with organic polymers; (2) carbonizing at high
temperature; and (3) etching the metal oxide with acid. The Fe SAC showed excellent activity toward
the hydroxylation of benzene with 45% conversion and 94% phenol selectivity. In addition, this
methodology can be applied to a group of transition-metal (M) single atoms (SA) dispersed on CN
materials, the so-called SA-M/CN (M = Fe, Co, Ni, Mn, FeCo, FeNi), by varing metal precursors
or polymers.
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promising precursors to obtain SACs [17]. Wu et al. prepared a MOF-derived single atom Fe catalyst 
by directly bonding Fe ions to imidazolate ligands [18]. The well-dispersed FeN4 active sites are 
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Increasing thermal-treat temperature leads to more active sites and enhanced ORR activity.  

Ru coordinates with the skeletons of UiO-66 MOFs can generate good hydrogenation SACs 
[19]. In Figure 2, Cao et al. prepared a Ru/ZrO2@C SAC with 0.85 wt% Ru loading and compared 
with commercial Ru/C in converting levulinic acid (LA) to γ-valerolactone (GVL). Full conversion of 
LA and quantitative yield of GVL are achieved in both Ru/ZrO2@C and Ru/C catalyst. However, no 
matter whether in water or in high protic aqueous solution, Ru/ZrO2@C displayed almost the same 
catalytic performance upon multiple recycling, suggesting Ru atoms were highly dispersed on 
nanotetragonal ZrO2, and embedded in the amorphous carbon. Temperature programmed 
reduction (TPR) results showed that the strong metal–support interaction between Ru and ZrO2 
may be in favor of this excellent stability [20]. 
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Metal organic frameworks (MOFs), bridging metal atoms with ligands to form high surface area,
rich micropore, three-dimensional ordered crystal frameworks, have been demonstrated as promising
precursors to obtain SACs [17]. Wu et al. prepared a MOF-derived single atom Fe catalyst by directly
bonding Fe ions to imidazolate ligands [18]. The well-dispersed FeN4 active sites are embedded
into porous carbon to prevent agglomeration in an oxygen reduction reaction (ORR). Increasing
thermal-treat temperature leads to more active sites and enhanced ORR activity.

Ru coordinates with the skeletons of UiO-66 MOFs can generate good hydrogenation SACs [19].
In Figure 2, Cao et al. prepared a Ru/ZrO2@C SAC with 0.85 wt% Ru loading and compared with
commercial Ru/C in converting levulinic acid (LA) to γ-valerolactone (GVL). Full conversion of
LA and quantitative yield of GVL are achieved in both Ru/ZrO2@C and Ru/C catalyst. However,
no matter whether in water or in high protic aqueous solution, Ru/ZrO2@C displayed almost the
same catalytic performance upon multiple recycling, suggesting Ru atoms were highly dispersed on
nanotetragonal ZrO2, and embedded in the amorphous carbon. Temperature programmed reduction
(TPR) results showed that the strong metal–support interaction between Ru and ZrO2 may be in favor
of this excellent stability [20].
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2.2. Single-Atom Alloy (SAA)

Single-atom alloy (SAA) presents one type of important SACs, as suggested in previous work and
review [12,21]. Pei et al. extended the scope of Pd-IB Metal SAA system and chose Cu as the partner of
Pd [22,23]. The Cu-alloyed Pd SAA (CuPd0.006/SiO2) showed ∼85% selectivity at 100% conversion
for the selective hydrogenation of acetylene to ethylene under a simulated front-end hydrogenation
process in industry. However, direct imaging of isolated Pd on Pd-Cu SAA is not an easy task due to
the close Z contrast between these two elements, so Extended X-ray absorption fine structure (EXAFS)
and density functional theory (DFT) calculations were used to identify the neighboring environment of
Pd atoms. Besides, the surface property of Pd/Cu SAA can be investigated by polarization-dependent
reflection absorption infrared spectroscopy (PD-RAIRS) using CO as a probe molecule [24]. The surface
Pd coverage can even be quantified from the CO peak area of PD-RAIRS and Auger electron spectra
(AES). However, the calculated coverage is different because the detected electrons with AES come
from both surface and subsurface Pd atoms, while RAIRS only detected CO bounding to Pd atoms at
the immediate surface.

Chen et al. dispersed Pt atoms on the surface of Ni particles forming Pt/Ni SAA by the galvanic
reduction method. Pt/Ni SAA exhibited relatively high activity for the hydrolytic dehydrogenation of
ammonia−borane, due to the synergistic effect between Pt and Ni [25]. A kind of stable molten metal
alloy catalyst for the pyrolysis of methane into hydrogen and carbon was synthesized by dissolving
active metals (Ni, Pt, Pd) in inactive low–melting temperature metals (In, Ga, Sn, Pb) [26]. During the
reaction, the insoluble carbon floats to the surface where it can be skimmed off, making the catalysts
anti-coking. The molten alloys are called “liquid SAA” for the active metals are atomically dispersed.

2.3. Support Effect

Apart from changing the support structure or doping a second metal to form SAAs, the surface
properties, e.g., defects, components, or impurities, of support can also influence SACs’ catalytic
behavior. Yang et al. studied the support effects in ORR by separately depositing Pt atoms on TiN and
TiC support with the same configuration. The Pt1/TiC catalyst showed higher activity and selectivity
toward H2O2 via a 2 e− pathway, whereas the Pt1/TiN surface was poisoned by strong affinity to
oxygen species. In this case, the importance of supports is proved since supports also participate in the
surface reaction [27].

2.3.1. Functional Groups on The Support

Carbon-based materials usually utilize surface O, N, and S-containing functional groups to anchor
metal sites. It is found that Pt/C interaction strengthened on the carbon support with higher oxygen
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concentrations, which is more dependent on charge transfer rather than frontier–orbital hybridization.
In general, the higher concentration of oxygen-containing groups (OCGs) is in favor of the stability
and catalytic activity of the catalyst. DFT calculations suggested that tailoring the carbon support
by OCGs or other light-element can provide a new route to improve the tolerance of Pt/C catalysts
against CO poisoning [28] and agglomeration [29]. Actually, heat-treating cobalt salts and graphene
oxide in ammonia atmosphere can generate cobalt SAC on nitrogen-doped graphene (Co-NG), with up
to 7.94 at% nitrogen concentration. The Co-NG catalyst shows high activity and excellent stability for
selective alcohol oxidation. Nitrogen promoted a metal-support interaction by electron transfer [30].
A synergetic effect between doped N and isolated Pt sites was also found for a carbon black-supported
Pt single-atom electrocatalyst with CO/methanol tolerance for ORR. The strong interaction between
Pt and N can even prohibit Pt oxidation in air. The acidic single-cell with such a catalyst as cathode
exhibited power density up to 680 mW/cm2 at 80 ◦C [31]. A high-density atomically dispersed Fe
anchored on S-doped NC ORR catalyst (Fe/SNC) was synthesized [32]. The incorporated sulfur,
emerging as a thiophene-like structure (C–S–C), plays an important role in reducing the electron
localization around Fe centers, and facilitates the complete 4 e− ORR in acidic media. The above
examples demonstrated the outstanding characteristics of heteroatom (O, N, S) doped carbon supports
as ideal carriers for highly dispersed metal centers.

2.3.2. Surface Defects of Support

Surface defects have been intensively investigated on two-dimentional materials such as boron
nitride (BN) and MoS2. Chen et al. investigated transition metals (Mo, Ru, Rh, Pd, and Ag) singly
dispersed on the defective BN monolayer with a boron monovacancy as N2 fixation electrocatalysts by
DFT computations. Results suggested that Mo single atom supported by a defective BN nanosheet may
be highly active for N2 fixation at room temperature [33]. Isolated Co atoms are covalently bonded
to sulfur vacancies on MoS2 monolayer sheets forming Co–S–Mo interfacial sites. This Co SAC can
reduce the hydrodeoxygenation reaction temperature from the typically 300 ◦C to 180 ◦C [34].

2.4. External Forces Induced SAC Synthesis

2.4.1. Iced Photochemical Reduction

Apart from the above thermal-treatment, ultraviolet (UV) irradiation of frozen H2PtCl6 aqueous
solution also can generate atomically dispersed Pt stabilizing on various carbon-based or metal-oxide
substrates. The ice lattice confined Pt precursor migration and prevented the nucleus formation
of photochemical reduction products Wang et al. compared traditional UV irradiation with UV
irradiation accompanying iced-photochemical process. Obviously, the traditional UV irradiation of
H2PtCl6 aqueous solutions (as shown in the upper line) produced Pt nanocrystals formed by the
agglomeration and nucleation of Pt atoms. However, Pt single atoms dispersed in ice could be attained
by exposing the frozen solution of H2PtCl6 to UV irradiation with a low temperature to reduce Pt4+.
The Pt1/mesoporous carbon material prepared following the new UV irradiation process is an effective
electrocatalyst for the hydrogen evolution reaction (HER) with an overpotential of only 65 mV at a
current density of 100 mA/cm2, superior to state-of-the-art platinum/carbon. This iced-photochemical
reduction can be extended to gold and silver [35].

2.4.2. Electrodeposition

Electrons were also used as driving force for active metal deposition. Bard et al. used femtomolar
concentrations of PtCl62− to limit the Pt atoms plated on the electrode. Isolated single Pt atoms
to 9-atom small clusters were supported on an inert bismuth ultramicroelectrode [36]. Taking the
potential at a certain current density as a measure of the relative rate of the HER, they found that
the potential shifted positively as the Pt cluster size increased, thus single atoms showed a larger
overpotential than bulk Pt. A similar potential-cycling method was used to synthesize Pt SAC on



Catalysts 2019, 9, 135 5 of 12

CoP-based nanotube [37], which exhibited HER activity comparable to commercial Pt/C in neutral
media. The Pt mass activity of SAC is 4 times of that of Pt/C, and the stability is also much better.
These results provide an opportunity to fabricate catalytic structures on an atom-by-atom basis and
directly evaluate catalytic activity after deposition.

3. Novel Applications of SACs

Compounds containing only one carbon atom, such as methane, carbon monoxide, carbon
dioxide, and methanol, are classified as C1 chemicals. Direct conversion of simple C1 compounds
into high-valued chemicals can be counted as one of the major challenges in chemical engineering.
In 2017, single-atom catalysis was applied as an advanced strategy in this research field. For example,
Rh SACs were used to activate methane, the most inert C1 chemical, forming methanol and acetic acid.
Oxygen-containing C1 chemicals, such as formic acid can be reformed to generate H2 by the aid of
Pt SACs. Moreover, SACs were even capable of completing the traditional homogeneous catalyzed
process with satisfying performance. Once again, single-atom catalysis was demonstrated to be the
bridge between homogeneous and heterogeneous catalysis [38,39].

3.1. CH4 Conversion

Methane is the main constituent of natural gas and biogas. Recently it has also been found in
“flammable ice” at the continental slopes of many oceans including the South China Sea. Methane, in
view of an abundant new source of energy with vast reserves and resources, has been regarded as a
secure supply of chemicals and fuels in the future. However, as the most inert C1 chemical, activation of
methane is a challenging process of great importance in modern catalysis [40]. Flytzani-Stephanopoulos
et al. fabricated a kind of isolated rhodium catalysts anchored on a zeolite or TiO2 support, which
can catalyze the direct conversion of methane to methanol or acetic acid in aqueous solution [41].
They prepared the catalysts using simple heat-treating protocol on zeolite (ZSM-5) and ultraviolet
irradiation on TiO2. The acidity of the support can change the final product (methanol or acetic acid).
Transformation from methane to oxygenates needs a two-step pathway. First, activation of methane
occurs on the isolated Rh+ species forming Rh–CH3 in the presence of O2, which then is transformed
via two routes: O insertion to generate methanol or CO insertion to generate acetic acid. Following the
hydrolysis step, single Rh+ can take part in the next catalytic cycle. Theoretically, Rh atoms dispersed
on ZrO2 surface (Rh1/ZrO2) can also activate methane to energetically stabilize -CH3 intermediates.
After optimizing conditions, Rh1/ZrO2 selectively oxidized methane to methanol in H2O2 aqueous
solution, circumventing the complete oxidation to CO2 with Rh NPs [42]. These works demonstrated
that selective and direct conversion of methane to specific oxygenates can occur on the atomic metal
sites and provided new insight into the development of heterogeneous catalyzed industrial processes.

3.2. Methanol and Formic Acid Reforming

Two supported Pt SACs were used in the reforming reaction of methanol or formic acid to
generate H2, a clean energy. Generally speaking, the dehydrogenation reaction always competes with
dehydration reaction which forms CO and H2O. Pt and Pd catalysts are active for both dehydrogenation
and dehydration, while Cu surfaces are highly selective toward dehydrogenation. Sykes et al.
substituted single Pt atoms into the Cu lattice and found the dehydrogenation of formic acid to
CO2 and H2 was highly selective [43]. Pt atoms dispersed over α-MoC showed outstanding hydrogen
production activity in the low-temperature aqueous-phase reforming of methanol (APRM) process [44].
When Pt loading decreased to 0.2%, the atomically dispersed Pt became the dominant species on α-MoC
after high-temperature activation process, generating an exceptionally high density of electron-deficient
Pt1 sites for the adsorption/activation of methanol. Meanwhile, α-MoC shows high water-dissociation
activity, producing abundant surface hydroxyls to accelerate the reformation of intermediates at the
interface between Pt and α-MoC. Both effects make Pt/α-MoC as a catalyst with excellent efficiency
and good stability in the base-free APRM process at working temperature of 150–190 ◦C.
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3.3. CO2 Conversion

The vast majority of anthropogenic emission of CO2, the most notorious greenhouse gas, comes
from combustion of fossil fuels. If CO2 emission continues at the present rate, the Earth’s surface
temperature would probably exceed historical values as early as 2047, which will definitely harm the
worldwide ecosystems and biodiversity [45]. DFT studies suggested the possibilities of converting
CO2 to other chemicals by SACs [46,47]. Nanoscaled Cu, although it always suffers from oxidation,
has previously been identified as an active metal for CO2 conversion. Cu atoms confined in Pd
lattice exhibit enhancement for CO2-to-CH4 conversion by two major effects: (1) providing the paired
Cu−Pd sites for the enhanced CO2 adsorption and the suppressed H2 evolution; (2) elevating the
d-band center of Cu sites for the improved CO2 activation. Consequently, Pd7Cu1−TiO2 achieved
the highest photo-catalytic performance with 95.9% selectivity [48]. In electroreduction of CO2 to CO,
a high loading Ni SAC reached a TOF value of 5273 h−1, with a Faradaic efficiency over 71.9% at an
overpotential of 0.89 V and a current density of 10.48 mA/cm2 [49].

Layered double hydroxides (LDHs) are superior base catalysts, because the OH−groups are 6-fold
coordinated with divalent and trivalent cations. An isolated Ru catalyst was synthetic on the surface of
LDH and utilized to hydrogenate CO2 into formic acid in a basic medium [50]. The isolated Ru species
with rich electron were generated with the help of strong Bronsted OH− ligands (Figure 3), which are
in favor of CO2 adsorption near the active Ru center. The Ru/LDH SAC obtained comparable or higher
turnover number (TON) and turnover frequency (TOF) values than any other reported heterogeneous
catalyst systems. The catalytic cycle for CO2 hydrogenation was proposed as below.
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3.4. CO Conversion

CO oxidation and water gas shift reactions (WGSR) have been extensively investigated in
heterogeneous catalysis due to their importance in both industrial applications and fundamental
studies. Some reviews about single-atom catalysts in this field have provided deep insight [2,9,51,52].
In 2017, both DFT studies [53] and experimental research had continuous progress in WGSR reaction.
Guan et al. developed two SACs for WGSR. In Rh1/TiO2 system, Rh single atoms promoted the
formation of oxygen vacancies on the TiO2 support and prohibited the H2 dissociation, leading to an
overall 95% CO conversion with no methanation at 300 ◦C, even under CO2- and H2-rich stream [54].
Similarly, Pd/FeOx SAC also facilitated oxygen vacancies formation and proceeded through a redox
mechanism with low activation energy [55].

CO oxidation is one of the most representative probe reactions in single-atom catalysis, and both
activitity and mechanism were studied in isolated Pt and Pd on various supports [56], e.g., CeO2 [57–59],
Al2O3 [60,61], and MgO [62]. Lou et al. systematically investigated the support effects for the CO
oxidation reaction catalyzed by isolated Pt atoms on metal oxides with different oxidation-reduction
potential: Fe2O3, ZnO, γ-Al2O3. They revealed that the catalytic performance of Pt SACs is affected
mainly by the support properties. Both −OH groups on support surfaces and the added H2O improve
the activity of these three SACs significantly [63]. The same group also observed the movement of Pt
atoms in high-loading Pt/Fe2O3 SAC at 250 ◦C under different gas environments and found: (1) O2 did
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not sinter the Pt single atoms, (2) both CO and H2 facilitated the movement of the Pt atoms, especially
in the presence of H2O. Therefore, interaction between metal species and the support needs to be strong
enough to resist the possible sintering under working conditions [64]. Christopher et al. demonstrated
the isolated Pt on certain reducible support (TiO2) provides the most efficient metal utilization [65].
Although there have been many reports about the successful preparation of SACs and their supreme
performance, we should still mention that in some cases, metal clusters/NPs may exhibit higher activity
than their SAC counterparts. For example, FeOx supported Ir sub-nanometer clusters exhibited higher
activity for CO oxidation with or without the presence of H2 than Ir atoms [66].

3.5. Photoelectrocatalytic Reactions

Currently, electrocatalysts are playing a more and more vital role in the continuing development
of electrochemical storage and conversion devices. However, highly efficient electrocatalysts need
more rational control of size, shape, composition and structure. By the aid of rapidly emerging studies
on SACs, novel Pt-group and non-noble metal electrocatalysts have been applied in oxygen reduction
reaction [67,68], oxygen evolution reaction [69], hydrogen evolution reaction [67,70], and other related
reactions. The unique single-atom dependent performance in electrocatalysis was summarized in a
good recent review [71].

Photo-driven remediation of water contamination is a promising strategy for environmental
protection. Ag SACs supported on carbon-based materials were independently reported by two
groups [72,73]. One showed that combining singly-dispersed Ag and CQDs onto ultrathin C3N4

can form a novel ternary photocatalyst with enhanced photo-response, which offers broad-spectrum
(from UV to near-infrared light) utilization of solar light for the degradation of naproxen [72]. The
other group took advantage of the synergistic effect between single-atom Ag and C3N4 to prepare Ag
functionalized mesoporous graphitic carbon nitride hybrid, which showed an excellent performance
for the degradation of bisphenol A [73].

3.6. Heterogenization of Homogeneously Catalyzed Processes

Alongside the routine heterogeneous catalyzed abatement of environmental contaminants [74,75],
SACs were reported to exhibit good performance in traditionally homogeneous catalytic processes,
such as hydroformylation [38,39], hydrosilylation [76], C–H bond activation/oxidation [77] and C–C
bond coupling [78,79]. SACs are, thus, predicted to be the bridge connecting homo- and heterogeneous
catalysis, as summarized in a minireview [80]. Gold/carbon (Au/C) catalysts comprising single-site
cationic Au entities were applied in acetylene hydrochlorination. In situ X-ray absorption fine structure
study under reaction conditions showed that the high activity was correlated with the Au(I)/Au(III)
ratio, so a mechanism based on a redox couple of Au(I)-Au(III) species was proposed by computational
modeling [81].

4. Strong Metal-Support Interaction of SACs

The component and structure of active sites on SACs may be quite different from those on
NPs, resulting the diverse catalytic activity and reaction mechanism. For example, DFT studies
suggested a positively charged single Pt atom on TiO2(110) may exhibit very high WGSR activity at
low-temperature range, for TiO2-supported Pt clusters and Pt atoms provided different active sites [82].
Li and coworkers successfully prepared catalyst of singly dispersed Rh atoms anchored on the inert
SiO2 support. The calculation results also confirmed that the Rh SAC and Rh NPs underwent different
reaction mechanisms [83]. The unique interaction between isolated metal and support may be the
origin for diverse catalytic performance. A quantitative profile for exploring metal–support interaction
was provided by considering the highest occupied state in single-atom Rh1/VO2 catalyst [84], since
for this Rh SAC, the impacts of size, shape, and orientation were negligible of the metal particles at the
metal–support interface. At 341.0 K, VO2 undergoes a phase transition between metal and insulator.
The highest occupied state of Rh has a significant influence on determining the different apparent
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activation energies of the two phases of VO2. Thus, changing the highest occupied states may also be
effective for other metals to tune catalytic properties in NH3BH3 hydrolysis reaction.

Owing to the strong metal–support interaction, SACs exhibited unexpected durability for
electrocatalytic ORR in an acidic solution [85], and photocatalyzed water splitting [86]. Al2O3 is
a common support for Pt in industrial and environmental applications. Yan et al. applied a modified
sol-gel solvent vaporization self-assembly method to prepare an atomically dispersed Pt catalyst.
Pt atoms strongly anchored in the inner surface of mesoporous Al2O3, staying in a four-oxygen
coordination mode and being stabilized by coordinatively unsaturated pentahedral Al3+ centers [87].
This Pt SAC maintained CO oxidation activity for one month. It was also highly stable in selective
hydrogenation under extreme conditions, providing firm evidence that SACs may be more durable than
nanocluster/NP catalysts under working conditions. In conclusion, tuning metal–support interaction
is an effective strategy for designing superior catalysts for various reactions.

5. Summary

In conclusion, much progress has been made in the field of single-atom catalysis, especially for the
rational design of novel catalysts and continuous expansion of reaction scopes. However, we should
note that there are still numerous gaps between theoretical calculations and experimental results, so
it is necessary to conduct advanced modeling design, parameter optimizing, and arithmetic system
to improve theoretical calculations. Characterization to identify the singly dispersed species on the
support has been developed as a reliable method combing electron microscopic imaging, infrared
and electronic spectrum analysis. But the real structure or component of active sites during catalytic
process are still concealed in the “black box”. In addition, a quantitative explanation of interactions
between active metal and neighboring atoms on the support is almost a blank, which hampers the
thorough understanding of the true nature in single-atom catalysts.
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