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Abstract: In this work, we present an investigation concerning the evaluation of the catalytic
properties of Ni nanoparticles supported on ZrO2, SiO2, and MgAl2O4 for CO2 hydrogenation
to methane. The supports were prepared by coprecipitation and sol-gel, while Ni was incorporated
by impregnation (10–20 wt %). X-ray diffraction, nitrogen physisorption, temperature-programmed
reduction, H2 pulse chemisorption, Raman spectroscopy, X-ray photoelectron spectroscopy,
and transmission electron microscopy were the main characterization techniques employed.
A laboratory fixed-bed reactor operated at atmospheric pressure, a temperature range of 350–500 ◦C,
and a stoichiometric H2/CO2 molar ratio was used for catalyst evaluation. The most outstanding
results were obtained with nickel catalysts supported on ZrO2 with CO2 conversions of close to
60%, and selectivity to methane formation was 100% on a dry basis, with high stability after 250 h of
reaction time. The majority presence of tetragonal zirconia, as well as the strong Ni–ZrO2 interaction,
were responsible for the high catalytic performance of the Ni/ZrO2 catalysts.

Keywords: CO2 methanation; Ni catalysts; ZrO2; monoclinic; tetragonal

1. Introduction

Carbon dioxide is considered as the greenhouse gas that contributes the most to global warming.
Currently, CO2 concentration in the atmosphere exceeds 400 ppm, a threshold that is extensively
accepted as a critical level that could drastically aggravate human-caused global warming [1].
An alternative to the capture and sequestration of CO2 is its conversion to higher value-added
products, such as hydrocarbons, by reacting CO2 in the presence of hydrogen and heterogeneous
catalysts. CO2 selective hydrogenation (i.e., methanation or Sabatier reaction) is considered as a viable
alternative for environmental and energy-related issues, reacting CO2 with hydrogen to produce
methane [2–8]:

CO2 + 4H2 ↔ CH4 + 2H2O ∆H298K = −164
kJ

mol
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This reaction has had growing interest in the last decade, in order to chain the excess of renewable
electricity to produce hydrogen, via water electrolysis, with captured and purified CO2 from waste,
to obtain synthetic natural gas (SNG), a concept that is currently referred to as power-to-gas (Ptg) [9].

From the thermodynamic point of view, CO2 methanation is favored at low temperatures
(250–500 ◦C), high pressures, and H2/CO2 ratios of higher than 4 [9]. Different active metals and
supports have been explored for this reaction, and a proof of this are the numerous review articles
that have been published in recent years [2–8]. Nickel is the most commonly studied active phase for
the CO2 hydrogenation reaction, supported on materials such as SiO2, Al2O3, TiO2, CeO2 and ZrO2,
as well as on different combinations of mixed oxides [10–28]. In addition to nickel, a significant number
of works using Fe, Ce, Ru, Mn, Pd, Rh, Pt, and Co, as active phases in bimetallic and multi-metallic
catalysts have also been used [5,10]. However, noble metals, although they lead to a high selectivity to
methane, cannot be compared with Ni, due to their high cost for practical application.

Table S1 summarizes some of the works that have been reported in the open literature for carbon
dioxide hydrogenation at atmospheric pressure on nickel catalysts. CO2 conversions of higher than
90% and selectivity approaching 100% have been found for different nickel catalysts at temperatures
ranging from 350 to 400 ◦C [11,13,14]. The high rates of conversions achieved are directly related to
the very low GHSV (<10,000 h−1) used in the catalytic test, which result in a longer residence time
for the reactant species. A methane selectivity of close to 99%, and a carbon dioxide conversion of
about 80%, approaching equilibrium conversion (86%) [15], have been reported for nickel catalysts
supported on mixed oxides of cerium and zirconia at atmospheric pressure and 350 ◦C, at relatively
high GHSV (43,000 h−1) [2,5,9].

Particularly, ZrO2 is an effective support for Ni catalysts, inhibiting metal sintering at high
temperatures, besides showing high thermal stability and resistance to deactivation by coke
formation [29]. On the other hand, ZrO2 is present mainly in three polymorphs: monoclinic (m-ZrO2),
tetragonal (t-ZrO2), and cubic structures, generating controversy about the role that is played by each
type of structure on activity and selectivity [30]. Specifically, in the case of CO2 methanation, a higher
photocatalytic activity is achieved by the use of t-ZrO2, which has been explained in terms of a large
amount of CO2 adsorption sites [31].

Regarding the reaction mechanism of CO2 methanation on Ni/ZrO2 catalysts, this initiates
with the chemisorption of CO2, and is followed by its interaction with surface hydroxyl groups
on ZrO2 to give a bicarbonate species that can be reversibly converted to carbonate species.
Furthermore, H2 dissociates on the surface of Ni particles, and it migrates to a reducible metal
oxide support by a spillover process, resulting in the formation of surface hydroxyl groups, metal–H
species, and formate species. After that, formate species are hydrogenated towards CH4 formation [32].
In other words, on ZrO2-supported nickel catalysts, CO2 hydrogenation is catalyzed through methane
formation by the formate route, rather than by the CO route [7,33].

In this work, nickel catalysts over commercial SiO2 and synthesized ZrO2, and MgAl2O4 supports
were evaluated using the same amount of Ni and the same operating conditions. It was found that
ZrO2 showed higher catalytic activity and stability, and the effect of metal loading, the influence of the
support synthesis method, and the long-term stability were mainly investigated.

2. Results and Discussion

X-ray diffraction (XRD) patterns of the 20 wt % nickel content catalysts supported on SiO2,
MgAl2O4, and ZrO2-COP are shown in Figure 1. The XRD pattern of the co-precipitated ZrO2 support
consisted of mixed phases. The characteristic peaks of the monoclinic and tetragonal phases are
exhibited at 2θ = 24.05, 28.18, and 31.5◦, and at 2θ = 29.8, 50.1, and 59.4◦, respectively [34,35].
The magnesium aluminate spinel peaks were identified at 2θ values of 19.0, 31.3, 44.9, 59.5,
and 63.4◦ [36], while silicon dioxide is noted at 2θ = 20.9◦ [37]. The presence of the deposited nickel
on the three different supports is evidenced by the characteristic diffraction peaks of nickel oxide at
2θ = 37.3, 43.3, 62.9, 75.4, and 79.4◦ [38].
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attributed to the sintering of metallic nickel particles [39]. MgAl2O4-based catalysts with 5 and 10 wt % 

nickel contents resulted into a higher CO2 conversion regarding the SiO2-based catalyst (Figure 2a 

and 2b). The opposite trend was noted when nickel content was increased to 15 and 20 wt % (Figure 

2c and 2d). It was observed that about 50% of CO2 conversion was achieved with Ni/ZrO2 catalysts at 
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COP, (▲) SiO2, () MgAl2O4, (dashed line) SiC, (solid line) equilibrium conversion. 

Based on these results, the 20 wt % Ni/ZrO2-COP catalyst was used for a comparative study of the 

effect of the support synthesis route on carbon dioxide hydrogenation. The XRD diffraction patterns 

of synthesized zirconia supports are given in Figure 3. The characteristic diffraction peaks of 

monoclinic and tetragonal phases were observed in both the co-precipitated and the sol-gel zirconia 

supports. The Rietveld method was used for the microstructural analysis of the zirconia supports, by 

processing X-ray diffraction data by using MAUD software. Microstructural effects such as crystallite 

size and microdeformations were analyzed by assuming isotropic widening. The calculated patterns 

Figure 1. X-ray diffraction (XRD) patterns of 20 wt % nickel catalysts. (a) Ni/SiO2, (b) Ni/MgAl2O4,
and (c) Ni-ZrO2-COP. ZrO2 Monoclinic phase: (�), ZrO2 Tetragonal phase: (F), MgAl2O4 Spinel: ( ),
NiO: (�).

The results of the catalytic test are presented in Figure 2. An increase in carbon dioxide conversion
was observed, with an increase of reaction temperature for all the nickel-based catalysts. A decrease in
CO2 conversion was noticed for 20 wt % Ni/ZrO2-COP catalysts at 500 ◦C, which can be attributed to the
sintering of metallic nickel particles [39]. MgAl2O4-based catalysts with 5 and 10 wt % nickel contents
resulted into a higher CO2 conversion regarding the SiO2-based catalyst (Figure 2a,b). The opposite
trend was noted when nickel content was increased to 15 and 20 wt % (Figure 2c,d). It was observed
that about 50% of CO2 conversion was achieved with Ni/ZrO2 catalysts at 400 ◦C (Figure 2d). Since
only carbon dioxide and water were detected in the product analysis, it can be said that the selectivity
to methane formation is 100% on a dry basis.
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Figure 2. Carbon dioxide conversion on nickel-supported catalysts. (a) 10 wt %, (b) 20 wt %. ( )
ZrO2-COP, (N) SiO2, (�) MgAl2O4, (dashed line) SiC, (solid line) equilibrium conversion.

Based on these results, the 20 wt % Ni/ZrO2-COP catalyst was used for a comparative study of the
effect of the support synthesis route on carbon dioxide hydrogenation. The XRD diffraction patterns of
synthesized zirconia supports are given in Figure 3. The characteristic diffraction peaks of monoclinic
and tetragonal phases were observed in both the co-precipitated and the sol-gel zirconia supports. The
Rietveld method was used for the microstructural analysis of the zirconia supports, by processing
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X-ray diffraction data by using MAUD software. Microstructural effects such as crystallite size and
microdeformations were analyzed by assuming isotropic widening. The calculated patterns produced
by the Rietveld model are in good agreement with the experimental X-ray diffraction data. The results
of the quantitative phase analysis, refined structural parameters, and crystallite size are given in Table 1.
A Rietveld simulation can be seen in Figures S1 and S2. It can be observed that monoclinic zirconia is
the predominating phase in the sol-gel support 64%, while in the co-precipitated zirconia, the content
of both the monoclinic and tetragonal phases approach to 50%.
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Figure 3. XRD diffraction patterns of synthesized zirconia supports. (a) Sol-gel route, (b) Co-precipitation
route. ZrO2 Monoclinic phase: (�), ZrO2 Tetragonal phase: (F).

Table 1. Phase composition of zirconia supports.

Support Co-precipitation Sol-Gel

ZrO2 Phase Monoclinic Tetragonal Monoclinic Tetragonal

Phase composition, % 47 53 64 36
a RSP: - - - -

A 5.14 3.6 5.15 3.59
B 5.2 3.6 5.2 3.59
C 5.32 5.18 5.32 5.19

Crystallite size, nm 22 18 25 19
Microdeformations 3.4 × 10−3 2.4 × 10−3 3.0 × 10−3 1.3 × 10−3

b Rwp (%) 3.56 3.52
c Rexp (%) 2.24 2.28

a Refined structural parameters; b Weighted profile factor; c Expected weighted profile factor.

According to the BET analysis, it is observed that the surface area of zirconia is considerably
influenced by the preparation method. The specific surface area of zirconia supports, and 20% nickel
content zirconia-based catalysts are listed in Table 2. The co-precipitation support resulted in the
highest specific surface area (75 m2/g), while that of sol-gel zirconia was very low (22 m2/g).

Temperature-programmed reduction (TPR) measurements were carried out to analyze the
reducibility of supported nickel catalysts, as well as the metal–support interaction. As shown in
Figure 4, reduction profiles of the Ni catalysts supported on coprecipitated and sol-gel ZrO2 were very
similar. In both, thermograms could be seen as overlapped peaks, which is characteristic of a strong
metal–support interaction effect (SMSI) [40].
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Figure 4. Temperature-programmed reduction (TPR) analysis of the 20% Ni catalysts supported on (a)
coprecipitated and (b) sol-gel Ni/ZrO2 catalysts.

Table 2. Nitrogen physisorption analysis. Specific surface area and average pore diameter.

Support Preparation
Method

Specific Surface Area (BET), m2/g Average Pore
Diameter, nmZrO2 20% Ni/ZrO2

ZrO2-COP Co-precipitation 75 53 8.0
ZrO2-SG Sol-Gel 22 19 19.3

Note that a very small band in the range of 175–350 ◦C, assigned to reducible NiO species,
could only be observed for the Ni-ZrO2-SG catalyst. With respect to the high temperature reduction
peaks, the Ni-ZrO2-cop catalyst showed a maximum at 415 and 550 ◦C, whereas in the Ni-ZrO2-SG

catalyst, it was at 440 and 526 ◦C. It should be mentioned that the highest global hydrogen consumption
was obtained with the Ni-ZrO2-SG catalyst; therefore, it is inferred that the SMSI was more significant
with the Ni-ZrO2-cop. In fact, our hydrogen chemisorption results confirmed the findings obtained by
TPR, due to the metallic Ni dispersion with both catalysts being <1%, which means that most of the
deposited Ni was strongly linked to ZrO2 [40].

The effect of metal loading on CO2 conversion with the coprecipitated and sol-gel ZrO2 support
is presented in Figure 5. It can be seen that a higher CO2 conversion is reached with the 20 wt %
Ni/ZrO2-COP between 350–450 ◦C, while, both 10 wt % Ni catalysts presented a similar catalytic
performance in the whole temperature range studied. It is worth mentioning that the 20% Ni/ZrO2-COP

catalyst had the larger surface area in what allowed a better dispersion of nickel particles. In addition,
the greater amount of the t-ZrO2 was also found with the coprecipitated support, which agrees with
previous reports [31].

A long-term reaction test was performed for the 20% Ni/ZrO2-COP catalyst, as shown in Figure 6.
A 58% conversion of CO2 was observed at the beginning of the reaction test; however, a 10% decay in
CO2 conversion was evidenced during the first 10 h. After this period, CO2 conversions became stable
at 50% on average, up to the 250 h of the experimental test. Methane selectivity remained constant
along the test at 100% on a dry basis. The catalyst showed a high thermal stability and a high resistance
to deactivation at 400 ◦C. It is worth noting that previous to the deactivation tests (Figure 5), the effect
of GHSV on the CO2 hydrogenation reaction was evaluated (Figure S3). It was found that after a space
velocity of 43,500 mL/ (h gcat) the CO2 conversion remained constant at about 56%.

Figure 7 shows the Transmission Electron Microscopy (TEM) and High-Resolution Transmission
Electron Microscopy (HRTEM) images for 20% Ni/ZrO2-COP-F catalyst. The zirconia support was
identified by the spacing of d = 0.285 nm and 0.363 nm, indexed as (111) and (110), respectively.
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The spacing between the two crystal layers of d = 0.295 nm was consistent with the reflection (110),
which corresponded to the NiO species.
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Figure 8 shows the TEM and HRTEM images for the 20% Ni/ZrO2-COP-S catalyst. The zirconia
support was identified by the spacing of d = 0.281 nm and 0.316 nm, indexed as (111) and (−111),
respectively. The spacing between the two crystal layers of d = 0.295 nm was consistent with the
reflection (110), which corresponded to a NiO species.
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Hydrogen chemisorption analysis was performed on both the fresh and spent catalysts.
Cubic crystal structures [41], and an adsorption stoichiometry factor of two hydrogen atoms per
nickel surface atom [42] were considered for calculations. A nickel dispersion of 0.69%, a nickel surface
area of 0.92 m2/gCat, and a mean diameter of nickel particles of 29 nm were obtained for the fresh
catalyst, while a nickel dispersion of 0.39%, a nickel surface area of 0.52 m2/gCat, and a mean diameter
of nickel particles of 52 nm were estimated for the spent catalyst. Such differences are mainly related
to a slight sintering of nickel particles, which contributes to the loss of catalyst activity during the first
hours of the long-term stability test.

The results of X-ray diffraction, Raman spectroscopy, and XPS analysis for the 20% Ni/ZrO2-COP-F

and 20% Ni/ZrO2-COP-S catalysts are presented in Figure 9. Essential differences were observed for
the ZrO2 structure (Figure 9a), mainly in the peaks corresponding to the monoclinic phase at 2θ = 24,
28.2, 31.5 and 34.2◦, indicating that in the spent catalyst, the tetragonal phase was predominant.
The characteristic Raman peaks (Figure 9b) for the monoclinic phase zirconia were evidenced at 143,
174, 325, 377, and 468, while the characteristic peaks of the tetragonal phase zirconia were observed
at 263 and 632 cm−1. The existence of nickel oxide was confirmed by a signal at 1099 cm−1 in the
20% Ni/ZrO2-COP-F catalyst [43–49]. Significant changes in zirconia structure were observed for
20% Ni/ZrO2-COP-S catalyst, mainly in the bands exhibited for the monoclinic phase at 175, 325,
and 468 cm−1 and those corresponding to nickel oxide at 776 and 956 cm−1

, which could be assigned
to an Ni–O–Zr interaction. These results can also explain the low metallic dispersion that was observed
in fresh and spent catalysts.

Figure 9c–f presents the Zr3d and Ni2p3/2 XPS spectra of both the fresh and spent nickel zirconia
catalysts. As seen in Figure 9c, the fresh catalyst (before activation) was composed of NiO (peaks at
853.4 and 855.3 eV) and a lower amount of Ni(OH)2, as indicated by the peaks at 854.9, and 855.7 eV [50].
The presence of these nickel species can be explained by the preparation method. All of the catalyst
were calcined in the presence of atmospheric air, and humidity could lead to the formation of Ni(OH)2.
After the catalyst’s activation and evaluation (Figure 9d), NiO and Ni(OH)2 were also detected;
additionally, it was observed the presence of metallic nickel, indicated by the peak at 852 eV [50].
Metallic nickel was formed during the in situ reduction; however, this nickel species is extremely
instable, and it can be easily oxidized when it is exposed to air, generating NiO and Ni(OH)2. Figure 9e
presents the Zr 3d spectrum of the fresh catalyst and Figure 9e presents the spectrum of the spent one.
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The spectra of both samples did not show significant changes, and the signals corresponding to the Zr
3d5/2 transition (181.5 eV) and the Zr 3d3/2 transition (183.9 eV) were observed.

The Rietveld method was used to quantify the zirconia phase composition of the 20%
Ni/ZrO2-COP-F and the 20% Ni/ZrO2-COP-S catalysts. The results are given in Table 3. When compared
with the ZrO2-COP support, a slight increase in the monoclinic zirconia phase was observed for the
fresh catalyst because of the nickel impregnation, and calcination at 500 ◦C. The fresh catalyst presents
a 1:1 monoclinic to tetragonal ratio; nevertheless, at the end of the stability test, the tetragonal zirconia
was the predominant phase. This result was in agreement with the X-ray diffraction, and from Raman
spectroscopy, and X-ray photoelectron spectroscopy, significant changes in the monoclinic phase
were observed.Catalysts 2018, 8, x FOR PEER REVIEW  8 of 13 
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Figure 9. Comparative analysis of the fresh and the spent 20% Ni/ZrO2-COP catalyst. (a) X-ray
diffraction, (b) Raman spectroscopy, (c)–(f) X-ray photoelectron spectroscopy. (1) Spent catalyst,
(2) fresh catalyst. ZrO2 monoclinic phase ( ), ZrO2 tetragonal phase (�), nickel oxide (�),
nickel–zirconia interaction (**).

Table 3. Phase composition of the 20% Ni/ZrO2 catalyst.

Material
Crystalline Phases Composition, % Monoclinic/Tetragonal

RatioMonoclinic Tetragonal

ZrO2-COP (Support) 47 53 0.88
20% Ni/ZrO2-COP-S 40 60 0.66

Since the transition of monoclinic to tetragonal zirconia phase occurs at temperatures that are
higher than 1400K [51,52], it was suggested that the changes observed in the monoclinic phase were
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mainly related to its degradation. Such degradations could result in oxygen vacancies in the monoclinic
phase, which can then act as active sites for the carbon dioxide reduction to methane.

3. Experimental

3.1. Support Synthesis

Silicon dioxide (Cabot Corp., Boston, MA, USA) was used as a commercial support (SiO2).
Co-precipitation and the sol-gel route were followed for the synthesis of the zirconia supports.
For the co-precipitated zirconia (ZrO2-COP), 10 mL of zirconium (IV) butoxide (80 wt % in
1-butanol, Sigma-Aldrich, St. Louis, MO, USA) were dissolved into 150 mL of tert-butyl alcohol
(99%, Meyer Corp., Vallejo, CA, USA) under continuous stirring. A concentrated NH4OH (30%, J.T.
Baker, Allentown, PA, USA) solution was added to the mixture until a pH of 9 was obtained.
The temperature was raised to 70 ◦C, and the solution was refluxed for 10 minutes. Afterwards,
26 mL of distilled water was added dropwise to the solution [33]. An immediate formation of a
white precipitated was observed. Two different solutions were mixed for the sol-gel zirconium
dioxide (ZrO2-SG) to be obtained. Solution A was a mixture of 41.25 g zirconium (IV) butoxide,
90 mL of absolute ethyl alcohol (99.9%, Fermont, Monterrey, NL, MEX), and 0.6 mL of nitric acid
(70%, Meyer Corp., St. Louis, MO, USA). Solution B was a blend of 6.2 mL of distilled water diluted
in 36 mL of absolute ethyl alcohol. Under a nitrogen atmosphere, solution B was added dropwise
to solution A under continuous stirring [53]. The resulting white-opaque gel was aged for 24 h.
Both ZrO2-COP and ZrO2-SG supports were rinsed twice with absolute ethyl alcohol, and dried at
60 ◦C under air for 12 hours. Dried samples were crushed and calcinated for 2 h in a tube furnace
Thermolyne 21,100 at 500 ◦C at 10 ◦C/min, and an air flow of 180 mL/min.

Magnesium aluminate spinel was synthesized by a co-precipitation method. Aqueous solutions
of 1 M Al and 0.05 M Mg were prepared by using Mg(NO3)2·6H2O (98%, Caledon, Georgetown, ON,
Canada) and Al(NO3)3·9H2O (98%, Meyer Corp., St. Louis, MO, USA). After that, 200 mL of each
solution was mixed under stirring, and then 600 mL of a 0.2 M ammonium carbonate (Sigma-Aldrich, St.
Louis, MO, USA) solution with a pH adjusted to 9 was added dropwise [54,55]. The mixture was kept
under stirring for 24 h at 50 ◦C. The precipitate was rinsed twice with absolute ethyl alcohol, and dried
at 60 ◦C under air for 24 h. The dried sample was crushed and calcinated for 2 h in a tube furnace at
900 ◦C, at 10 ◦C/min, and with an air flow of 180 mL/min.

3.2. Catalyst Synthesis

Ni(NO3)2·6H2O (J.T. Baker., Allentown, PA, USA) was used as the nickel precursor. Catalysts were
prepared by impregnation by using a Hei-Vap rotary evaporator (Heidolph Instruments, Schwabach,
Germany) at 55 ◦C, 60 rpm, and a vacuum pressure of 450 mm Hg. Theoretical nickel contents of 5, 10,
15, and 20 wt % were impregnated on SiO2, and MgAl2O4 supports, and 10 and 20 wt % were deposited
onto ZrO2 supports. The resulting materials were crushed, dried at 60 ◦C for 12 h, and calcined at
500 ◦C for 4 h in a tubular furnace, with a heating ramp of 10 ◦C/min, and an air flow of 180 mL/min.

3.3. Catalyst Characterization

X-ray diffraction patterns were recorded on a Siemens D-5000 diffractometer with a copper anode
and Cu Kα radiation over a 2θ range of 10–80◦ using a step size of 4◦/min. The specific surface area
was determined by Nitrogen Physisorption measurements at 77 K, using a Quantahrome Nova e4000
BET Surface Area Analyzer (Quantahrome Instruments, Boynton Beach, FL, USA), outgassing samples
at 120 ◦C for two hours before N2 adsorption.

H2-pulse chemisorption analysis was performed with 20% Ni/ZrO2 catalysts. The measurement
was conducted in a ChemBet Pulsar TPR/TPD (Quantahrome Instruments, Boynton Beach, FL,
USA) unit equipped with a TCD detector. A catalysts sample of 50 mg was loaded into a U-quartz
microreactor, pretreated in nitrogen at 20 mL/min and 90 ◦C for 1 h, and cooled down to 25 ◦C in
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the same atmosphere. TPR measurements were carried out in a mixture of 5% H2 balance nitrogen at
25 mL/min, using a heating rate of 10 K/min of up to 650 ◦C. After TPR analysis, the catalyst was
flushed for 30 min under a nitrogen atmosphere at 650 ◦C, and then cooled down to 25 ◦C. A gas
mixture of 5% H2 balance nitrogen was pulsed over the catalyst for chemisorption measurements,
by using a loop of a known volume of 80 µL for the sequential injections.

A JSM-7800F Field Emission Scanning Electron Microscope (JEOL, Tokyo, Japan) was used for
semiquantitative microanalysis, while a JEM-2100F Transmission Electron Microscope (JEOL, Tokyo,
Japan) was used for morphology studies. Another characterization of the morphology and
microstructure was performed from conventional TEM using an ARM 200CF microscope (JEOL, Tokyo,
Japan). For TEM and HRTEM studies, the sample was suspended in ethanol to disperse the powders,
and a drop of the sample was deposited on a lacey carbon copper grid as a TEM support. TEM digital
images were obtained using a CCD camera and Digital Micrograph software (GMS 3, GATAN,
Pleasanton, CA., USA, 2018).

Raman spectroscopy was performed with a Renishaw System 1000 spectrometer
(Renishaw, Wotton-under-Edge, Glos, UK) equipped with a green laser (Spectra-Physics (Santa Clara, CA,
USA), λ = 514 nm, power 19 mW, 1 mW on the sample), under ambient conditions. X-ray photoelectron
spectroscopy (XPS) spectra were recorded on a THERMO Scientific K-Alpha spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) equipped with a monochromatic AlK X-ray source (1487 eV) and a
base pressure of 1 × 10−9 Torr in the analytical chamber. Experimental peaks were decomposed into
components using mixed Gaussian–Lorentzian functions and a non-linear squares fitting algorithm.
Shirley background subtraction was applied. Binding energies were reproducible to within ± 0.2 eV,
and the C1s peak at 284.6 eV, corresponding to adventitious carbon, was used as a reference.

3.4. Catalytic Evaluation

Experimental runs were performed in a “U” shape tubular reactor at atmospheric pressure.
Catalysts were reduced in situ before reaction at 450 ◦C for 1 h, using a 27% (v/v) H2/Ar stream
with a total gas flow of 75 mL/min. Carbon dioxide hydrogenation was conducted at temperatures
in the range of 350–500 ◦C. Hydrogen and carbon dioxide were mixed at a stoichiometric ratio (4:1),
the mixture was diluted in argon (50% v/v), and the total flow rate was set to 210 mL/min. A total
of 0.1 g of catalyst was diluted with 2.5 g of silicon carbide, corresponding to a space velocity of
126,000 mL/(h gCat). The exhaust of the reactor was directed to a gas chromatograph for online
analysis. The effect of gas hourly space velocity was studied by using the 20% Ni/ZrO2-COP catalyst
at 400 ◦C. The mass of catalyst was varied from 0.1 to 0.5 g, at the flow conditions described earlier.
The stability test for this catalyst was carried out at 400 ◦C at a space velocity of 43,500 mL/(h gCat),
using a total flow of 110 mL/min.

4. Conclusions

The effects of nickel content on ZrO2, SiO2, and MgAl2O4, as well as the effect of the preparation
method of zirconia supports, was studied in this work. Nominal metal loads of 5, 10, 15, and 20%
of nickel content were used on SiO2, and MgAl2O4 supports, while zirconia-based catalysts were
impregnated with 10 and 20 wt % metal content. Experimental runs were performed at atmospheric
pressure, and at temperatures ranging from 350 to 500 ◦C, at a constant stoichiometric ratio of H2/CO2

in the feed. An increase in carbon dioxide conversion with an increase in reaction temperature
was observed for all catalysts. At 500 ◦C, Ni/ZrO2-COM showed a decrease in CO2 conversion,
which is mainly attributed to the sintering of nickel particles that occur at high temperatures. The 20%
Ni/ZrO2-COP catalyst resulted in the best performance, with about 50% CO2 conversion and 100%
methane selectivity on a dry basis at 400 ◦C. On the contrary, the sol-gel zirconia-based catalyst gave
the lowest conversions, related to the low specific surface area that was obtained for these materials.

A space velocity of 43,500 mL/(h gcat) was found as the optimal value for the evaluation of
catalyst stability. The 20% Ni/ZrO2-COP catalyst showed high thermal stability, and high resistance to



Catalysts 2019, 9, 24 11 of 13

deactivation at 400 ◦C for up to 250 h in the experimental run. According to the results, the enhanced
catalytic activity and the long-term stability observed with the 20% Ni/ZrO2-COP catalyst can be
explained regarding the presence of tetragonal zirconia as the significant phase, where Ni nanoparticles
were in strong interaction. It is suggested that the formation of oxygen vacancies in the monoclinic
phase cause its degradation, and at the same time, they act as active sites for the carbon dioxide
reduction to methane.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/24/s1.
Table S1. Nickel catalysts reported for CO2 hydrogenation at atmospheric pressure. Table S2. SEM microanalysis.
Table S3. Peak areas of the hydrogen chemisorption analysis. Figure S1. Rietveld simulation for the sol-gel ZrO2
support. Figure S2. Rietveld simulation for the co-precipitation ZrO2 support. Figure S3. Effect on GHSV on CO2
conversion with the 20% Ni/ZrO2-COP catalyst. Reaction conditions: 400 ◦C, 0.1 MPa. Figure S4. SEM images of
20% Ni/ZrO2-COP catalysts.
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