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Abstract: To overcome the rapid deactivation of conventional ZSM-5, novel nanosheet MFI zeolites,
with different Si/Al molar ratios were well fabricated. It was found that Si/Al molar ratios, do
not just affect acid properties, but also determine the morphologies of nanosheet MFI zeolites by
changing a-c plane areas of zeolite nanosheets. In reaction of gas phase glycerol dehydration to
acrolein, the nanosheet MFI zeolites were much more active and stable than conventional ZSM-5
catalysts, owing to their suitable acidity and unique nanosheet structure. For nanosheet MFI zeolite,
with Si/Al = 50 (NMZ-50), the conversion of glycerol is higher than 99% in the initial 12 h, with an
acrolein selectivity of 86.6%, better than most previous reports. This superior stability of NMZ-50 can
be ascribed to its low coke deposition rate and improved coke tolerance capacity. Additionally, it
is interesting to find that Al contents do not just simply affect acid properties, but also determine
morphologies of nanosheet MFI zeolites, and thus influence catalytic performance.
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1. Introduction

With the depletion of petroleum resources and growing concerns about environmental issues,
increasing attention has been paid to the utilization of renewable resources, such as plant biomass [1,2].
As a main co-product in biodiesel production, glycerol is an important renewable resource derived
from biomass [3–6]. Despite many applications in cosmetics, pharmaceuticals, and the tobacco industry,
after expensive purification processes, glycerol production surplus is still a big problem [7,8]. In this
context, upgrading glycerol to value-added chemicals becomes an urgent task, but with a bright future.
Acrolein, which can be produced by the dehydration of glycerol, is considered a versatile intermediate
for producing acrylic acid or acrylates, detergents, superabsorber polymers, etc. [9,10]. However,
acrolein is currently manufactured from propylene, a petrochemical product [11,12]. Therefore, the
sustainable production of acrolein from abundant glycerol is a promising technology.

In recent years, a wide range of solid acid catalysts were employed for gas phase dehydration of
glycerol to acrolein, such as transition metal oxides, heteropoly acids (HPAs), zeolitic catalysts, and
so on [10,13–27]. Among them, zeolites, like HZSM-5 [21], mordenite [28], ITQ-2 [7], etc. received
significant attention for their tunable acid properties and unique topologies.

HZSM-5 zeolite (MFI topology) has a three-dimensional 10-membered ring structure, consisting
of straight (5.3×5.6 Å2) and sinusoidal (5.1×5.5 Å2) channels with intersections, which has been
successfully applied in many petrochemical processes [29]. Meanwhile, recent research shows that
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HZSM-5 zeolites achieve high activity in gas phase dehydration of glycerol [28,30–33]. Compared
with other catalysts (Beta, mordenite, MCM-22, ITQ-2, etc.), it is more flexible to adjust the
acidity and morphology of HZSM-5. Thus, HZSM-5 becomes the most studied zeolites in glycerol
dehydration [9,21,34]. However, the single micro-channels in normal HZSM-5 suppress mass
transfer, form coke rapidly, and result in fast deactivation by covering acid sites or blocking zeolite
channels [21,34–36]. Jia et al. [21] reported that the enhanced performance of nanosized HZSM-5 was
ascribed to its short micropores in comparison with bulk one. Meanwhile, zeolites with hierarchically
porous structures have also been introduced to glycerol dehydration process. Hierarchically-structured
zeolites provide secondary networks of meso- and/or macro- pores and possess advantages associated
with each level of porosity [37]. Zhang et al. [34] investigated four types HZSM-5 zeolites with a
series of mesopore architectures, which are different from each other in the properties of mesopore
size, amount, distribution, and connectivity. Their results show that HZSM-5 with the open and
interconnected mesopore architectures is superior to the closed one.

Lately, nanosheet MFI zeolites with only several nanometer thickness along the b-axis dimension
have been reported as active and long-lived catalysts in methanol-to-gasoline/-propene. Their large
external surface and effective mass transfer contribute to enhanced performance [38–40]. As discussed
above, coke formation is the main reason for catalyst deactivation in glycerol to acrolein, so the
nanosheet MFI zeolites might be applied to glycerol dehydration as excellent candidates. In this work,
we first report on the superior catalytic performance of nanosheet MFI zeolites in gas phase dehydration
of glycerol to acrolein. The conventional particle type MFI zeolites were made for comparison. It needs
to be emphasized that the effects of Si/Al ratio on morphology, acidity, and catalytic performance of
nanosheet MFI zeolites have been attentively explored.

2. Results and Discussion

2.1. Characterization Results

Powder X-ray diffraction patterns in Figure 1 have confirmed that all the synthesized NMZ-X
and CMZ-X samples are well-crystallized zeolites with MFI topology. Comparably, only h0l reflections
at 7.9◦, 8.9◦, 14.8◦, 15.9◦, 17.8◦, 23.1◦, 24.0◦, 26.8◦, and 30.0◦ [39] are sharp enough to index for the
nanosheet MFI zeolites (Figure 1b). The result indicates that all NMZ-X samples possess coherent
domains with wide a-c planes and extremely small framework thickness along b-axis [39,40].
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Figure 1. X-ray diffraction (XRD) patterns of (a) CMZ-X and (b) NMZ-X.

SEM was employed to characterize zeolite morphologies (Figure 2). For CMZ-X synthesized with
TPAOH as the structure directing agent, the zeolites appear in uniform particles of about 400 nm with
intergrowth cylindroid (Figure 2a–c). The Si/Al molar ratio of NMZ-X has a great influence on the
morphologies of nanosheet MFI zeolites. NMZ-100 (Figure 2f) looks like multi-lamellar stacking of
MFI nanosheets with intergrowth in three-dimension, in well agreement with the report by Choi’s
group [40,41]. The size of NMZ-100 particles is about 1.5 µm assembled by 30–40 nm thickness lamellar
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stacking. Meanwhile, NMZ-50 shows similar lamellar staking of MFI nanosheets, but the particle
size (500 nm) and lamellar stacking thickness (about 10 nm) are much smaller (Figure 2e). However,
NMZ-30 seems like cotton balls and we cannot distinguish the MFI nanosheets from the SEM image
(Figure 2d).
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Figure 2. Scanning electron microscope (SEM) images of (a) CMZ-50, (b) CMZ-100, (c) CMZ-150, (d)
NMZ-30, (e) NMZ-50, and (f) NMZ-100.

As implied by the XRD patterns, NMZ-30 is well-crystallized and presents characteristics of
nanosheet MFI zeolite. Thus, TEM images were taken to recognize the morphology of NMZ-30.
As illustrated in Figure 3a,b, NMZ-30 is stacked by MFI nanosheets with much smaller area in a-c
planes, which cannot be distinguished by SEM (Figure 2d). By comparing the TEM images of nanosheet
MFI zeolites with different Si/Al molar ratios, it can be found that Al content plays a key role in the
appearance of NMZ-X. Generally, a Si–O–Al structure is not as stable as a Si–O–Si structure in the MFI
framework [42]. It is not easy to grow large area MFI nanosheets with low Si/Al molar ratio, because of
the existence of abundant unstable Si–O–Al units. With the increase in Si/Al molar ratio, Al content as
well as amount of Si–O–Al unit decreases and width of a-c planes in MFI layer increases quickly from
less than 10 nm to several hundred nanometer as marked in Figure 3. Thus, Al content can significantly
affect the crystallization processes of MFI nanosheets and determine the final morphology.
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Figure 3. Transmission electron microscope (TEM) images of (a,b) NMZ-30, (c,d) NMZ-50, and (e,f)
NMZ-100 at different magnifications.

The morphologies of NMZ-X samples affect the N2 adsorption-desorption isotherms (Figure S1a).
The textural properties of all samples are listed in Table 1. According to IUPAC classification, all the
NMZ-X samples show typical IV isotherm, demonstrating their mesoporous properties [18]. Although
the BET surface area of NMZ-30 is very close to that of NMZ-50, their pore size distributions are not
identical. For Figure S1b, the mesopore size distribution of NMZ-30 is broader than NMZ-50 and
NMZ-100. The difference is related to the a-c plane area of the MFI nanosheet, which results in different
assembly manners in NMZ-X.

Table 1. Chemical composition and textural properties of different samples.

Sample Si/Ala Surface Area (m2 g−1) Pore Volume (cm3 g−1)

Total Microb Externalc Total Mesod

NMZ-30 28 543 271 272 0.67 0.63
NMZ-50 46 563 267 296 0.71 0.66
NMZ-100 94 432 241 191 0.53 0.45
CMZ-50 48 355 262 93 0.21 0.10

CMZ-100 96 363 275 88 0.22 0.12
CMZ-150 143 370 279 91 0.21 0.11

a Determined by ICP-AES. b By t-plot method. c External = Total – Micro. d Using BJH method.
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The NH3-TPD measurements were conducted to probe the accessible acid sites over zeolite
samples (Figure 4). All samples present two desorption peaks in different temperature regions.
The low-temperature peak is generally assigned to chemisorption of ammonia on weak acid sites, and
the high-temperature one is ascribed to strong acid sites. The acid sites amount and acid strength
distribution are very close for NMZ-X and CMZ-X, with similar Si/Al molar ratios. Meanwhile, the
quantitative results of acid properties are presented in Table S1. Among them, NMZ-30 possesses the
most acids sites owing to its high Al content.
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Figure 4. (a) NH3-TPD profiles, (b) FT-IR spectra of adsorbed pyridine collected at 150 ◦C and (c) 27Al
MAS NMR spectra of NMZ-X and CMZ-X.

The acid type has a great influence on reaction activity and product distribution in gas phase
dehydration of glycerol, as reported by Wang et al. [17]. The Py-IR spectra, given in Figure 4b, and
the data presented in Table S1, illustrate that NMZ-30 shows the lowest B/L ratio. This result can
be confirmed by 27Al MAS NMR spectra in Figure 4c. Clearly, the vast majority of Al species in all
samples are tetracoordinated (AlIV, the broad signal around 56 ppm). AlIV species are the source of
Brønsted acid [42]. However, the peak at 0 ppm of NMZ-30, octahedral Al species associated with
Lewis acid sites, is much larger than the other samples, coincidental with Py-IR results.

The used catalysts were obtained after glycerol conversion decreased to about 80%, and then
characterized by TGA in flowing air. The TGA and DTA curves, as recorded in the coke oxidation
processes, are displayed in Figure 5. For NMZ-X, two strong exothermic peaks centered at 360 ◦C and
510 ◦C originate from the removal of different kinds of carbon deposits. The large former peak comes
from hydrogen-rich carbonaceous residues [43]. As disclosed by Bauer et. al. [43], coke becomes more
hydrogen deficient because of hydrogen transfer reactions with longer reaction time. So the latter one
can be ascribed to some condensed cokes resulting from a long time on a stream, which are difficult
to be eliminated. Comparatively, only one broad peak can be observed in the DTA curves of CMZ-X.
Rapid deactivation might lead to the generation of abundant hydrogen-rich cokes on CMZ-X samples
for the short reaction time, but the peak centers were slightly higher than 360 ◦C. The reason for this
phenomenon was that some cokes in CMZ-50 were located in the micropores, which were a bit difficult
to elimination [22]. The cokes in different depth of the zeolite channels were sequentially burning at
different temperature, resulting in one broad peak. The coke contents of spent catalysts are inversely
proportional to the Si/Al ratios (Figure 5a), because more acid sites in zeolites with lower Si/Al molar
ratio facilitate the formation of more cokes. Moreover, NMZ-X possess much better tolerance capacity
for coke formation.
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Figure 5. (a) Thermogravimetric analysis (TGA) and (b) differential thermal analysis (DTA) curves of
different used catalysts.

2.2. Effects of Nanosheet Structure on the Catalytic Performance for Glycerol Dehydration

The roles of porosity and acidity for catalysts in gas phase dehydration of glycerol reaction have
been discussed in many previous literature [7,9,19–21,34,44,45]. It is generally believed that the reaction
activity and acrolein selectivity are essentially controlled by the acid type and strength. As confirmed
by NH3-TPD (Figure 4a), NMZ-X, and CMZ-X, with similar Si/Al ratios show minor difference in
the acid amount and acid strength distribution. 27Al MAS NMR spectra (Figure 4c) illustrate that
Al coordination states are almost the same in NMZ-50, NMZ-100, CMZ-50 and CMZ-100. Along
with Py-IR results (Figure 4b), it can be concluded that the acid sites of these four samples present
similar nature in acid type. Thus, the advantage of nanosheet MFI zeolites can be demonstrated by the
comparison of catalytic performance of NMZ-X and CMZ-X with similar Si/Al ratios (50 and 100).

In light of previous literature [9,28,34], the evaluation experiments were conducted in gas phase
at 320 ◦C, with an aqueous solution containing 20 wt.% glycerol, and no carrier gas was used. Figure 6
illustrates the changes of glycerol conversion and acrolein selectivity with time on stream, and the
data are also presented in Table 2 in detail. Apparently, NMZ-X presented much better performance
than their CMZ-X counterparts. For conventional HZSM-5, CMZ-100 exhibited high initial activity,
but underwent a dramatic deactivation. Glycerol conversion almost linearly decreased to 83% after
10 h on stream over CMZ-100. Despite similar Si/Al ratio as CMZ-100, NMZ-100 reached a much
longer lifetime. Of all the examined catalysts, NMZ-50 achieved the best performance. The glycerol
conversion in the initial 12 h kept at high values of higher than 99% and still maintained at about 85%
after 36 h reaction. The stability of the zeolites discussed in this section follows the order of NMZ-50 >
NMZ-100 >> CMZ-100 > CMZ-50. Obviously, the nanosheet MFI zeolites exhibit much better catalytic
stability than the conventional ones.
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Figure 6. (a) Glycerol conversion and (b) acrolein selectivity as a function of reaction time over different
catalysts. Reaction conditions: atmospheric pressure, 320 ◦C, WHSV (weight hourly space velocity) =
2.1 h−1, 0.25 g catalyst.
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Table 2. Catalytic performance for glycerol dehydrationa.

Sample TOS (h) Conversion (%)
Product Selectivity (%)

Acrolein Acetol Othersb

NMZ-30
4 99.7 81.8 7.9 10.3
8 98.3 82.8 8.4 8.8

NMZ-50
4 99.8 85.4 4.9 9.7
8 99.7 85.9 5.3 8.8

NMZ-100
4 99.2 86.8 4.7 8.5
8 97.1 86.3 5.2 8.5

CMZ-50
4 91.3 84.3 5.1 10.6
8 <80.0 - - -

CMZ-100
4 95.4 84.7 4.8 10.5
8 89.9 85.1 5.0 9.9

CMZ-150
4 93.5 86.5 4.7 8.8
8 87.3 85.8 4.4 9.8

a Reaction conditions: atmospheric pressure, 320 ◦C, WHSV = 2.1 h−1, 0.25 g catalyst; b Selectivity of Others = 1 −
Selectivity of Acrolein –Selectivity of Acetol.

The catalytic performance of NMZ-50 and CMZ-50 was further evaluated at different WHSV.
As shown in Figure 7a, there was no big difference in their initial activity (the first point) for NMZ-50
and CMZ-50 at WHSV of 6 and 12 h−1. When WHSV increased to 60 h−1, the initial conversion of
NMZ-50 and CMZ-50 reached 100% and 85%, respectively. At all WHSV conditions, NMZ-50 showed
much better stability than CMZ-50.
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Figure 7. (a) Glycerol conversion on NMZ-50 and CMZ-50 at different WHSV at 320 ◦C; (b) In situ FT-IR
spectra after adsorbing glycerol at different temperature; (c) Relationship between tNMZ,90%:tCMZ,90%

and WHSV; (d) Correlation between glycerol conversion and temperature at the initial reaction period
of 0–1 h at WHSV of 2.1 h−1, other reaction conditions: atmospheric pressure, 0.25 g catalyst, S:
selectivity to acrolein, C: conversion of glycerol.

To gain information in glycerol dehydration process and deeply understand the superior stability
of NMZ-X, in situ FT-IR experiments of adsorbed glycerol were conducted. Figure 7b displays the IR
spectra of adsorbed species on CMZ-50 and NMZ-50, under high vacuum, at different temperatures.



Catalysts 2019, 9, 121 8 of 15

As the catalyst wafer and added glycerol kept the same weights, the peak area is proportional to
the amount of adsorbed species. Table S2 summarizes the main bands observed in the region of
1800–1300 cm−1 after glycerol adsorption. The adsorbed glycerol is characterized by typical bands at
1462 cm−1 (δCH2), 1410 cm−1 (δOH), and 1345 cm−1 (δCH) [46]. At low temperatures (60 and 100 ◦C),
more glycerol was adsorbed on NMZ-50 than CMZ-50. When the temperature was increased to 140 ◦C,
the amount of adsorbed glycerol became very close on two samples. Meanwhile, the band of adsorbed
acrolein (1728 cm−1 νC=O and 1671 cm−1 νC=C) appeared, but the existence of acetol could not be
excluded for its characteristic peak of νC=O at 1728 cm−1 [47,48]. With further rising temperature,
the peak area at 1650-1800 cm−1 region became larger on CMZ-50 than NMZ-50. Although FT-IR is
just a semi-quantitative technique, small peak area may infer that products could diffuse easily on
NMZ-50. The better diffusivity of products can be reasonably explained by the significantly shortened
micropores in nanosheet structure and plentiful mesopores, as indicated by pore volume of NMZ-50
and CMZ-50 in Table 1. Rapid diffusion can suppress consecutive reactions of products to form the
coke precursor and slow down coke formation rate, which is supported by the low coke deposition
rate of NMZ-50 obtained according to TGA results (Table 3). Contrarily, poor diffusion on CMZ-50
leads to an accumulation of stuck products and quick formation of coke. The generated cokes block
zeolite channels, cover acid sites and result in deactivation of CMZ-50, which can be confirmed by BET
result that only 16.0% micro surface area remained (Table 3).

Table 3. Coke content and coke deposition rate of different catalysts.

Sample TOSa (h) Coke Contentb

(%)
Coke Deposition Ratec

(gcoke gcat
−1 h−1)

Surface Aread (m2 g−1)/Percentage
Remained (%)

Total Micro External

NMZ-50 36 27.5 1.05 × 10−2 296/52.6 99/37.1 197/66.6
CMZ-50 7 11.7 1.89 × 10−2 66/18.5 42/16.0 24/25.8

a TOS: Time on stream; b Coke contents were calculated from TGA profiles of used catalysts (the catalysts were
collected after glycerol conversion decreased to about 80%); c Coke deposition rate was calculated with the following
formula: Coke deposition rate = 1/(1 − Coke content) × Coke content/TOS; d Surface areas of deactivated
NMZ-50 and CMZ-50.

Additionally, a lifetime ratio of NMZ-50 and CMZ-50 was represented as tNMZ,90%: tCMZ,90% (a
ratio of reaction time at 90% glycerol conversion for NMZ-50 and CMZ-50). The relationship between
tNMZ,90%: tCMZ,90% and WHSV is shown in Figure 7c. At WHSV of 2.1, 6, 12, 20 and 40 h−1, tNMZ,90%:
tCMZ,90% is respectively 5.7, 6.7, 7.1, 9.0, and 10.7, which is significantly larger than coke deposition
rate ratio (CMZ-50: NMZ-50 = 1.8). As shown in Table 1, the mesopore volume of NMZ-50 is 6.6 times
larger than that of CMZ-50. A larger mesopore volume of NMZ-50 possess larger coke capacity, and
better coke tolerance ability. Thus, the superior stability can be ascribed to the greatly shortened b-axis
and large mesopore volume of NMZ-50, which not only slow down coke formation rate, but also
significantly improved coke tolerance ability.

However, high temperature-facilitated glycerol conversion and acid sites could be sufficient on
both catalysts at 320 ◦C. Furthermore, at high temperatures, it is difficult to tell that the slight lower
glycerol conversion on CMZ-50 (Figure 7a) originated from the lower initial reaction rate or faster
deactivation with high WHSV. Because low temperature suppresses both glycerol conversion and
consecutive reaction of products [12], to rationally compare the activity of NMZ-50 and CMZ-50,
reactions were then performed at 260, 280, and 300 ◦C. The disparity of reactivity was much more
significant at low temperatures (Figure 7d). At 260 ◦C, the conversion of NMZ-50 was about four times
that of CMZ-50. As disclosed above, the differences between CMZ-50 and NMZ-50 lie in the external
surface area and mesopore volume resulting from different morphologies. Because mesoporous
structure shortens transport path and acid sites on external surface area can be easily approached [34],
large external surface area and abundant mesopore volume of NMZ-50 can facilitate transportation
of glycerol molecules to acid sites for dehydration. For CMZ-50, although the acidity is similar, its
microporous structure and low external surface area impede transportation of glycerol molecules,
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leading to low activity. Thus, the nanosheet structure of NMZ-50 can be confirmed as the key factor for
high activity. One interesting phenomenon observed in Figure 7b is that acrolein selectivity decreases
with increasing temperature for both catalysts and disparity between two catalysts is negligible at
all temperature investigated here. The reasons for high acrolein selectivity at low temperature may
attribute to the preference for acrolein production or inhibiting C–C bond cleavage caused by low
temperature [8]. There is no further discussion on this point because it is not the major concern of
this article.

Besides the advantage of stability, CMZ-50 also exhibited an improved acrolein selectivity
compared to CMZ-50, and the acrolein selectivity was nearly unchanged even after the catalyst
deactivation begun, as shown in Figure 6b. The average acrolein selectivity of NMZ-50 and CMZ-50
were 86.6%, and 83.9%, respectively. The high selectivity of both catalysts can be ascribed to large
amounts of Brønsted acid sites, wherein the secondary hydroxyl group of glycerol molecules can be
selectively eliminated, followed by consecutive dehydration to form acrolein [9,34,44]. High WHSV
reactions also show the same trend (Figure 7a). The slight lower acrolein selectivity on CMZ-50 might
be related to more secondary reactions of acrolein in its longer micropores to generate other products
or coke species, in agreement with above discussions about stability.

In summary, the above results unambiguously confirm the great advantages of nanosheet MFI
zeolites over conventional ZSM-5 for glycerol dehydration. NMZ-50 shows a long lifetime of 36 h
(glycerol conversion > 85%), which is among the best performance for this reaction [7,8,16,21,22,29,34].
The shortened micropore and large mesopore volume provided by nanosheet structure can respectively
slow down the coke deposition rate and improve the coke tolerance capacity, leading to superior
performance of NMZ-X in glycerol dehydration.

2.3. Effects of Si/Al Ratios

The acidity of the catalyst plays a vital role in gas-phase dehydration of glycerol. As well-known,
the acidic property of MFI zeolites can be adjusted by Si/Al ratio. For CMZ-X, there are no
big differences in morphologies, BET surface areas, and pore size distributions. By taking the
characterization results of 27Al MAS NMR, NH3-TPD, and Py-IR into comprehensive consideration, the
main difference of CMZ-X is the amount of acid sites (Table S1). Comparatively, the most appropriate
Si/Al ratio was 100 for the conventional ZSM-5 in this study.

However, the situation is completely different for NMZ-X. As discussed above, Al contents
determine the morphologies of nanosheet MFI zeolites. With increasing Si/Al ratios from 30 to 100, the
width in a-c plane grows from lower than 10 nm to a few hundred nanometers. The area of a-c plane
has a great influence on the stacking process of MFI nanosheets, resulting in inconsistent morphology
and texture property. To investigate the initial activity of NMZ-X, glycerol dehydration experiments at
260 ◦C were conducted with WHSV = 2.1 h−1. As shown in Figure 8, the activity of NMZ-X follows
the order of NMZ-30 > NMZ-50 > NMZ-100. As summarized in Table 1, the BET surface areas of
NMZ-30, NMZ-50, and NMZ-100 are 543, 563, and 432 m2 g−1, respectively. For a detailed comparison
of NMZ-30 and NMZ-50, their micropore areas are nearly the same and mesopore area of NMZ-50
are only about 3.6% larger than NMZ-30, indicating their similar mass transfer capacity. Meanwhile,
the acid amount depends on the Al content of zeolite. Lower Si/Al ratio results in more acid sites
(Table S1). Thus, the high activity can be ascribed to plenty of acid site in NMZ-30. However, the
stability sequence is defined as NMZ-50 > NMZ-30 > NMZ-100 (Figure 6a), not consistent with the
activity order. Obviously, more acid site leads to more rapid coke formation (Table 3 and Table S3).
Thus, the short lifetime of NMZ-30 may result from its fast coke formation rate. Regarding NMZ-100,
relatively poor performance may be explained by the combined effects of thick lamellar stacking, low
surface area, and insufficient acid sites.
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Regarding product selectivity, NMZ-30 obtains the lowest acrolein selectivity in all NMZ-X
samples (Figures 6b and 8). As reported earlier [9], the rupture of secondary C–O bonds is easier than
the terminal C–O bonds when glycerol molecules coordinate with Brønsted acid sites, while Lewis acid
sites facilitate the cleavage of terminal C–O bonds to produce acetol. As the B/L ratio of NMZ-30 is
lower than the other zeolites (Table S1), the poor selectivity to acrolein of NMZ-30 might be explained
by its higher proportion of Lewis acid sites, coincident with the improved selectivity to acetol (Table 2).
Besides acrolein and acetol, formaldehyde, acetaldehyde, acrylic acid, and allyl alcohol were also
detected. Based on above results and former reports [9,23,27], the formation pathways of all detected
products were shown in Scheme 1.
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Scheme 1. Proposed reaction pathways for gas phase dehydration of glycerol to acrolein on
HZSM-5 catalyst.

2.4. Catalyst Reutilization

The catalytic performance of fresh and regenerated catalysts was investigated to explore the
reusability of NMZ-50, as shown in Figure 9 (WHSV = 2.6 h−1, 0.2 g NMZ-50). The used NMZ-50 was
regenerated at 550 ◦C for 24 h in a 5 vol.% O2/N2 flow. The regenerated NMZ-50 showed almost the
same glycerol conversion as a fresh one, but the selectivity to acrolein decreased slightly. As reported
previously for ZSM-5 zeolite, a portion of framework aluminum may turn into extra-framework
aluminum during the reaction and regeneration processes [49]. The generation of extra-framework
aluminum leads to less Brønsted acid and more Lewis acid sites. Accordingly, the selectivity to acrolein
decreased slightly.
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3. Experimental

3.1. Catalyst Preparation

The nanosheet MFI zeolites were synthesized, following the method reported by Choi et al. [40,41],
using [C18H37-N+(CH3)2-(CH2)6-N+(CH3)2-C6H13]Br2 (simplified as C18-6-6Br2) as a bifunctional
template. The conventional MFI zeolites (particle type ZSM-5) with different Si/Al molar ratios
of 50, 100, and 150 (in synthesis gel) were hydrothermally synthesized by using tetrapropylammonium
hydroxide (TPAOH) as the structure directing agent [50]. After a series of procedures, H-form zeolites
were obtained finally. For simplicity, the prepared nanosheet MFI, and conventional HZSM-5 zeolites
were designated as NMZ-X, and CMZ-X (X refers to Si/Al molar ratio in synthesis gel), respectively.
Synthesis details can be found in the Supplementary materials.

3.2. Characterization

The actual atomic compositions of all zeolite samples were determined by inductively coupled
plasma atomic emission spectroscopy (ICP-AES, Thermo iCAP6300). SEM and TEM images were
obtained by field emission scanning electron microscope (FESEM, JSM 7001-F) and transmission
electron microscope (TEM, JEM-2001F). The powder X-ray diffraction (XRD) patterns of NMZ-X and
CMZ-X were recorded on a Rigaku MiniFlex II X-ray diffractometer with Cu Kα radiation (154.06 pm,
30 kV and 15 mA) at a scanning speed of 4◦ min−1. N2 adsorption-desorption isotherms were measured
at −195.8 ◦C on a TriStar3020 II gas adsorption analyzer. The specific surface area and meso- and
micro-pore volume were calculated using Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH,
desorption branch), and t-plot methods. The spectra of 27Al magic angle spinning nuclear magnetic
resonance (27Al MAS NMR) were recorded on a Bruker Avance III 600 MHz Wide Bore spectrometer
with Al(NO3)3 as a reference.

The acid site density of the synthesized zeolites was measured by temperature-programmed
desorption of ammonia (NH3-TPD) carried out in a Micromeritics Autochem II 2920 chemisorption
analyzer equipped with a thermal-conductivity detector (TCD). Before adsorption, approximately
0.1 g sample was heated at 550 ◦C for 2 h in a pure helium flow (30 mL min−1) and then cooled to
120 ◦C. Followed by this pre-treatment, the sample was saturated with NH3 in NH3/He mixture (1:9
volume ratio) for 30 min. Thereafter, the physisorbed NH3 was removed by flushing the sample tube
with pure helium (30 mL min−1) at 120 ◦C for 2 h. The sample was subsequently heated from 120 ◦C
to 500 ◦C with a rate of 10 ◦C min−1 to get the NH3-TPD profile.

Fourier transform infrared spectra of adsorbed pyridine (Py-IR) were measured on a Bruker
Tensor 27 FT-IR spectrometer. Firstly, the zeolite sample was pressed into a self-supported wafer and
placed in a vacuum cell. Prior to the measurement, the sample cell was evacuated to 10−2 Pa at 350 ◦C
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for 2 h. Then pyridine vapor was introduced into the sample cell at room temperature for 1 h and the
spectra were recorded after evacuation at 150 ◦C for 1 h. The concentration of Brønsted and Lewis acid
sites were calculated by using the procedures reported by Madeira and co-workers [51].

In situ FT-IR experiments of glycerol adsorption were performed on the same spectrometer
mentioned above. Specifically, a self-supported catalyst wafer (15.0 ± 0.2 mg) was firstly evacuated to
10−2 Pa at 350 ◦C for 2 h, then the spectra were collected at elected temperature in the course of cooling
down and used as background. After cooling to room temperature, 5 µL of 20% glycerol aqueous
solution were dropped to the center of the wafer and then IR spectra of catalyst and adsorbed species
were recorded under high vacuum at preset temperature. The spectra of adsorbed species can be
acquired by subtracting the background spectra.

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed on a
Rigaku Thermo plus Evo TG 8120 instrument to determine the content and properties of deposited
coke. About 10 mg of used catalyst was placed in α-Al2O3 crucible and heated from room temperature
to 800 ◦C in flowing air (30 mL min−1). The weight loss between 300 to 700 ◦C was regarded as the
coke content.

3.3. Catalytic Reaction

The gas phase dehydration of glycerol was performed in a stainless steel fixed bed reactor (inner
diameter, I.D. = 8 mm) under atmospheric pressure at 320 ◦C. Before the reaction, the catalyst (0.25 g)
was in situ activated at a reaction temperature in N2 for 2 h. A 20 wt.% glycerol aqueous solution
was fed into the reactor by a pump, and the weight hourly space velocity (WHSV) of glycerol was
controlled at 2.1 h−1. The reaction products were condensed by a cold trap and collected hourly for
analysis on a Shimadzu GC-2010 Plus gas chromatograph equipped with a flame ionization detector
(FID) and a HP-PONA capillary column (I.D. = 0.20 mm, length = 50 m), and the samples were injected
by an auto-sampler. The external standard method was adopted for direct quantitative determination
of unreacted glycerol and two main products (i.e., acrolein and acetol) in the collected liquid.

All of reactions were stopped when the conversion of glycerol decreased to about 80%. Then, the
reactor was purged by flowing N2 until the system cooled down to room temperature. The conversion
of glycerol and selectivity to identified products have been calculated as bellow:

Glycerol conversion =
moles of reacted glycerol

moles of glycerol in the feed
× 100%

Product selectivity =
moles of carbon in a defined product
moles of carbon in reacted glycerol

× 100%

4. Conclusions

Nanosheet MFI zeolites are much more active and stable than their conventional counterparts and
have been demonstrated to be superior candidates for gas phase dehydration of glycerol to acrolein.
NMZ-50 achieved excellent performance, exhibiting above 99% conversion in initial 12 h and about
85% even after 36 h reaction time. Meanwhile, it gave nearly constant high acrolein selectivity of about
87%. However, glycerol conversion underwent nearly linear decrease to 84% in less than 10 h over the
best conventional ZSM-5 zeolite (CMZ-100). The used NMZ-50 catalyst was facilely regenerated by
burning coke, and no obvious decline in catalytic performance was observed between the regenerated
and fresh sample.

Notably, this work indicate that morphology of NMZ-X can be adjusted by changing Al content
and Si/Al molar ratio determines the catalytic performance of NMZ-X in two ways: morphology and
acidity. The shortened micropores and large mesopore volume provided by the nanosheet structure
of NMZ-X facilitate transportation of glycerol, slow down the coke deposition rate of coke and
dramatically improve the coke tolerance capacity, resulting in superior activity and stability.
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