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Abstract: NiCp†L(NHC)](+) complexes (Cp† = Cp (η5-C5H5), Cp* (η5-C5Me5); NHC = N-heterocyclic
carbene; L = Cl− or NCMe) have been tested as pre-catalysts for the direct arylation of benzothiazole in
the presence of an alkoxide. Only the pentamethylcyclopentadienyl derivative, [NiCp*Cl(IMes)] (IMes
= 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene), enabled low conversion to the desired coupling
product with phenyl iodide as the electrophilic coupling partner. In contrast, all cyclopentadienyl
complexes proved to be inactive. 1H NMR studies of the “catalytic” reaction mixtures demonstrate
that they cleanly convert to an unreactive C(2)-benzothiazolyl derivative, whose identity has been
confirmed by an independent synthesis and characterization. The latter constitutes a potential
energy well that quenches all further reactivity, and provides a rare example of C(2)-metallated
azolyl complex.
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1. Introduction

The recent trend to use 3d transition metal catalysts, that is driven by economic and environmental
concerns, has led to a re-assessment of nickel’s reactivity [1–4]. In particular, nickel catalysts
have emerged as promising candidates for C–H bond functionalization [5–8], and nickel-catalyzed
reactions between (hetero)arenes and aryl halides [9–12], phenol derivatives [13–18], aryl or alkenyl
esters [19–21] or even alkyl halides [22,23] have been shown to be reliable atom-economical
alternatives to palladium-catalyzed cross-couplings. In this context, we have recently reported that the
unsaturated T-shaped nickelacycle 1, that bears a mono-anionic C,C-NHC-cyanoalkyl chelate (NHC =
N-heterocyclic carbene), shows moderate activity for the coupling of benzothiazole with aryl iodides
(Scheme 1) [24]. In contrast, the corresponding cyclopentadienyl nickelacycle 2 that does not possess
any potentially available free coordination sites, unless an eventual Cp ring slippage occurs [25,26],
proved totally unreactive under the same conditions (Scheme 1). This suggested to us that an
unsaturated nickel center and/or labile ligands were necessary to observe benzothiazole arylation [24].
We therefore wondered whether Cp†Ni [Cp† = Cp (η5-C5H5), Cp* (η5-C5Me5)] complexes bearing
a monodentate NHC ligand as well as a readily labile halide or acetonitrile ligand could catalyze
such direct biaryl couplings. This family of complexes has indeed been proven to constitute a very
versatile class of pre-catalysts [27–33] that notably catalyze the α-arylation of ketones [34]. Herein,
we report our findings, which show that, under the typical conditions used for the direct coupling
of azoles with aryl halides or pseudo-halides (i.e.: under harsh reaction conditions with an alkoxide
base [5,9,10,12,24]), apart from a Cp* derivative which shows a little activity with aryl iodides, these
complexes form a stable C(2)-nickelated azolyl complex that arrests any further reactivity.
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Scheme 1. Coupling of benzothiazole with iodobenzene catalyzed by 1 or 2 [24]. 
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2.1. Catalytic Studies 

Four half-sandwich Ni(NHC) complexes, which have already been demonstrated to catalyze a 
variety of reactions [27–33], were chosen for the present study: complexes 3 [35–37] and 4 [27,37] 
bearing a Cp ring, a chloride and, respectively, the 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene 
(IMes) and 1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene (IPr) as NHC ligands, complex 5 [38], 
the Cp* analogue of 3, and complex 6 [29], the cationic analogue of 3 that bears a labile acetonitrile 
ligand instead of a chloride (Figure 1). 

 
Figure 1. Selected Cp†-Ni(NHC) complexes. 

Catalytic attempts focused on the reaction of benzothiazole with p-bromotoluene or 
iodobenzene under conditions similar to those established for complex 1 [24] and Itami’s 
Ni(OAc)2/bipyridine or 1,1′-bis(diphenyphosphino)ferrocene system [9,12], i.e.: in 1,4-dioxane at 120–
140 °C in the presence of LiOtBu (1.5–2 equiv.) and 5 mol% of 3–6 for 16 h (Table 1). No conversion 
to the desired hetero-biaryl compound was observed with 3 with either p-bromotoluene or 
iodobenzene (entries 1 and 2), and variations of the base (NaOtBu, KOtBu, Cs2CO3 or KOAc) and 
solvent (toluene or THF) gave no better results (not shown in Table 1). Similarly, the other two Cp 
complexes 4 and 6 did not catalyze the coupling of benzothiazole and iodobenzene under such 
reaction conditions (entries 3 and 5). Only the more electron-rich and more sterically crowded Cp* 
complex 5 enabled a conversion of 13% at 140 °C (entry 4). However, this was still far from the activity 
observed with complex 1 (Scheme 1) that proved to have a narrow reaction scope and showed a very 
moderate activity with most substrates [24]. 
  

Scheme 1. Coupling of benzothiazole with iodobenzene catalyzed by 1 or 2 [24].

2. Results and Discussion

2.1. Catalytic Studies

Four half-sandwich Ni(NHC) complexes, which have already been demonstrated to catalyze
a variety of reactions [27–33], were chosen for the present study: complexes 3 [35–37] and 4 [27,37]
bearing a Cp ring, a chloride and, respectively, the 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene
(IMes) and 1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene (IPr) as NHC ligands, complex 5 [38], the
Cp* analogue of 3, and complex 6 [29], the cationic analogue of 3 that bears a labile acetonitrile ligand
instead of a chloride (Figure 1).
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Figure 1. Selected Cp†-Ni(NHC) complexes.

Catalytic attempts focused on the reaction of benzothiazole with p-bromotoluene or iodobenzene
under conditions similar to those established for complex 1 [24] and Itami’s Ni(OAc)2/bipyridine or
1,1′-bis(diphenyphosphino)ferrocene system [9,12], i.e.: in 1,4-dioxane at 120–140 ◦C in the presence of
LiOtBu (1.5–2 equiv.) and 5 mol% of 3–6 for 16 h (Table 1). No conversion to the desired hetero-biaryl
compound was observed with 3 with either p-bromotoluene or iodobenzene (entries 1 and 2), and
variations of the base (NaOtBu, KOtBu, Cs2CO3 or KOAc) and solvent (toluene or THF) gave no better
results (not shown in Table 1). Similarly, the other two Cp complexes 4 and 6 did not catalyze the
coupling of benzothiazole and iodobenzene under such reaction conditions (entries 3 and 5). Only the
more electron-rich and more sterically crowded Cp* complex 5 enabled a conversion of 13% at 140 ◦C
(entry 4). However, this was still far from the activity observed with complex 1 (Scheme 1) that proved
to have a narrow reaction scope and showed a very moderate activity with most substrates [24].

As we were intrigued by the incapacity of the CpNi(NHC) complexes to catalyze these direct
couplings, we attempted to establish the fate of the latter under the reaction conditions. To our
surprise, the 1H NMR spectra of the reaction media (after removal of the insoluble and volatiles—see
Section 3) of reactions run with 3 under various conditions of solvent (THF, toluene or 1,4-dioxane),
base (LiOtBu, NaOtBu, KOtBu) and temperature (from 90 to 140 ◦C) systematically indicated the
presence of unreacted benzothiazole and p-bromotoluene or iodobenzene, as well as the full and clean
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conversion of 3 to a novel CpNi(IMes) complex 7 bearing a C(2)-metallated benzothiazolyl group
(see Figures S1 and S2, and Scheme 2), whose identity was confirmed by an independent synthesis
(vide infra). The latter was indeed characterized by typical signals for its IMes and Cp groups, but
which are shifted compared to those of 3, as well as by two apparent triplets centered at 7.11 and
6.97 ppm, which integrate for one proton each relative to the Cp and IMes signals and correspond
to the H(5) and H(6) protons of a benzothiazolyl unit. However, the signals of the H(4) and H(7)
overlapped with those of unreacted benzothiazole and were not unambiguously observed. Complex 7
was also observed in the attempted couplings with the cationic complex 6 (Figure S3), highlighting
a general behaviour for these CpNi(NHC) species thereof.

Table 1. Attempted coupling of benzothiazole with p-bromotoluene or iodobenzene in the presence of
[NiCp†L(NHC)](+) complexes.1
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Entry Catalyst X R Conv. [%] 2

1 3 3 Br Me 0
2 3 I H 0

3 4 4 I H 0
4 5 I H 13
5 6 I H 0

1 Reaction conditions: benzothiazole (1 equiv.), p-bromotoluene or iodobenzene (1.5 equiv.), LiOtBu (2 equiv.), 3–6
(5 mol %) in 1,4-dioxane at 140 ◦C for 16 h. 2 Conversion to the desired coupling product established by GC; average
value of two runs. 3 Run at 120 ◦C. 4 Run with 1.5 equiv. of LiOtBu.
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Scheme 2. Benzothiazolyl trapping under catalytic conditions.

Interestingly, although C(2)-benzoxazolyl or benzothiazolyl complexes are often proposed
as intermediates in C–H/C–X couplings between heteroarenes and aryl, alkenyl or alkyl
electrophiles [5,10,12,14,16,17,19,20,22,23], they remain very rare. We are indeed aware of only
four related PCN-Pd [39–41] and NNN-Ni [23] pincer species, which have been isolated with
a benzothiazolyl ligand and demonstrated to be intermediates in similar couplings. Thus, although
it obviously constitutes a potential energy well, complex 7 is an interesting example of azolyl
trapping in such (attempted) direct coupling. Furthermore, it is to our knowledge only the second
C(2)-benzothiazolyl-nickel species reported to date [23].

2.2. Independent Synthesis and Characterization of the Benzothiazolyl Complex 7

To confirm the identity of 7, complex 3 was treated with a small excess of benzothiazole
(1.2 equiv.) in the presence of potassium bis(trimethylsilyl)amide (KHMDS) as a base in toluene at room
temperature (Scheme 3). The resulting complex was isolated in 80% yield as an air-stable green-brown
powder after work-up. Full characterization by 1H and 13C{1H} NMR, HRMS spectroscopies and CHN
microanalyses confirmed the expected formulation. Thus, for instance, the 1H NMR spectrum of 7
no longer displays the H(2) proton of benzothiazole, but displays the H(5) and H(6) protons as two
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apparent triplets at 7.12 and 6.98 ppm, as seen in the spectra of the catalytic attempts (vide supra), and
the H(4) and H(7) protons as two doublets at 7.58 and 7.51 ppm (Figure S4). The Cp and IMes protons
are found at values that are typical for NiCp(IMes) compounds [27–33,35–37]. Regarding the 13C{1H}
NMR spectrum, the C(2) carbon of the benzothiazolyl moiety is observed at 176.0 ppm, which is
significantly downfield compared to the corresponding carbon of free benzothiazole (153.8 ppm) [42],
and thus confirms its metallation (Figure S5) [23]. In addition, it is worth mentioning that the carbene
carbon signal of 7 is downfield shifted (177.9 ppm) when compared to that of 3 (165.9 ppm [35]), which
suggests a decrease in the Lewis acid character of the metallic center caused by an increase in the
σ-donor ability of the ancillary ligand, [43–46]. This is similar to what is observed with the phenyl and
methyl derivatives: [NiCpPh(IMes)] (181.2 ppm) [34] and [NiCpMe(IMes)] (187.4 ppm) [35].
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2.3. Crystallographic Study of 7

The X-ray diffraction study of a single crystal of complex 7 corroborated the NMR data and
confirmed the molecule’s structure (Figure 2 and Appendix A). Significant bond distances and bond
angles are given in Table 2 and crystallographic data and data collection parameters are listed in
Table S1. Complex 7 crystallizes in the orthorhombic chiral space group P212121. The Ni–C(1) [C(1) =
the carbene carbon atom] and Ni–C(2) distances are respectively 1.873(2) and 1.875(2) Å, which fall
slightly below the range observed for related NiCp(IMes) complexes bearing a third C-bound ligand,
such as [NiCp(IMes)Ph] (Ni–C(1): 1.875(2), Ni–C(2): 1.908(2) Å) [34] and [NiCp(IMes)(IMe)](BF4)
(Ni–C(1): 1.899(3), Ni–C(2): 1.906(3) Å) (IMe = 1,3-dimethylimidazol-2-ylidene) [47]. The Ni–C(2)
distance is also significantly shorter than that observed in the only other fully characterized
Ni–C(2)-benzothiazolyl complex (1.936(8) Å), that was just reported [23]. The C(1)–Ni–C(2)
angle of 94.26(10)◦ falls in the same range as observed for [NiCp(IMes)Ph] (95.35(9)◦) [34] and
[NiCp(IMes)(IMe)](BF4) (96.91(11)◦) [47]. Finally, when one takes into account the plane formed
by the Cp centroid, C(1), and C(2), the nickel atom is almost in a planar environment (Table 2, last
entry), as is typically observed in similar two-legged piano-stool CpNi(NHC) complexes [27–33,35].

Table 2. Key bond distances (Å) and angles (◦) of 7 with Esd’s in parentheses.

Bond or Angle 7

Ni–C(1) 1.873(2)
Ni–C(2) 1.875(2)

Ni–Cpcent
1 1.774

Ni–CCp av 2 2.140
C(1)–Ni–C(2) 94.26(10)

C(1)–Ni–Cpcent 135.3
C(2)–Ni–Cpcent 130.4

Ni–(C(1)–Cpcent–C(2)) 0.037
1 Cpcent = centroid of the Cp group. 2 Average Ni–C distance to the Cp ring.
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2.4. Investigation of the Reactivity of the Cp* Complex 5

The little activity observed with the Cp* complex 5 (Table 1, entry 7) raised the question whether
the observed coupling reaction goes through a benzothiazolyl complex similar to 7. To answer this
question, complex 5 was treated with benzothiazole and KHMDS similarly to 3. A quick reaction
occurred, but the corresponding benzothiazolyl complex 8 could only be isolated in 12% yield
(Scheme 4) and we have been unable to obtain it analytically pure owing to its relative instability
in solution that leads to insoluble materials and/or paramagnetic species. The metallation of
benzothiazole was nevertheless confirmed by the absence of the H(2) proton in the 1H NMR spectrum
(Figure S6) and the downfield shift of the C(2) carbon from 153.8 to 180.9 ppm in the 13C{1H} NMR
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Scheme 4. Synthesis of the Cp* benzothiazolyl complex 8.

Complex 8 was then treated with 1.5 equiv. of iodobenzene in 1,4-dioxane at 140 ◦C for 16 h.
The reaction led to a massive decomposition of the complex together with a small amount of the
expected coupling product (<15% of the identified species) as inferred from the 1H NMR analysis of
the crude reaction mixture that shows a very complex mixture. This illustrates the less stable (or more
reactive) character of the Cp* derivative 8, when compared to its Cp analogue 7, and suggests the
possible involvement of such a benzothiazolyl complex in the coupling reaction [23,39–41], provided
that it does not constitute a potential energy well like the Cp derivative 7.
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A possible explanation for the enhanced reactivity of 8 may come from both its more electron-rich
character, as shown by its downfield shifted carbene carbon in the 13C {1H} NMR spectrum: 187.4 ppm
in 8 vs. 177.9 ppm in 7 [43–46], and its more significant steric crowding. Indeed, in a hypothetic
Ni(II)/Ni(IV) catalytic cycle, as proposed by Chatani et al. for a related arylation reaction of Csp2–H
bonds with aryl iodides [48], the presence of a bulky electron-donating ligand such as Cp* may (i) favor
the oxidative addition of the aryl halide through electronic donation, and (ii) subsequently enhance the
reductive elimination of the coupling product due to its steric bulkiness [49]. Further developments
of this family of complexes for similar cross-couplings might therefore privilege species with more
electron-donating and/or more bulky ligands [50].

3. Material and Methods

3.1. General Comments

All reactions were carried out using standard Schlenk procedures under an atmosphere of dry
argon. Solvents were dried and distilled under argon. Solution NMR spectra were recorded at
298 K on a Bruker Avance I 300 MHz spectrometer operating at 300.13 MHz for 1H and at 75.47 for
13C{1H}. A DEPT 13C spectrum was recorded for complex 7 to ease the 13C signals assignment. The
chemical shifts are referenced to the residual deuterated or 13C solvent peaks. Chemical shifts (δ)
and coupling constants (J) are given in ppm and Hz, respectively. GC analyses were carried out with
n-dodecane as an internal standard, using an Agilent 7820A instrument equipped with a HP-5 column
(cross-linked 5% phenyl silicone gum, 30 m × 0.32 mm × 0.25 µm). Conversion was determined by
considering instrument response factors. The GC conditions were: (i) 50 ◦C for 5 min, (ii) increase in
temperature at a rate of 10 ◦C/min until 150 ◦C, (iii) isotherm for 5 min, and (iv) temperature increase at
20 ◦C/min until 240 ◦C; retention times: iodobenzene: 8.7 min; dodecane 11.6 min; benzothiazole: 12.0;
2-phenylbenzo[d]thiazole: 23.4 min. The retention time of 2-phenylbenzo[d]thiazole was determined
with a pure sample of the latter obtained by using 1 as catalyst (Scheme 1) [24]. Elemental analyses
were performed by the Service d’Analyses, de Mesures Physiques et de Spectroscopie Optique, Institut
de Chimie, UMR 7177, Université de Strasbourg. High-resolution mass spectra were recorded on
a Bruker micrOTOF mass spectrometer by the Service the Spectrométrie de Masse, Institut de Chimie,
UMR 7177, Université de Strasbourg. Benzothiazole, haloarenes and n-dodecane were distilled and
stored under argon before use. [NiCpCl(IMes)] (3) [35,36], [NiCpCl(IPr)] (4) [27,37], [NiCp*Cl(IMes)]
(5) [38], and [NiCp(NCMe)(IMes)](PF6) (6) [29] were prepared according to the published methods.

3.2. Typical Procedure for the Attempted Heteroarylations of Aryl Halides

An oven-dried Schlenk tube containing a magnetic stir bar was loaded with 3 (10 mg, 0.0216 mmol,
5 mol %), LiOt-Bu (69 mg, 0.861 mmol, 1.9 equiv.), benzothiazole (50 µL, 0.459 mmol, 1.0 equiv.),
iodobenzene (75 µL, 0.664 mmol, 1.4 equiv.) or p-bromotoluene (109 mg, 0.637 mmol, 1.4 equiv.),
n-dodecane (15 µL, 0.066 mmol), and 1,4-dioxane (3 mL), and sealed. The Schlenk tube was then
put into an oil bath that was heated up to 140 ◦C. After 16 h, the reaction medium was cooled down
to room temperature, and a sample (0.1 mL) was removed for GC analysis. The volatiles were then
removed under gentle vacuum, and the resulting residue was extracted with diethyl ether and filtered
over a small plug of silica (Merck Silica Gel 60-mesh size 40–60 µm). Diethyl ether was then evaporated
and the solid residue analysed by 1H NMR in CDCl3.

3.3. Synthesis of [NiCp(C7H4NS)(IMes)] (7)

KHMDS (1.2 mL, 0.600 mmol, 0.5 M in toluene) was added to a solution of 3 (200 mg, 0.431 mmol)
and benzothiazole (56 µL, 0.514 mmol) in toluene (12 mL) at room temperature, resulting in a very
rapid change of color from red to green. After 12 h, the reaction medium was filtered through a Celite
pad and concentrated in vacuo to give a brownish powder that was washed with pentane (3 × 10 mL).
Re-dissolution of this solid in toluene (10 mL) and THF (0.5 mL) and filtration through neutral alumina
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with toluene and toluene/THF (20:1) as successive eluents then afforded a green solution that was
evaporated to dryness to give 7 as a green-brown powder (193 mg, 0.343 mmol, 80%). Anal. Calcd for
C33H33N3NiS: C, 70.48; H, 5.91; N, 7.47. Found: C, 70.55; H, 5.98; N, 7.80. HR-MS (ESI): m/z [M + H]+

calcd for C33H34N3NiS 562.1821, found 562.1789. 1H NMR (CDCl3, 300.13 MHz): δ 7.58 (d, 3J = 8.1,
1 H, C7H4NS), 7.51 (d, 3J = 7.8, 1 H, C7H4NS), 7.12 (m, 1 H, C7H4NS), 6.98 (m, 1 H, C7H4NS), 6.91 (s, 2
H, NCH), 6.89 (s, 4 H, m-HMes), 4.83 (s, 5 H, C5H5), 2.38 (s, 3 H, p-CH3), 2.10 (s, 6 H, o-CH3). 13C{1H}
NMR (CDCl3, 75.47 MHz): δ 177.9 (NCN), 176.0 (NCS), 155.1 (C6H4-C(3a)), 140.6 (C6H4-C(7a)), 138.8
(p-CMes), 136.8 (ipso-CMes), 135.6 (o-CMes), 129.1 (m-CMes), 123.5 (NCH), 122.8, 120.4, 119.5 and 118.6
(C6H4-C(3,4,5,6)), 91.4 (C5H5), 21.3 (p-CH3), 18.5 (o-CH3).

3.4. Synthesis of [NiCp*(C7H4NS)(IMes)] (8)

KHMDS (0.9 mL, 0.450 mmol, 0.5 M in toluene) was added to a solution of 5 (236 mg, 0.447 mmol)
and benzothiazole (48 µL, 0.442 mmol) in toluene (12 mL) at room temperature, resulting in a very
rapid change of color from red to olive. After 2 h, the volatiles were evaporated under vacuum to give
a brown residue that was extracted with toluene and loaded on the top an alumina pad (4 × 3 cm) that
was eluted (i) with toluene to yield a yellow fraction, and (ii) with a toluene/THF mixture (20:1) to
yield an olive fraction. The latter was then evaporated to dryness to give 8 as an olive solid (34 mg,
0.0538 mmol, 12%). 1H NMR (C6D6, 300.13 MHz): δ 7.92 (d, 3J = 8.1, 1 H, C7H4NS), 7.76 (d, 3J = 7.8, 1
H, C7H4NS), 7.24 (m, 1 H, C7H4NS), 7.02 (m, 1 H, C7H4NS), 6.81 (s, 4 H, m-HMes), 6.00 (s, 2 H, NCH),
2.23 (s, 3 H, p-CH3), 2.09 (s, 6 H, o-CH3), 1.43 (s, 15 H, C5Me5). 13C{1H} NMR (C6D6, 125.77 MHz):
δ187.4 (NCN), 180.9 (NCS), 157.1 (C6H4-C(3a)), 141.3 (C6H4-C(7a)), 138.6 (o-CMes), 138.2 (p-CMes), 137.1
(ipso-CMes), 129.7 (m-CMes), 124.2 (NCH), 123.5, 120.9, 120.3 and 119.8 (C6H4-C(3,4,5,6)), 101.7 (C5Me5),
21.5 (p-CH3), 19.4 (o-CH3), 10.6 (C5Me5).

3.5. Crystallographic Studies

Single crystals of 7 suitable for X-ray diffraction studies were harvested from a batch of crystals
obtained at room temperature from a toluene/pentane (1:3) solution. Diffraction data were collected
at 173(2) K on a Bruker APEX II DUO Kappa CCD area detector diffractometer equipped with an
Oxford Cryosystem liquid N2 device using Mo-Kα radiation (λ = 0.71073 Å). The crystal-detector
distance was 38 mm. The cell parameters were determined (APEX2 software [51]) from reflections
taken from three sets of twelve frames, each at ten seconds exposure. The structures were solved using
direct methods with SHELXS-2014 and refined against F2 for all reflections using the SHELXL-2014
software [52]. A semi-empirical absorption correction was applied using SADABS [53] in APEX2 [51]:
transmission factors: Tmin/Tmax = 0.7423/0.9540. All non-hydrogen atoms were refined with
anisotropic displacement parameters, using weighted full-matrix least-squares on F2. Hydrogen
atoms were included in calculated positions and treated as riding atoms using SHELXL default
parameters. A summary of crystal data, data collection parameters, and structure refinements is given
in Table S1.

4. Conclusions

In summary, we have shown that apart from the Cp* derivative 5, which shows a little activity,
all other tested half-sandwich Ni(NHC) of general formula [NiCpL(NHC)](+) complexes are incapable
of catalyzing the direct coupling of benzothiazole with aryl halides in the presence of an alkoxide as
a base. They instead form a C(2)-metallated benzothiazolyl complex that constitutes a potential energy
well that quenches all further reactivity. Although benzothiazolyl complexes are often proposed as
possible intermediates in such biaryl couplings, the isolated complex, [NiCp(C7H4NS)(IMes)] (7), is to
our knowledge a very rare example of fully characterized C(2)-benzothiazolyl-nickel complex.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2073-4344/9/
1/76/s1, Figure S1: 1H NMR spectrum of a “catalytic” reaction medium after 16 h reaction at 120 ◦C in 1,4-dioxane

http://www.mdpi.com/2073-4344/9/1/76/s1
http://www.mdpi.com/2073-4344/9/1/76/s1
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between benzothiazole and 4-bromotoluene in the presence of 3 (5 mol %) and LiOtBu, Figure S2: 1H NMR
spectrum of a “catalytic” reaction medium after 16 h reaction at 120 ◦C in 1,4-dioxane between benzothiazole and
iodobenzene in the presence of 3 (5 mol %) and KOtBu, Figure S3. 1H NMR spectrum of a “catalytic” reaction
medium after 16 h reaction at 120 ◦C in 1,4-dioxane between benzothiazole and iodobenzene in the presence
of 6 and LiOtBu, Figure S4: 1H NMR spectrum of [NiCp(C7H4NS)(IMes)], Figure S5: 13C {1H} NMR spectrum
of [NiCp(C7H4NS)(IMes)], Figure S6: 1H NMR spectrum of [NiCp*(C7H4NS)(IMes)], Figure S7: 13C {1H} NMR
spectrum of [NiCp*(C7H4NS)(IMes)], Table S1: Crystal data and refinement details of compound 7.
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Appendix A

CCDC 1819738 contains the supplementary crystallographic data for compound 7. These data
can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
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