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Abstract: This review fills an apparent gap existing in the literature by providing an overview of
the readily available terpenes and existing catalytic protocols for preparation of terpene-derived
amines. To address the role of solid catalysts in amination of terpenes the same reactions with
homogeneous counterparts are also discussed. Such catalysts can be considered as a benchmark,
which solid catalysts should match. Although catalytic systems based on transition metal complexes
have been developed for synthesis of amines to a larger extent, there is an apparent need to reduce
the production costs. Subsequently, homogenous systems based on cheaper metals operating by
nucleophilic substitution (e.g., Ni, Co, Cu, Fe) with a possibility of easy recycling, as well as metal
nanoparticles (e.g., Pd, Au) supported on amphoteric oxides should be developed. These catalysts
will allow synthesis of amine derivatives of terpenes which have a broad range of applications as
specialty chemicals (e.g., pesticides, surfactants, etc.) and pharmaceuticals. The review will be useful
in selection and design of appropriate solid materials with tailored properties as efficient catalysts for
amination of terpenes.

Keywords: terpenes; terpenoids; biomass; heterogeneous and homogeneous catalysts; amination;
transition metals; supported metals

1. Introduction

A vast expansion in research activities on biomass derived compounds is clearly related to a
growing interest in sustainable feedstock. The current review is focused on synthesis of various amines
from biomass, namely terpenes. In general amine derivatives have found important applications as
corrosion inhibitors, in cosmetics and toiletries, and color reprography to name but a few. Well known
is also their utilization for production of different pesticides and dyes, such as azine, azo dyes, as well
as indigo dyes [1]. Besides being important platform chemicals [2–4], they can be also applied in
synthesis of pharmaceuticals in particular anticancer agents and DNA alkylators. Unfortunately, most
of the industrially relevant aliphatic and aromatic amines, as well as aminoalcohols are currently
manufactured from fossil resources [5,6]. For synthesis of shorter chain amines, (e.g., ethylene
diamine [5], ethanolamines [6]) ammonia and respectively 1,2-dichloroethane and ethylene oxide are
used. This is rather energy-intensive also resulting in significant CO2 emissions and problems with
corrosion when HCl is produced as a by-product. For such shorter chain amines apparently more
sustainable reaction routes should be developed.
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For longer chain amines there is a clear alternative relying on utilization of biomass feedstock,
namely production of bio-based amines can be done from bio-derived alcohols obtained from
carbohydrates, fats, oils, and lignins [4,7–10] (Figure 1). In particular the development of efficient
heterogeneous catalysts for such syntheses starting from carbohydrates [11–14], lignin derived
phenolics [4,15–21], fatty acid (esters) and glycerol from oleochemical sources [8,22], monomers from
chitin [23], and amino acids from proteins, was comprehensively reviewed by Froidevaux et al. [10]
and Pelckmans et al. [4].
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cellulose, gives different terpenes. Apart from recent reviews [10,25] terpenes, have, however, not 
been considered in detail as a promising feedstock for biobased amines.  

This review fills the apparent existing gap in the literature giving an overview of the readily 
available terpenes and describing the developed catalytic protocols for preparation of terpene-
derived amines using homogeneous and heterogeneous catalysts. Bio-catalysis is beyond the scope 
of this review, while it should be mentioned that some interesting results have been reported [26–29] 
for intramolecular C–H amination of carbonazidate derivatives of menthol and borneol to 
corresponding five-membered cyclic compounds [30].  

For some biomass derived compounds amination in the presence of heterogeneous catalysts has 
been extensively studied as described in detail in [4]. At the same time the same concept has been 
scarcely applied for so called extractives, constituting ca. 5% of lignocellulosic biomass. In particular, 
terpenes can be considered as very valuable components of biomass because of the potential 
industrial application of their derivatives ranging from basic and specialty chemicals to 
pharmaceuticals.  

In order to address the role of solid catalysts in the amination of terpenes it was important to 
have an overview first of the same reactions occurring with the homogeneous counterparts. Such 
reactions can be considered as benchmarks, which solid catalysts should match. It should be 
mentioned in this connection, that it was recognized many years ago that at molecular level, there is 
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distinctions at the industrial level [31]. 

The subsequent sections consider respectively the significance of terpenes and their amine 
derivatives and main catalytic reactions for introduction of amine functionalities. 
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Terpenes are hydrocarbons consisting of isoprene (C5) basic units even if they are structurally 
very diverse. Terpenes or more precisely monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), 
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Another available biomass feedstock is the family of terpenes, being present in leaves, flowers,
and fruits of many plants [24]. Distillation of turpentine, a byproduct in the pulp mills making
cellulose, gives different terpenes. Apart from recent reviews [10,25] terpenes, have, however, not been
considered in detail as a promising feedstock for biobased amines.

This review fills the apparent existing gap in the literature giving an overview of the readily
available terpenes and describing the developed catalytic protocols for preparation of terpene-derived
amines using homogeneous and heterogeneous catalysts. Bio-catalysis is beyond the scope of this
review, while it should be mentioned that some interesting results have been reported [26–29] for
intramolecular C–H amination of carbonazidate derivatives of menthol and borneol to corresponding
five-membered cyclic compounds [30].

For some biomass derived compounds amination in the presence of heterogeneous catalysts has
been extensively studied as described in detail in [4]. At the same time the same concept has been
scarcely applied for so called extractives, constituting ca. 5% of lignocellulosic biomass. In particular,
terpenes can be considered as very valuable components of biomass because of the potential industrial
application of their derivatives ranging from basic and specialty chemicals to pharmaceuticals.

In order to address the role of solid catalysts in the amination of terpenes it was important to have
an overview first of the same reactions occurring with the homogeneous counterparts. Such reactions
can be considered as benchmarks, which solid catalysts should match. It should be mentioned in this
connection, that it was recognized many years ago that at molecular level, there is little to distinguish
between homogeneous and heterogeneous catalysis, while there are clear distinctions at the industrial
level [31].

The subsequent sections consider respectively the significance of terpenes and their amine
derivatives and main catalytic reactions for introduction of amine functionalities.
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2. Terpenes Valorization into Valuable Amines

Terpenes are hydrocarbons consisting of isoprene (C5) basic units even if they are structurally
very diverse. Terpenes or more precisely monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20),
sesterterpenes (C25), triterpenes (C30), and rubber (C5)n can be either branched or cyclic unsaturated
molecules. Being typically extracted from the resins of coniferous trees they can be also present as
acyclic or mono- to pentacyclic derivatives containing alcoxy, ether, carbonyl, keto, or ester ketone
groups (i.e., “terpenoids”). These substrates present in various living species [32], particular in higher
plants, are characteristic of a specific plant type.

The well-known application of natural (or even synthetic) resins of terpenes in perfumes and
fragrances is related to their odor. In addition, synthesis of vitamins, insecticides, and pharmaceuticals
also starts from terpenes [33–37]. Acyclic terpene amines are of special interest for production of
insecticides, fungicides, and herbicides as well as in development of new pharmaceuticals [38–43].
Amino terpenes on the basis of (−)-menthol and (+)-3-carene were used for the preparation of potential
inhibitors of γ-aminobutyric acid neuro-receptors for neurological applications [44,45]. Efficiency of
limonene amino derivatives against in vitro cultures of the Leishmania (Viannia) braziliensis [46], egg
hatchability, and mortality [47], as well as tobacco growth inhibitors was demonstrated [48,49]. Another
interesting synthetic option is to use the amine group as a suitable protecting group, when there is a
need to selectively hydrate some bonds in terpenes (e.g., myrcene) containing several double bonds.
This strategy was applied in the synthesis of myrcenol, hydroxycitronellal [33] as well as terpenol [50].
It is also possible to use amino derivatives of terpenes as ligands in enantioselective reactions, such
as catalytic asymmetric transfer hydrogenation of aromatic alkyl ketones [51] or enantioselective
alkynyl zinc additions to aromatic and aliphatic aldehydes [52]. Amino terpenes on the basis of
dihydromyrcenol were applied in synthesis of surfactants [53].

The history of plant terpenoids application in traditional herbal remedies is very extensive,
therefore it is not surprising that they are currently under investigation due to their different therapeutic
properties [54]. Even simple terpenes such as D-limonene, farnesol, and geraniol were reported to
possess some chemotherapeutic activity against human cancer [55]. Carboranes with cinamyl, prenyl,
and geranyl terpenoid fragments [55] were used to enhance boron delivery in boron neutron capture
therapy [56–59]. Treatment with an alkyl halide of citronellal after amination with dimethyl or diethyl
amines gives the corresponding chiral ionic liquids [60].

In general, a larger scale production of chemicals from plant extracts is limited, even if there
are some examples when aminoterpenes play an important role in asymmetric and chemoselective
catalysis. The Takasago Perfumery Company produces optically pure (−)-citronellal and pure
(−)-menthol (1500 t/a) using N,N-diethylnerylamine [33]. SCM Corporation utilizes amination of
myrcene for the synthesis of an insect repellent possessing insecticidal activity against the American
flour beetle and the German cockroach [61].

This short overview illustrates a diverse scope of potential applications of terpenes-based amines
in synthesis of valuable products including pharmaceuticals.

3. Possible Catalytic Tools for Synthesis of Terpene-Based Amines

This section is devoted to several reaction routes available to form C–N bonds in the terpenes of
interest. Classical approaches for amine synthesis by a direct reaction of ammonia with alkyl halides
or alternatively reduction of nitro or nitrile compounds are not considered here, instead the main
focus is on hydroamination, hydroaminomethylation, reductive amination, and alcohols coupling with
amines [1]. As mentioned above terpenes are highly functionalized molecules that contain double
bonds, while their derivatives bear carbonyl and alkoxy or hydroxyl groups (Figure 2) that can be
readily involved in various amination strategies.
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Thus, five possible strategies in the formation of C–N bonds in terpenes and their derivatives
were distinguished (Figure 3):

(1) reductive amination of aldehydes and ketones
(2) hydroaminomethylation
(3) hydroamination of double C=C bonds
(4) hydrogen borrowing methodology for amination of alcohols
(5) C–H amination of terpenes, which is a very specific case.
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3.1. Reductive Amination of Terpenes with Carbonyl Moiety

3.1.1. Reductive Amination of Aldehydes

As an example a particular terpenoid containing an aldehyde function is considered.
Citronellal (3,7-dimethyloct-6-en-1-al, 1) (Figure 4) is well known as a flavoring agent and an insect

repellent. The (R)-isomer of citronellal is typically found in citronella while the essential oil of kaffir
lime contains the (S)-isomer. Citronellyl amine can be synthesized from the amide [62], oxime [62], and
from geranylnitrile [63]. An issue related to reductive amination of aldehydes with ammonia using
transition metals as catalysts is the need to suppress side reactions (Figure 4). Reductive amination of
citronellal with aqueous ammonia giving primary amines was described by Behr et al. [62]. In this
atom efficient method [Rh(cod)Cl]2/TPPTS (TPPTS = 3,3′,3′ ′-phosphanetriyl benzenesulfonic acid)
as a homogenous catalyst was used in a biphasic solvent system. The organic compounds (substrate
and product) are located in the apolar solvent phase of the biphasic solvent system, following an
established concept applied for hydroformylation. This approach allowed a high yield of primary
amines (4, 5) up to 87% effectively suppressing side reactions. These yields were obtained at 60 bar of
hydrogen and 130 ◦C. Such high pressure was required as selectivity was seen to be dependent on
pressure (Figure 5).
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Figure 5. Influence of hydrogen pressure on the product distribution in the reductive amination of
citronellal; data points are connected to show a better comparison. Reaction conditions: 6 mmol
citronellal (1), 216 mmol NH3, 0.5 mol% [Rh(cod)Cl]2, 2.0 mol% TPPTS, 0.5 mol% CTAC, 5 mL toluene,
130 ◦C, 800 rpm, 6 h. Reprinted from [62] with permission from Elsevier.

All details of the experimental conditions are reported in [62]. The biphasic solvent inevitably
requires efficient mass transfer, therefore surfactants, including ionic liquids or native cyclodextrins and
their derivatives such as 1-decyl-3-methylimidazolium bromide ([DecMIM]Br) and methylcyclodextrin
were applied [64]. Another option to increase selectivity towards the desired primary alcohols is to
cleave the secondary imine formed as an undesired by-product [65].

3.1.2. Reductive Amination of Ketones

Reductive amination of d-fenchone to prepare fenchylamine, which are intermediates for
some biologically active compounds [66] has been studied already long time ago [67] applying
heterogeneous catalysts. In particular in the gas-phase amination of D-fenchone (1) with aliphatic
nitriles (acetonitrile, acrylonitrile. or butyronitrile) performed at 220–260 ◦C under pressure of
hydrogen ranging from 10 to 15 bar over copper on alumina modified with LiOH a mixture of
isomeric endo-N-alkyl-l,3,3-trimethylbicyclo[2.2.l]hept-2-ylamines (2) and the corresponding exo
compounds (3) with a ratio of 3:1 and yield of 50–60% was formed along with the intermediate
N-fenchylidenalkylamine (4) (Figure 6). The main side products were α-fenchol (5) and β-fenchol (6).
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Somewhat related to reductive amination described above is hydroaminomethylation (HAM), 
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Figure 6. Scheme of reductive amination of D-fenchone (1) by aliphatic nitriles to prepare fenchylamine.
Adapted from [67].

An interesting feature of this reaction is the generation of a primary amine from the initial nitrile
on the metal sites. This primary amine then reacts with the substrate giving N-fenchylidenalkylamine
(4) which is followed by hydrogenation into diastereomeric secondary amines (2, 3). This reaction
competes with the intermolecular dehydration of the alcohols (5, 6). Formation of secondary amines is,
however, predominant.

A systematic study on reductive amination of carbonyl terpenoids (camphor, carvone,
hexahydropseudoionone, isocamphone) with different nitriles (acetonitrile, propionitrile, benzonitrile)
over 15% Cu/Al2O3 modified with 2–6% LiOH resulting in both unsaturated and completely
hydrogenated amines of diverse structure was conducted by Kozlov and co-workers [68].

Another example reported in the literature for reductive amination was related to camphor as
a substrate. Influence of the heterogeneous catalysts type on the amination product yields in the
reductive amination of camphor (1) with methylamine (Figure 7) was investigated. When Raney
nickel was used as a catalyst, N-methylbornan-2-imine (2) (yield 82.8%) was predominantly formed,
whereas the reaction over 5% Pd/C yielded a mixture of the imine (2) and N-methylbornan-2-ylamine
(3) (30.4% and 65.7%, respectively). When platinum oxide was used as a catalyst, the yield of the amine
3 reached 92.7%.
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Figure 7. Reductive amination of camphor (1) with methylamine for synthesis of N-methylbornan-
2-ylamine. Adapted from [68].

After reduction the promoted fused iron catalyst was applied for camphor (1) conversion
(Figure 7) exhibiting high stereoselectivity to endobornan-2-ylamines (3), which is somewhat unusual
for metal heterogeneous catalysts. In particular conversion of D,L-camphor (1) into endo- and
exobornan-2-ylamines (3) during hydroamination reached 92%, with the endo to exo ratio being
(1.4–1.8):1. Apparently, this stereoselectivity is due to the “imine-enamine” tautomerization occurring
on the acid–base sites of the catalyst [68].

3.2. Hydroaminomethylation of Olefin Bonds in Terpenes

Somewhat related to reductive amination described above is hydroaminomethylation (HAM),
which in fact is a tandem reaction consisting of hydroformylation followed by reductive amination [69].
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This one-pot process proceeds on the same catalyst responsible for hydroformylation of C=C double
bond making first an aldehyde followed by amination and hydrogenation of the imine/enamine
intermediate [70–73] finally giving a secondary or a tertiary amine. The only by-product in this very
efficient process with good atom economy is water. Apparently a careful choice of reaction conditions
is needed to satisfy requirements for all reactions comprising a complex reaction network [70,74].

A few examples of hydroaminomethylation reaction with terpenes were reported including
α-pinene [75], β-pinene [74], camphene [74], limonene [74,76,77], β-myrcene and β-farnesene [78]
and naturally occurring allyl benzenes such as eugenol [79] and estragole [80]. Hydroformylation of
the internal double bonds is much more difficult than the terminal bonds, thus it is not surprising
that the examples mentioned above are related to isolated terminal double bonds. In the only
reported hydroaminomethylation of a conjugated terpene [81] regioselectivity in hydroformylation
was low along with low catalytic activity per se explained by formation of relatively stable η3-allyl-Rh
complexes [78].

Hydroaminomethylation of limonene (1) with secondary amines (n- and i-propylamine,
benzylamine), cyclic amines (piperidine, morpholine, piperazine,) aromatic amine (aniline)
and diamines (ethylenediamine, propilenediamine, tetramethylenediamine) was reported by
Graebin et al. [76]. The yields of products varied from 50% to 89% and are presented in Figure 8. In
the case of diamines only isomerization products were obtained for tetramethylenediamine, while no
products were formed when ethylenediamine was used. A plausible explanation could be inactivation
of rhodium because of formation of stable chelated compounds of diamine with the catalyst.
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Figure 8. Hydroaminomethylation of limonene (1) with secondary amines, Y—yield of product:
2a—R1 = n-propyl, R2 = H, Y = 85%; 2b—R1 = i-propyl, R2 = H, Y = 50%; 2c—R1 = benzyl, R2 = H,
Y = 44%; 2d—R1 = R2 = piperidine, Y = 80%; 2e—R1 = R2 = morpholine, Y = 79%; 2f—R1 =
R2 = piperazine, Y = 89%; 2g—R1 = phenyl, R2 = H, Y = 50%. Reprinted from [76] with permission
from Elsevier.

Olefin hydroformylation was selective towards the linear aldehydes compared to the branched
ones [76] which can be ascribed to the catalyst itself along with the steric hindrance of the terpene
isopropenyl group [82–85].

Amination of aldehydes is more difficult with ammonia than with primary amines. Nevertheless
Behr et al. [77] applied ammonia in HAM of limonene (1) (Figure 9). The reaction proceeds
through hydroformylation of limonene (1) to the corresponding aldehyde (2) in the first step
followed by condensation with ammonia giving an aldehyde observed experimentally and subsequent
hydrogenation of the latter to a primary amine (3).

The desired amine (3) reacted also with the aldehyde 2 resulting in formation of secondary
and tertiary amines. Moreover, limonene (1) underwent isomerization to its isomer isoterpinolene
(4) [25,77].

[Rh(cod)(µ-OMe)]2 as a pre-catalyst in the presence or absence of triphenylphosphine or
tribenzylphosphine as ligands was applied in HAM of R-(+)-limonene (1) (Figure 10), camphene
(5) (Figure 11), and (−)-β-pinene (9) (Figure 12) with di-n-butylamine, n-butylamine, morpholine,
triphenylphosphine, and tribenzylphosphine using toluene as a solvent [74]. The reaction giving
moderate to good yields (75–94%) was performed at 100 ◦C and 60 bar with an equimolar mixture of
CO and H2.
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Hydroaminomethylation of estragole (1) (Figure 13), a bio-renewable starting material, with
di-n-butylamine was studied in [80]. Estragole being a primary constituent of essential oil of tarragon
(60–75%) is also present in other sources, such as pine oil, turpentine, fennel or anise (2%) [86]. HAM
consists of alkene hydroformylation followed by reductive amination of aldehydes. Different ligands
were used with rhodium(I) catalysts including phosphine, phosphites, and phospholes. The latter
were the most efficient not only in hydroformylation, but also in reductive amination. Three isomeric
amines (9–11) were generated as final products (Figure 13). Along with these imines aldehydes (3–5)
and enamines (6–8) were observed depending on conditions. Side reactions included for example aldol
condensation. Some other hydrogenation products as well as unidentified products were also formed.
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Hydroaminomethylation of eugenol (1) with di-n-butylamine (Figure 14) involved bis[(1,5-
ciclooctadiene)(µ-methoxy)rhodium(I)] as a pre-catalyst [79]. The presence of phosphines was
needed to improve chemoselectivity in hydroformylation, being detrimental for hydrogenation of
enamine intermediates. Similar to the cases described above mainly linear aldehyde was obtained
in hydroformylation. Efficiency of HAM could be also improved by addition of triflic acid as a
promoter [79].
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Figure 14. Hydroaminomethylation of eugenol with di-n-butylamine. Reprinted from [79] with
permission from Elsevier.

As can be seen from Figure 14 hydroaminomethylation of eugenol with di-n-butylamine gives
three isomeric amines (9–11) of which compound 9 is predominant. Similar to estragole the
intermediate aldehydes (3–5) and enamines (6–8) were also observed. Tables 1 and 2 contain the
results for HAM of eugenol for different catalysts and reaction conditions.
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Table 1. Hydroaminomethylation of eugenol (1, Figure 14) with di-n-butylamine: ligand effect a.
Adapted from [79].

Ligand P/Rh b Con. (%)
Product Distribution (%) Regioselectivity (%) c

2 Aldehydes Enamines Amines 9 10 11

None 0 100 d 4 1 0 90 61 33 6
PPh3 2 100 0 24 3 73 96 4 0
PPh3 10 100 0 32 10 58 94 5 1

NAPHOS 2 34 3 34 56 7 >99 0 0
NAPHOS e 2 100 10 21 5 64 97 3 0

a Conditions: 1 (10 mmol); di-n-butylamine (10 mmol); [Rh(cod)(µ-OMe)]2 (5.0 × 10−3 mmol), toluene
(30 mL), 4.0 MPa (CO:H2 = 1:3), 100 ◦C, 24 h. For products, the value “zero” means not observed or <0.5%.
b Phosphorus/Rhodium atomic ratio. c Related to the sum of amines (9 + 10 + 11). d 5% of hydrogenation of
substrate. e 120 ◦C.

Table 2. Hydroaminomethylation of eugenol (1, Figure 14) with di-n-butylamine: effect of added acid a.
Adapted from [79].

Ligand P/Rh b Acid T (◦C) Con. (%)
Product Distribution (%) Regioselectivity (%) c

2 Aldehydes Enamines Amines 9 10 11

PPh3 2 None 120 100 d 0 17 0 83 96 4 0
PPh3 2 H2SO4

d 120 86 13 76 9 2 94 6 0
PPh3 2 HOTs d 120 100 0 23 0 75 89 11 0
PPh3 2 HOTf d 120 100 1 11 0 88 84 14 2

NAPHOS 2 HOTf e 100 100 5 9 0 86 99 1 0
NAPHOS 20 HOTf e 100 100 2 5 0 93 99 1 0
NAPHOS 40 HOTf e 100 100 2 3 0 95 98 2 0

a Conditions: 1 (10 mmol); di-n-butylamine (10 mmol); [Rh(cod)(µ-OMe)]2 (5.0 × 10−3 mmol), toluene (30 mL),
4.0 MPa (CO:H2 = 1:3), 24 h. For products, the value “zero” means not observed or <0.5%. b Phosphorus/Rhodium
atomic ratio. c Related to the sum of amines (9 + 10 + 11). d 1.0 mmol. e 2.0 mmol.

Triflic acid, being more stable than HBF4, was reported to be an efficient promoter for eugenol
hydroaminomethylation in the presence of phosphines as ancillaries [79].

Rh/1,2-bis(diphenylphosphino)ethane was used [78] for hydroaminomethylation of industrially
available β-myrcene and β-farnesene. The reaction network is basically the same as for other terpenes
presented above (Figure 15) with also high regioselectivity towards the linear aldehyde. Such efficient
synthetic protocol allows preparation of environmentally friendly biobased surfactants.
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The final example of this section is related to a two-step synthesis protocol when hydroformylation
of a-pinene was done either using rhodium or cobalt based catalysts. Chiral aminomethyl pinane was
prepared in 100 g scale [75] with rhodium as a catalyst giving (+)-3-formylpinane and subsequent
reductive amination with ammonia. On the contrary Co2(CO)8 led to (−)-2-formylborane.
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3.3. Hydroamination on Olefin Bonds of Terpenes

Regioselective hydroamination of alkenes is more challenging than hydroamination of aldehydes.
In particular a product of anti-Markovnikov addition is desired, while known synthetic protocols are
mainly selective towards the product of Markovnikov addition [87–89].

Pd(cod)Cl2 in combination with bis(2-diphenylphosphinophenyl) ether (DPEphos) [89] afforded
selective hydroamination of acyclic and cyclic dienes with several aromatic and aliphatic amines not
requiring presence of any additive. Significant efforts in [89] were concentrated on transformations
of isoprene. More relevant in the context of this review is hydroamination of myrcene catalyzed
either by alkali metals or transition metals [33]. Following the same pattern as for other 1,3-dienes,
predominantly 1,4-amines were formed (Figure 16).
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Figure 16. Identification of tail products in hydroamination of myrcene. Reproduced from [33] with
permission from Willey.

The reactive double bond is the terminal one (denoted as tail in Figure 16) resulting in linear
amines, which in fact are the desired products. Such a method is rather efficient compared to
alternatives, which rely on the corresponding acetates as the starting compounds and allylic amination
catalyzed by palladium complexes [90–93].

Superior atom efficiency of hydroamination (100%) is a reason for a plentitude of studies on
addition of amines, in particular diethylamine, to myrcene (Table 3).

Table 3. Overview of hydroamination investigations *. Adapted from [33].

Catalyst/Conditions a Amine Geranylamine
Selectivity (%)

Amine
Yield (%) TON c TOF d (h−1)

20.0 mol% BuLi, 50 ◦C, 4 h HNEt2 95 77–83 4 1.04
33.3 mol% Na/16.7 mol%
naphthalene, 20 ◦C, 1 h HNEt2 80 53 2 1.60

36.0 mol% Li, 50 ◦C, 20 h HNiPr2 n.m. 80 2 0.11
100 mol% Li, 50 mol%

naphthalene,
HNEt2, morpholine, pyrrolidine,

piperidine, HNnBu2
geranylamine 72 b 1 b 0.18 b

100 mol% TMDAP, 20 ◦C, 4 h 88 b

10 mol% BuLi, 50 ◦C, 2.5 h HNMe2 88 79 8 3.18

1.7 mol% Na, 50 ◦C, 4 h HNMe2, HNEt2, HNiPr2,
HNnBu2

90 b 83 b 49 b 12.21 b

3.6 mol% Li, 25 ◦C, 72 h HNMe2, HNEt2, HNiPr2,
HNnBu2, piperidine, 2-methylpi- 96 b 87 b 24 b 0.34 b

peridine, 2,6-dimethyl-piperidine
36.0 mol% Li, 55 ◦C, 5 h HNEt2 92 74–77 2 0.43

15.0 mol% BuLi, 55 ◦C, 12 h HNEt2 95 85 6 0.47
0.1 mol% [RhCl(cod)]2, 2.3 mol%
TPPTS, 100 ◦C, 21.5 h (biphasic) morpholine 53 59 590 27.44

0.2 mol% Pd(CF3CO2)2, 1.6 mol%
DPPB, 100 ◦C, 4 h morpholine 57 98 490 123.50

a TMDAP: N,N,N′,N”-tetramethyldiaminopropane, TPPTS: triphenylphosphine trisulfonate. b According to
diethylamine. c TON: turn over number. d TOF: turn over frequency. * References to original papers are provided
in [33].
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N,N-Diethylgeranyl- and nerylamine are valuable starting compounds for synthesis of a variety
of terpenoids (Figure 17) including (−)-menthol, myrcenol, hydroxycitronellol, nerol, geraniol, linalool,
(+)-citronellal, and (+)-citronellol.

The hydroamination reaction is mostly catalyzed by alkali metal-based systems such as sodium
or lithium (Table 3, entries 1–9). More expensive transition metals, nevertheless provide higher TON
values being effectively recycled. Nowadays two routes are known using transition metal catalysts
(Rh and Pd complexes) developed by Rhone–Poulenc [94] and Berh [33] with TOF values of 27 and
124 h−1, respectively (Table 3, entries 10–11).

Preparation of optically pure (−)-citronellal and (−)-menthol (route A) developed by Takasago
Perfumery Company is the largest application of asymmetric catalysis. It includes enantioselective
isomerization to an optically active enamine with high enantioselectivity (ee = 95–99%) [95].
Subsequent hydrolysis results in (+)-citronellal, which then undergoes cyclization in the presence of
ZnBr2 and forms (−)-isopulegol. This reaction can also be performed over heterogeneous catalysts [96].
Hydrogenation of isopulegol gives finally (−)-menthol.
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In route B (Figure 17) the amine group serves as a suitable protecting group allowing selective
hydration of the isolated double bond of myrcene. Further transformations using Pd complexes [97–99]
or sodium hydride [100] give respectively myrcenol and hydroxycitronellal.

Oxidation of N,N-diethylnerylamine with hydrogen peroxide (route C in Figure 17) is the first
step in the synthesis of geraniol, nerol, or linalool [101].

Amination of myrcene with 2-amino-2-methyl-1-propanol developed by SCM Corporation leads
to products acting as repellents against the American flour beetle and the German cockroach [61].

Hydroamination of myrcene into diethylgeranylamine using palladium complexes with bidentate
ligands such as bis(diphenylphosphino)butane (DPPB) or bis(2-diphenylphosphinophenyl) ether
(DPEphos) [102] raises an issue of palladium recovery combining the advantages of homogeneous
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catalysis (high selectivity and activity) with those of heterogeneous catalysis (catalyst reuse
and simple separation). Application of thermomorphic solvent systems, such as for example
dimethylformamide/heptane and acetonitrile (ACN)/heptane, allowed simple catalyst separation.
ACN/heptane turned out to be a more suitable solvent mixture, permitting efficient product extraction
with negligible catalyst leaching. This method is based on the temperature dependent miscibility gap
of the solvent system components. Thus, when a mixture of two liquid components, immiscible at
room temperature, is heated to a higher reaction temperature, a single liquid phase is formed. In this
state no mass transfer limitations occur. Cooling down under the critical solution temperature leads
to a biphasic system, from which the catalyst phase can be simply separated from the extract phase
providing easy catalyst recycling. Overall 90% yield of diethylgeranylamine was reported [102].

3.4. Amination of Terpene Alcohols

Hydrogen borrowing amination of terpene alcohols has attracted a lot of attention generating
only water as the byproduct [7,103–107]. While this method has been adapted industrially [108] for
production of low alkyl chain amines such as N-methyl-, N,N-dimethyl-, and N,N,N-trimethyl-amines
in the presence of Bronsted and Lewis acid catalysts, rather high temperatures are needed exceeding
300 ◦C and moreover mixtures of N-substituted amines are often produced.

In this section, we discuss recent progress in the development of efficient homogeneous and
heterogeneous catalysts, capable of carrying out selective synthesis of desirable amines, especially
taking into account that selective amination of rather labile terpene alcohols requires milder conditions
and thus more efficient catalytic systems. Along with the hydrogen borrowing reactions, less atomic
efficient homogeneous transition metal-catalyzed allylic substitution reactions with functionalized
allylic terpene alcohols are considered.

3.4.1. Homogeneous Catalysts

A broad range of homogeneous catalysts based on transition metal complexes was applied for
N-alkylation, including Rh, Pd, Au, Ag, Pt, Os, and Re. Moreover, even some systems with non-noble
metals (Ni, Cu, Fe, and Co) have been proven to be efficient catalysts in N-alkylation [109].

In particular contribution of Milstein and co-workers in development of direct homogeneous
catalytic amination of primary alcohols with ammonia should be acknowledged [104]. Transformations
of secondary alcohols to primary amines with ammonia following the so-called hydrogen borrowing
methodology were described extensively in the literature [7,64,105,110–122].

Specific applications of this approach to transformations of terpene derivatives were also reported.
For instance, Pingen et al. [113] utilized [Ru3(CO)12] and different phosphor containing ligands to
selectively convert various primary and secondary terpene alcohols to primary and secondary amines.
This particular catalyst was considered to be an exception, as in fact the hydrogen borrowing approach
rarely results in synthesis of amines and diamines with optimal yields using homogeneous catalysts
based on Ru and Ir complexes combined with P-ligands. Some examples of reasonable yields of
primary and secondary terpene amines exceeding 80% were reported for such primary and secondary
terpene alcohols as myrtenol [123,124], citronellol, nerol, geraniol, farnesol, and fenchol [9,125].

Some examples of N-alkylation of terpene alcohols with ammonia are presented in Tables 4 and 5.
Screening of different P-ligands showed [9] that the acridine-based diphosphine was the only bidentate
ligand affording excellent results. This ligand was used in couple with [RuHCl(CO)(PPh3)3] for the
amination of primary alcohols with ammonia. This combination, however, appeared to be inactive for
secondary amines under the same conditions [104,125].
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Table 4. Secondary terpene alcohol amination with [Ru3(CO)12]/L9 a. Adapted from [125].

Substrate Time (h) T (◦C) Conversion b (%) Selectivity c,d (%) Ketones (%) Product

Menthol
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While palladium-catalyzed amination of allylic functionalized simple alkenes has been studied
extensively, application of natural terpenic alkenes derivatives is much less common [91,92].
In this context an interesting example is the synthesis of N,N-diethylgeranylamine (2) and
N,N-diethylneranylamine (4) from diethylamine and linalyl acetate (1) or nerolidyl acetate (3)
(Figure 18) using Pd(PPh3)4 [91].
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Figure 18. Pd catalyzed allylic amination of linalyl acetate (1), nerolidyl acetate (3), and linalyl
methylcarbonate (5). Adapted from [91].

Besides diethylamine other amines can be applied for such transformations. For example,
N-geranylaniline was obtained by reaction of aniline with linalyl acetate (1) displaying
100% stereoselectivity.

Analogously nerolidyl acetate (3) was transformed into amine derivatives [91]. Dependence of
the yield and selectivity (E to Z ratio) for nerolidyl acetate (3) is presented in Table 6.

Table 6. Pd(0)-catalyzed amination of nerolidyl acetate (3). Adapted from [91].

Amine Solvent Ligand T (◦C) Molar Ratio Amine/(3) Yield of (4) (%) a E:Z

(C2H5)2NH THF PPh3 20 2.0 40 60:40
(C2H5)2NH THF PPh3 50 2.0 14 62:38
(C2H5)2NH IPE PPh3 20 2.0 48 60:40
(C2H5)2NH IPE PPh3 50 2.0 8 62:38
(C2H5)2NH Benzene PPh3 20 2.0 35 76:24
(C2H5)2NH DMF PPh3 20 2.0 70 52:48
(C2H5)2NH CH2Cl2 PPh3 20 2.0 52 54:46
(C2H5)2NH (C2H5)2NH PPh3 20 Excess 57 59:41

Reaction conditions: nerolidyl acetate (3) 4 mmol; catalyst 0.02 mmol (5 mol%); solvent 12 mL. a Yields of (4) were
isolated yields.

Similarly to the example above for linalyl acetate utilization of linalyl methylcarbonate with the
same Pd(0) catalyst and diethylamine results also in N,N-diethylgeranylamine (Table 7).

Reaction of linalyl methylcarbonate (5) with aniline or morpholine gives selectively (E)-isomers
(E:Z = 100:0) (Table 7).
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Table 7. Pd(0)-catalyzed amination of linalyl methylcarbonate (5). Adapted from [91].

Amine Solvent Ligand T (◦C) Molar Ratio Amine/(5) Yield of (2) (%) a E:Z

(C2H5)2NH THF PPh3 20 2.0 20 91:9
(C2H5)2NH IPE PPh3 20 2.0 21 92:8
(C2H5)2NH Benzene PPh3 20 2.0 15 94:6
(C2H5)2NH DMF PPh3 20 2.0 42 86:14
(C2H5)2NH 1,2-C2H4Cl2 PPh3 20 2.0 30 86:14
(C2H5)2NH (C2H5)2NH PPh3 20 Excess 48 91:9

Aniline THF PPh3 20 2.0 52 100:0 b

Aniline IPE PPh3 20 2.0 60 100:0
N-Me-Aniline THF PPh3 20 2.0 50 100:0 c

N-Me-Aniline IPE PPh3 20 2.0 59 100:0
Morpholine THF PPh3 20 2.0 47 100:0 d

Morpholine IPE PPh3 20 2.0 45 100:0
Pyrrolidine THF PPh3 20 2.0 32 85:15 e

Pyrrolidine IPE PPh3 20 2.0 49 94:6

Reaction conditions: linalyl merhylcarbonate (5) 5 mmol, catalyst 0.25 mmol (5 mol%), solvent 12 mL. a Yields of (2)
were isolated yields. b The product is N-geranyl aniline. c The product is N-methyl-N-geranyl aniline. d The product
is geranyl morpholine. e The product is geranyl pyrrolidine.

Pd(0)-catalyzed amination of allylic natural functionalized terpenes—myrtenyl acetate (1), perillyl
acetate (3), geranyl acetate (5), mertynyl alkyl carbonate (9), perillyl alkyl carbonate (10), geranyl
alkyl carbonate (11)—was studied in [124]. The reaction scheme is shown in Figure 19, while Table 8
illustrates the catalytic results for myrtenyl acetate with and without Et3N.Catalysts 2018, 8, x FOR PEER REVIEW  18 of 37 
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This substrate was used in combination with different secondary amines (pyrrolidine, morpholine,
and Me2NH) and the Pd(dba)2/PPh3 catalytic system (Figure 19). As seen from Table 8 high yields
could be reached under mild conditions. Application of an acceptor base, e.g., Et3N was beneficial for
pyrrolidine as the amine source. The nature of the ligand in case of morpholine as nucleophile and
Et3N as the acceptor base influenced significantly the catalytic behavior (Table 9). Presence of ligands
was essential as in their absence there was practically no reaction.

Table 9. Ligand influence on the amination of myrtenyl acetate a (1) with morpholine in the presence
of Et3N. Adapted from [124].

Ligand b Yield c (%) Conversion d (%)

None - 2
PPh3 90 96
dppe 88 94

P(o-tolyl)3 13 22
2,2′-dipyridyl 5 14

a The reaction mixture in THF with 2.5 mol% of Pd(dba)2, 5 mol% of ligand and 1.2 equivalents of morpholine
under nitrogen atmosphere at room temperature. b Experiments monitored by GC until no further evolution was
encountered. c Isolated yield. d Conversions were determined by GC and based on (1).

Some other examples of Pd(0)-catalyzed amination of terpenic allylic esters, namely perillyl
acetate (3), geranyl acetate (5), mertynyl alkyl carbonate (9), perillyl alkyl carbonate (10), and geranyl
alkyl carbonate (11), are summarized in Table 10 [124].

Table 10. Catalytic amination of terpenic allylic esters a. Adapted from [124].

Terpenic Allylic Esters Secondary Amine Product Yield b (%) Conv c (%)

Allyl acetate
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Lyubimov et al. [55] conducted Pd-catalyzed amination of allylic carbonates of terpenoids:
(E)-cinnamyl ethyl carbonate (1), ethyl prenyl carbonate (2), ethyl geranyl carbonate (3), in supercritical
CO2 with N-(ortho-carboran-3-yl)-N-methylamine (4) (Figure 20). Corborane amines, which
are promising agents for cancer therapy, were obtained at complete conversion with excellent
regioselectivity using sodium bicarbonate as the acceptor base [55].
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3.4.2. Heterogeneous Catalysts

Although various transition-metal complexes can provide reasonable selectivity to the desired
products, application of expensive noble metal catalysts results in complicated reaction systems.
Homogeneous transition metal catalysts based on noble metals are typically expensive and toxic, not
stable and prone to contaminate the products and finally difficult to recover. Moreover, application
of sophisticated and unpredictable organic ligands has obvious disadvantages, such as difficulties in
their synthesis and recovery. Not surprisingly to increase the probability of industrial implementation
significant efforts were devoted to heterogenization of homogeneous catalysts [126–129].

One example is related to introduction of a chiral ferrocenyl-based ligand to the surface of a
mesoporous material MCM-41 [130]. The active catalytic species (Figure 21) were used in allylic
amination of cinnamyl acetate with benzylamine with the aim of achieving high yields of the branched
product (reaching 50%) with the highest possible ee. In fact, the enantiomeric excess was close to 100%,
while the homogeneous catalyst gave exclusively a straight chain product with no ee [131].
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Even though immobilization of organic ligands or metal complexes by covalent binding [131,132]
has been a subject of extensive research there are a number of technological challenges including
complexity of the synthesis procedure and eventual leaching of the immobilized species. Advantages of
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heterogeneous catalysts in product and catalyst isolation, and catalyst reuse prompted their application
in amination [133,134]. Specificity of heterogeneous catalysts sometimes displaying activity for only a
particular substrate restricts their more widespread application. As an example sulfonamide alkylation
with alcohols over Ru on iron oxide can be mentioned of such specificity, as the catalysts are not active
in alkylation of carboxamides or amines [135]. Therefore, it is required to develop more active and
general heterogeneous catalysts for the terpene alcohols amination without addition of organic ligands.

N-alkylation follows the hydrogen borrowing mechanism with first dehydrogenation of an alcohol
to the corresponding aldehyde followed by condensation with an amine giving an imine. The latter
is then hydrogenated by hydrogen “stored” on the catalyst resulting in the final alkylated amine
products (Figure 22) [109]. The method is thus mainly suitable for primary amines and alcohols.
According to this general mechanism, hydrogen transfer from alcohols to catalysts and then from
adsorbed hydrogen to intermediate imines are the typical key processes of the methods. It should
also be pointed out that inorganic bases were usually required in hydrogen autotransfer reactions for
deprotonation of the alcohols to facilitate their coordination with transition metal catalysts. Since bases
were usually used in large excess amounts in the early transition metal-free methods, they were used
only as additives but not as catalysts in transition metal-catalyzed reactions, even though in many
cases they were also used in minor (well below stoichiometry) amounts [109].
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approach”, where oxidation in fact stands for dehydrogenation. Reprinted from [123] with permission
from Elsevier.

Hydrogen transfer steps (dehydrogenation of alcohols and hydrogenation of imines) are
considered as the rate controlling steps. Primary amines and alcohols are thus preferred displaying
better results in these key steps. Inorganic bases as mentioned above are typically used as additives to
facilitate deprotonation of alcohols and coordination to transition metals [109].

First application of typical heterogeneous catalysts in direct terpene alcohol amination was
demonstrated in a series of recent studies by Simakova and co-workers [123,136–140]. Liquid-phase
amination of myrtenol [123,136–139], nopol, and perillyl alcohol [140] was carried out over supported
Au catalysts (Au 1.4 mol% to substrate) in toluene at 180 ◦C under 9 bar nitrogen pressure using
equimolar amounts of substrates without any bases as additives. The reaction network for myrtenol
amination is presented in Figure 23. In addition to the expected products, myrtenal and the
corresponding imines (1 and 2), also myrtanol as well as myrtanal with the saturated C–C bond
were formed subsequently resulting also in imines (3) and (4). It should be noted that prior to the work
using heterogeneous catalysts only amine (2) was obtained by interacting myrtenol with PBr3 giving a
bromide which was then put in contact with aniline leading to amine (2) [141].
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The authors showed that the support played a crucial role in this reaction. The product
distribution during the reaction was found to depend strongly on the type of the support (Figure 24).
A nearly complete conversion of myrtenol was achieved only in the presence of Au/ZrO2 and
Au/Al2O3 catalysts.
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Figure 24. Myrtenol conversion (a) and the selectivity (b) to the corresponding products 1 (blue bars),
2 (dark blue bars), 3 (green bars), and 4 (red bars) at the same myrtenol conversion (74%) for myrtenol
amination in the presence of gold supported on ZrO2, Al2O3, CeO2, La2O3, and MgO. The reaction
conditions: T = 180 ◦C, p(N2) = 9 bar, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst
1.4 mol% Au, R = aniline. Reprinted from [123] with permission from Elsevier.

Gold supported on ceria, magnesia, and lanthana showed a relatively high alcohol conversion,
even if the reaction rate was lower than for gold on alumina and zirconia. The non-basic supports
Au/Al2O3 and Au/ZrO2 promoted much faster interactions of the aldehyde with aniline as well as
hydrogen transfer [123].

The authors underlined the necessity of a certain balance between the different acid–base sites of
the metal oxide for efficient alcohol amination. The initial myrtenol activation was shown to require the
presence of the basic sites on metal oxide surfaces whereas availability of the protons on the support
surface was suggested to be important for the target amine formation. The highest activity in one-pot
myrtenol amination among the tested catalysts was obtained over Au/ZrO2 with both acidic and
basic sites.
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Moreover, the complex influence of redox treatment on catalytic behavior of Au/ZrO2, Au/CeO2,
and Au/La2O3 was studied (Figure 25) elucidating formation of the active species. Au/ZrO2 treated
under an oxidizing atmosphere was shown to be more effective in terms of the target secondary amine
yield [136].

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 
 P

ro
du

ct
s,

 m
ol

. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

Figure 25. The products distribution as a function of the reaction time during myrtenol amination
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction

products: myrtenol (�), myrtenal (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), myrtanol (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), myrtanal (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), 1 (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), 2(

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), 3 (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

), 4 (

Catalysts 2018, 8, x FOR PEER REVIEW  23 of 37 

 

resulting in formation of an immonium cation, which is then attacked by hydride ion from Au 
nanoparticles to form the final product [106,142]. The mechanism is illustrated in Figure 26. 

  
(a) 

  
(b) 

  
(c) 

Figure 25. The products distribution as a function of the reaction time during myrtenol amination 
over Au/ZrO2 (a), Au/CeO2 (b), Au/La2O3 (c) pre-treated in O2 (left) or in H2 (right). The reaction 

products: myrtenol (■), myrtenal (◄), myrtanol ( ), myrtanal (►), 1 (●), 2(▲), 3 ( ), 4 (▼). The 
reaction conditions: T = 180 °C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% 
Au. Reprinted from [137] with permission from Elsevier. 

0 5 10 15
0

10

20

30

40

50

R

R

Myrtenol

 P
ro

du
ct

s,
 m

ol
. %

Time, h

Au/ZrO2 (O2)

0 5 10 15
0

10

20

30

40

50
Au/ZrO2 (H2)Myrtenol

O

 P
ro

du
ct

s,
 m

ol
. %

Time,h

R

R

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (O2)

O

Pr
od

uc
ts

, m
ol

. %

 

 

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/CeO2 (H2)

 

 P
ro

du
ct

s,
 m

ol
. %

Time,h

Myrtenol

O

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (O2)

O

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

0 5 10 15
0

10

20

30

40

50
Au/La2O3 (H2)

Pr
od

uc
ts

, m
ol

. %

Time, h

Myrtenol

O

). The reaction
conditions: T = 180 ◦C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL, catalyst 1.4 mol% Au.
Reprinted from [137] with permission from Elsevier.



Catalysts 2018, 8, 365 23 of 36

Demidova et al. [123] found that myrtenal condensation with aniline per se was non-catalytic
being, however, noticeably accelerated in the presence of a catalyst. The first step of alcohol
deprotonation was concluded to be promoted at the basic sites of the support giving an alkoxide
intermediate on the support surface. This is followed by β-hydride elimination catalyzed by Au to
form myrtenal. The adsorbed myrtenal and aniline interact to form hemiaminal, which then undergoes
an attack by the hydride ion from Au nanoparticles and a proton from the support surface resulting in
production of the final amine. Formally in the last step the H+ and H− transfer to the hemiaminal is
accompanied by dehydration. According to the literature data in the case of homogeneous catalysts
a cooperative mechanism of a coordinately unsaturated metal center and adjacent acid/base center
is widely accepted [123]. H− in the metal hydrides and H+ of OH or NH groups of the ligand are
transferred to carbon and nitrogen of the C–N bond, respectively. Taking into account this model as
well as the regularities obtained for other heterogeneous catalysts [106], the authors proposed [123]
that the hemiaminal undergoes dehydration and subsequent H+ addition resulting in formation of
an immonium cation, which is then attacked by hydride ion from Au nanoparticles to form the final
product [106,142]. The mechanism is illustrated in Figure 26.Catalysts 2018, 8, x FOR PEER REVIEW  24 of 37 
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It was found that Au on metal oxides was slightly deactivated during amination predominantly
due to imine adsorption. Therefore, kinetic modelling of myrtenol amination was done for the
mechanism which also incorporated the catalyst deactivation step [123,136].

Based on the kinetic data of myrtenol amination with aniline published in [123] it was proposed
that introducing additional hydrogen is beneficial for the overall process by improving in particular
hydrogenation of the imine. Such approach is of general interest for the so-called hydrogen
borrowing reactions, when hydrogen generated in the dehydrogenation step is transferred to an
intermediate imine.

In [138] the effect of hydrogen addition was thus explored to increase selectivity. Hydrogen
addition timing depending on myrtenol conversion and hydrogenation temperature affected selectivity
for the reaction products. Hydrogen addition (1 bar) after an almost complete myrtenol conversion at
100 ◦C increased the yield to amine up to 68% preserving the C=C bond in the initial myrtenol structure.
Hydrogen addition at 180 ◦C independent on the level of myrtenol conversion promoted reduction
of both C=C and C=N bonds with formation of two diastereomers (yield up to 93%). Formation of
the trans-isomer was preferred when hydrogen was added at almost complete myrtenol conversion.
As a result it was shown in [138], that in the presence of a gold catalyst controlled hydrogenation of
competitive C=C and C=N groups can be performed during one-pot alcohol amination by regulating
the reaction conditions (Table 11).
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Table 11. Effect of reaction conditions on the content of amine (4) diastereomers and diastereomeric
excess value at complete myrtenol conversion. Adapted from [138].

Conditions trans-(%) cis-(%) de(%)

1 bar H2, 8 bar N2, 180 ◦C 65 35 30
2 bar H2, 7 bar N2, 180 ◦C 62 38 24

9 bar N2, 180 ◦C/1 bar H2, 8 bar N2, 180 ◦C 80 20 60

The same authors studied the application of the more safe hydrogen sources and often more
readily available in the fine chemical industry than molecular hydrogen, namely alcohols (methanol,
2-propanol) or formic acid [139]. It was found that small amounts of 2-propanol or formic acid
(additive/myrtenol molar ratio equal to 0.5 and 0.25, respectively) helped to improve the yield of the
target amine elevating it to 68% and 65%, respectively, compared to 52% amine yield in the absence of
additives. However, a further increase of the additive amount decreased amine formation because
2-propanol itself reacted with aniline competing with myrtenol. Introduction of formic acid into the
reaction mixture suppressed activity of the Au/ZrO2 catalyst due to a strong adsorption of formic
acid and decomposition products on the support basic sites required for activation of the initial
alcohol. In comparison with other hydrogen additives methanol was found not to be as effective for
one-pot alcohol amination. The catalytic activity and selectivity to the reaction products obtained
using different external hydrogen sources are compared in Figure 27.
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Figure 27. The effect of H-donors addition and its amount on myrtenol conversion (a) and selectivity to
amine (2) (b,c). The reaction conditions: T = 180 ◦C, myrtenol 1 mmol, aniline 1 mmol, toluene 10 mL,
Au/ZrO2 catalyst 92 mg, 9 bar N2. Reprinted from [139] with permission from Elsevier.
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Finally, the structure effect of terpene alcohols selected based on their pharmaceutical relevance
was studied over Au/ZrO2 [140] (Tables 12 and 13). Primary bicyclic (myrtenol and nopol, bearing an
unconjugated –OH group) and monocyclic (perillyl) alcohols were chosen for aniline amination under
comparable conditions. The rate of alcohol dehydrogenation decreased 10-fold using nopol which
after dehydrogenation gave an unconjugated aldehyde group. Selectivity to the desired amine in the
latter case increased via selective hydrogen transfer to C=N bonds. Monocyclic perillyl alcohol was
more reactive than myrtenol, giving a complex product mixture at 180 ◦C with the amine present only
in small amounts. A decrease of the reaction temperature resulted in a more controlled transformation
of perillyl alcohol to imines and amines, with predominant hydrogenation of the C=C bond (Table 12).

Table 12. Effect of the monoterpene alcohol structure on catalytic behavior of one-pot alcohol amination
with aniline. The reaction conditions: T = 180 ◦C, monoterpene alcohol 1 mmol, aniline 1 mmol, toluene
10 mL, Au/ZrO2 catalyst 92 mg, 9 bar N2. Adapted from [140].

Alcohol
R a

(mol·L−1·h−1) Time (h)
Alcohol

Conversion (%)

Selectivity (%)

Sec. Amine Imine Aldehyde b

1 c 2 d 1 c 2 d

Myrtenol 2.1 × 10−2
2 44 39 5 50 3 0
8 87 52 6 34 2 0
16 98 53 7 33 2 0

Nopol 2.4 × 10−3 8 10 74 0 22 0 0
16 40 76 0 19 0 0

Perillyl alcohol 3.1 × 10−2 2 70 Complicated mixture of the products
8 99

Perillyl alcohol e 1.3 × 10−2 8 98 1 19 28 11 2
a Initial reaction rate of alcohol transformation, calculated within the linear part of the kinetic curves. b Selectivity to
intermediate aldehyde formed from the corresponding primary or secondary alcohol, respectively. c Selectivity to
the corresponding product with unsaturated C=C bond in alcohol structure (bold). d Selectivity to the corresponding
product with saturated C–C bond in alcohol structure (italic). e The reaction temperature is 160 ◦C.

Table 13. Effect of amine structure on catalytic behavior of one-pot myrtenol amination. The reaction
conditions: T = 180 ◦C, myrtenol 1 mmol, amine 1 mmol, toluene 10 mL, Au/ZrO2 catalyst 92 mg, 9 bar
N2. Adapted from [140].

Amine
R a

(mol·L−1·h−1) Time (h)
Alcohol

Conversion
(%)

Selectivity (%)

Sec. Amine Imine Myrtenal/Myrtanal
1 b 2 c 1 b 2 c

Aniline 2.1 × 10−2
2 44 39 5 50 3 0/0
8 87 52 6 34 2 0/0
16 98 53 7 33 2 0/0

Aniline d 2.0 × 10−2 16 98 69 9 10 2 5/2

4-Methylaniline 1.6 × 10−2
2 34 19 1 73 0 4/9 × 10−1

8 89 37 1 53 0 8/2
16 98 43 2 49 0 5/1

4-Methylaniline e 1.4 × 10−2 16 95 51 4 30 2 7/2

4-Bromoaniline 3.4 × 10−2 2 60 0 14 0 43 14/0
8 99 0 22 0 49 13/0

Benzylamine 2.3 × 10−2 2 48 36 13 26 14 1 × 10−1/0
8 98 3 35 0 49 0/0

Phenethylamine 3.3 × 10−3
8 40 63 0 36 0 0/0
16 53 51 0 47 0 0/0
24 70 46 1 52 0 0/0

Phenethylamine e 3.0 × 10−3 16 48 69 3 20 0 3/2
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Table 13. Cont.

Amine
R a

(mol·L−1·h−1) Time (h)
Alcohol

Conversion
(%)

Selectivity (%)

Sec. Amine Imine Myrtenal/Myrtanal
1 b 2 c 1 b 2 c

3,4-Dimethoxy-
phenethylamine 7.0 × 10−4 16 13 72 0 27 0 0/0

3,4-Dimethoxy-
phenethylamine e 6.9 × 10−4 16 12 80 0 15 0 2/1

3-Aminopyridine 1.9 × 10−3
8 19 21 0 74 0 2/1

16 31 20 1 60 0 11/3
24 44 23 2 58 1 12/3

3-Aminopyridine e 2.0 × 10−3 16 33 30 2 49 0 14/2
a Initial reaction rate of alcohol transformation, calculated within the linear part of the kinetic curves. b Selectivity
to the corresponding product with unsaturated C=C bond in myrtenol structure (bold). c Selectivity to the
corresponding product with saturated C–C bond in myrtenol structure (italic). d The result obtained in [140] adding
0.5 mmol of 2-propanol into initial reaction mixture. e 0.5 mmol of 2-propanol was added to initial reaction mixture.

Myrtenol amination was also investigated for a range of aliphatic and aromatic amines, showing
that the primary amine structure affected both the initial dehydrogenation rate and the selectivity to
the desired amine (Table 13). Important issues to be considered were the substrate accumulation on
the catalyst surface as well as the reactivity of the substrates and intermediates. Stronger adsorption
of more basic amines on the cationic gold species can retard dehydrogenation of an alcohol, which is
the first step of the overall process. The nature of the substituent and the reactivity of intermediates
is even more important. This was confirmed, as a good correlation was found between the substrate
structure and reactivity using the Hammett equation [140].

These data indicated that while an increase of hydrogen availability is an evident method of
improving the yields, fine tuning of the amines reactivity can be an even more efficient tool.

3.5. C–H Amination of Terpenes

The final section of this review is devoted to C–H amination. Sulfonimidoylnitrene species (1)
(Figure 28) allow the intermolecular chemoselective C–H amination of various complex molecules [143]
giving a possibility to synthesize enantiopure aminated derivatives not easily accessible by classical
organic synthesis. Allylic methylene units of terpenes and enol ethers have been efficiently aminated
with the yields close to 98% and very high diastereomeric ratios (up to ca. 200 to 1) in the presence of a
rhodium catalyst Rh2(S-nta)4 (nta = N-(1,8-naphthoyl)-alanine) (Figure 29) [143]. More importantly, the
combination of steric, inductive, and conformational factors leads to chemoselective functionalization
in the allylic positions allowing site-selective amination with yields of up to 88%. Steric and
stereoelectronic effects, in this case, favor amination of tertiary equatorial C-H bonds.
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Catalytic C–H amination of terpene substrates was highly efficient allowing isolation of C–H
aminated products (3a–3e) in high yields (Table 14). In Table 14 compounds (3a), (3b) stand for
derivatives of α-pinene, while (3c–3d), and (3e) correspond to derivatives of respectively limonene,
nopol trichloroacetate, and carene. An important feature of amination is chemoselectivity in activation
of the C–H bond, while the double bond is inert.

Table 14. Allylic amination of terpenes with sulfonimidamide S*NH2 (1 in Figure 28) a. Adapted
from [143].
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a Reaction conditions: terpene (0.2 mmol) in a 3:1 mixture of 1,1,2,2-tetrachloroethane/MeOH at −35 ◦C.
b The diastereomeric ratios have been determined by 1H NMR or HPLC. c Yield in parentheses obtained using 5
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4. Learning from Homogeneous Catalysis and Future Outlook for Heterogeneous Catalysis

The current review focuses on terpene amine synthesis in the presence of solid catalysts rather
than with homogeneous catalysts even if the latter are also discussed including immobilized ones.

Terpene alcohol amination represents an interesting example of where catalytic synthesis might
reflect different mechanistic views: the hydrogen borrowing pathway in general and the allylic
substitution in a particular case of functionalized allylic alcohols substrates. The hydrogen borrowing
pathway is a highly atom efficient approach matching green chemistry requirements and providing
selective C–N bond formation while keeping the initial terpene moiety. In this connection close
attention in the current review was paid to this very promising approach realized over homogeneous
and heterogeneous catalysts. Amination of myrtenol over supported gold catalysts was reliably
documented to proceed through hydrogen borrowing methodology [123]. Amination of various other
allylic and non-allylic terpene alcohols with homogeneous Ru complexes was shown to occur via a
hydrogen borrowing pathway as well [125]. Thus [Ru3(CO)12]/L9 catalyzed amination of secondary
and primary terpene alcohols (Tables 4 and 5 in the manuscript) was reported to proceed through
intermediate carbonyl compounds indicating a hydrogen borrowing pathway rather than an allylic
substitution. The corresponding amine compounds were formed both in the case of substrates with an
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allylic –OH group (carveol, verbenol, geraniol, nerol, farnesol) and a non-allylic OH group (menthol,
borneol, fenchol, citronellol). Reactivity of terpene alcohols depends rather on the presence of steric
hindered substituents than on the conjugation with the double bond. Thus in the case of substrates
with bulky substituents such as menthol, verbenol, and fenchol the intermediate ketones were the
major products regardless of OH group conjugation with the C=C bond.

Along with hydrogen borrowing reactions less atomic efficient catalytic methodologies were also
demonstrated in the review. In particular, homogeneous transition metal-catalyzed allylic substitution
reactions with functionalized allylic terpene alcohols, discussed in the review (Figures 18–20,
Tables 6–10) [55,92,124], resulted in stoichiometric by-products formation. Allylic substitution reactions
typically utilize an activated allylic substrate (i.e., an allylic alcohol protected as an acetate or ester
acting as a leaving group), a transition metal catalyst (usually palladium), and a nucleophile. In a very
good recent review [145], which unfortunately did not present examples of terpene allylic alcohols
amination, it was demonstrated that allylic substitution in general is possible for unactivated allylic
alcohols. In the current review, allylic substitution type of transformations are related to amination of
several functionalized allylic alcohols catalyzed by Pd complexes, namely linalyl acetate (Figure 18),
nerolidyl acetate (Figure 18, Table 6), linalyl methylcarbonate (Figure 18, Table 7), myrtenyl acetate
(Figure 19, Tables 8 and 9), perillyl acetate, geranyl acetate, mertynyl alkyl carbonate, perillyl alkyl
carbonate, and geranyl alkyl carbonate (Table 10) [92,124], as well as cinnamyl ethyl carbonate, ethyl
prenyl carbonate, and ethyl geranyl carbonate (Figure 20) [55].

Mechanistic aspects of myrtenol amination in the presence of supported gold catalysts were
discussed in [123] suggesting an important role of the hydride ion. In this context it is interesting to
find a common denominator for heterogeneous and homogeneous catalytic amination.

Palladium catalyzed allylic amination typically involves formation of neutral or cationic palladium
π-allyl complexes via SN2 reaction. A soft nucleophile attacks from the back side of the metal allowing
retention of configuration in the product [144]. According to DFT calculations for palladium-catalyzed
allylation of primary amines by allylic alcohols [146] one potential pathway involves formation
of cationic Pd hydride species while in the second option decomplexation of the coordinated
allylammonium can occur. In [124] it was assumed that both amination of allyl acetates and carbonates
involves generation of a (π-allyl)-palladium complex (2) (Figure 29). Experimentally observed
formation of the racemic product (3) was thus rationalized considering that the nucleophile can
attack both allylic positions of the (π-allyl)-palladium complex (2).
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Formation of cationic π-allyl-Pd-complex intermediate B was supposed [89] to proceed through
the initial formation of transient Pd–H species A, followed by their reaction with the diene.
The nucleophilic attack of aniline on the less-substituted carbon of the intermediate species B
(Figure 30) [89] results in a regioselective 1,4-hydroamination product.
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As mentioned above analysis of available literature shows that there are just a few examples
when terpene amines were synthesized using heterogeneous systems, comprising reductive amination
over Ni Raney, Pt/C, Pd/C, copper on alumina modified with LiOH, hydroamination on alkali
metals, and hydrogen borrowing reactions over Au and AuPd. In fact, there is a clear trend in the
more widespread application of heterogeneous catalysts. It is interesting that complexes of precious
metals are mainly applied as homogeneous catalysts, while despite utilization of noble heterogeneous
catalysts (e.g., carbon supported Pt and Pd in amination of camphor), other metals such as supported
Cu and Au were considered to be efficient. Moreover, while addition of Pd to heterogeneous catalysts
deteriorates the overall performance by decreasing selectivity towards complex amines at the expense
of hydrogenation, similar behavior was not observed for homogeneous catalysts. This is even more
striking as according to the available data the mechanisms of amination in the presence of transition
metal complexes discussed above and heterogeneous catalysts are similar. In particular, catalytically
active species are formed by generation of the metal hydrides in the case of Pd–H from homogeneous
Pd chloride complexes. Similar suggestions follow from the work of the authors of this review on
amination of myrtenol with aniline over gold catalysts. Obviously, there is a need for more detailed
studies of the nature of active sites in homogeneous catalysts to fully explore this knowledge in the
design of heterogeneous systems. Alternatively if the mechanisms of homogeneous and heterogeneous
catalysis are different, a significant amount of work should be devoted to heterogeneous catalysts in a
quest for understanding the reaction mechanism. This and many other questions do not have clear
answers at the moment urging on one hand more in depth and on the other more broader studies on
amination of terpenes over heterogeneous catalysts.

5. Conclusions

Although amination of terpenoids has been extensively studied since the early decades of the
last century, industrial implementation of biomass-based terpenes as starting materials is still in its
infancy. Catalytic systems based on transition metals complexes have been developed for performing
such reactions. However, to reduce the production costs, either easily recoverable homogeneous
systems based on cheaper metals operating by nucleophilic substitution, as well as supported metal
nanoparticles (Ni, Co, Cu, Pd, Au) on low alkaline supports should be developed. These catalysts will
provide synthesis of amine derivatives of terpenes having a broad range of applications as specialty
chemicals, surfactants, pharmaceuticals, etc.
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