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Abstract: Nitrogen-containing aromatic polymers such as polyimide are known for their high thermal
stability. While they have been widely used in industry, their relevance to catalysis is still quite limited.
In recent years, nitrogen-containing polymers have been explored as precursors of nitrogen-doped
carbonaceous materials, which are particularly attractive as non-precious metal catalysts for oxygen
reduction in fuel cells. The high thermal stability of nitrogen-containing polymers contributes to an
effective control over the morphology of the resulting carbonaceous catalysts. This review article
provides an overview of the recent progress on the research and development of Fe/N/C oxygen
reduction catalysts prepared from morphology-controlled nitrogen-containing polymers.

Keywords: polyimide; nitrogen-doped carbon; fuel cell; non-precious-metal; mesoporous carbon;
rotating ring-disk electrode voltammetry; electrocatalysis; self-assembly; bock copolymer

1. Introduction

The electrochemical oxygen reduction reaction (ORR) is very important in view of the principles of
green and sustainable chemistry. The four-electron reduction pathway to form H2O releases a relatively
large free energy (1.23 V vs. reversible hydrogen electrode (RHE)) and is an important reaction for
fuel cell applications. The two-electron reduction pathway to form H2O2 at a lower potential (0.7 V vs.
RHE) is also an important reaction with regard to the electrochemical synthesis of H2O2 [1–3]. For both
reaction pathways, non-precious metal (NPM) catalysts are desired, considering the cost and scarcity
of precious metals. The catalysts obtained by pyrolyzing Fe, N, and C-containing precursors have
been widely studied, while oxide-based catalysts also constitute another class of NPM catalysts [4–6].
This review article describes an effective approach to obtain a highly active Fe/N/C catalyst.

The history of the development of NPM ORR catalysts began with the discovery of the
catalytic activity of Co phthalocyanine for ORR by Jasinski et al. [7]. Chemists were inspired by
the similarity of such macrocyclic compounds to natural enzymes and many macrocyclic compounds
were subsequently studied as ORR catalysts [8]; however, their catalytic activity and durability were
not sufficient to consider their commercialization as fuel cell catalysts. In this context, since Jahnke et al.
reported that heat treatment can improve the ORR catalytic activity and durability of macrocyclic
compounds [9], numerous attempts were made to develop NPM cathode catalysts by pyrolyzing
precursors containing transition metals (mainly Fe or Co), as well as nitrogen and carbon sources [10,11].
In brief, when Fe, N, and C-containing precursors are pyrolyzed at 600–1000 ◦C, the obtained Fe/N/C
catalysts show ORR catalysis to some degree; however, the nature of the catalytic activity depends on
the precursors and pyrolysis protocol.

This review article focuses on nitrogen-containing aromatic polymers as precursors of NPM
ORR catalysts. To perform effective catalytic reactions, it is desirable that the catalyst possesses a
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large surface area. In addition, the catalyst materials in polymer electrolyte fuel cells (PEFCs) must
be in contact with the ionomer to promote the proton conductivity of the catalyst layer. Therefore,
the catalyst should preferably be in a fine powder state to increase the interfacial area between the
catalyst and ionomer. Nitrogen-containing aromatic polymers such as polyimides contain a sufficient
amount of nitrogen atoms and have high thermally stability. While the nitrogen atoms can be converted
into catalytically active sites in a facile manner, infusible character is desired to control the morphology
of the resulting carbonaceous catalysts. This is made possible because the morphology of the polymer
can be controlled at the polymerization stage and the high thermal stability contributes to the retention
of the morphology during the high temperature carbonization procedure. In the first half of this
review, the synthesis of high performance NPM fuel cell catalysts from spherical polyimides is
described. The second half describes the formation of mesoporous structures upon pyrolysis of
nitrogen-containing polymers, the morphology of which is controlled via the soft-template approach.

2. ORR Reaction Scheme and Active Sites over NPM Catalysts

The structure of the catalytically active sites in such NPM catalysts is still hotly debated. Figure 1
shows the most commonly proposed active sites in ORR catalysts. One particularly convincing model
involves a catalytic center based on metal-N coordination, which was proposed based on experimental
evidence from time-of-flight secondary ion mass spectrometry (TOF-SIMS), high-angle annular dark
field scanning transmission electron microscopy (HAADF-STEM), and extended X-ray absorption fine
structure (EXAFS) [12–14]. Simultaneously, metal-free N-doped carbon species with pyridinic and
graphitic nitrogen have also been suggested to be responsible for the observed ORR activity based on
experimental [15–17] and theoretical studies [18–20].
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Figure 1. Commonly proposed catalytically active sites for the electrochemical oxygen reduction
reaction (ORR) in acidic media.

The difficulties encountered in determining the catalytically active sites arise from the complicated
reaction scheme for ORR over Pt-free catalysts. Figure 2a shows a typical reaction model for ORRs [21].
Typical analyses of the Fe/N/C catalysts, including rotating disk electrode (RDE) voltammetry
with Koutecky–Levich (KL) and rotating ring-disk electrode (RRDE) voltammetry, tend to exhibit
relatively high electron numbers (close to four) [22–24]. However, these analyses cannot resolve the
quasi-four-electron reduction, and the experimental data does not support an actual four-electron
pathway during NPM catalysis. Indeed, Olson et al. proposed a bi-functional ORR mechanism over
Fe/N/C catalysts in 2010 [25], but quantitative discussion to resolve the quasi-four-electron reduction
reaction proved difficult. While Ohsaka and co-workers tried to apply the Damjanovic–Hsueh
approach [21,26], which involves detailed RRDE analysis by plotting of the obtained parameters
against the rotation speeds, such analysis relying on rotation speeds suffered from huge noise [27,28].
To address these concerns, Nabae and co-workers recently developed a new model (Figure 2b) and
method for RRDE analysis [29]. This new method avoids overestimating the contribution of the
four-electron reduction reaction by studying the different loading densities of the catalysts and
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extrapolating the obtained parameters to null loading density. By this analysis, it was revealed
that the contribution of the four-electron (I1) pathway using an Fe/N/C catalyst was only 51% while
the rest of the current originated from either of the two two-electron pathways (I2 and I3). Note that
this correction was done by changing the loading density of the catalyst. Therefore, this extrapolation
cannot resolve the 2 + 2 electron pathway proceeding in the inside of the catalyst pores. The inherent
contribution from the 2 + 2 electron pathway could be even higher if one considers the reactions
in small pores. In this context, as shown in Figure 3, a hybrid mechanism is worth considering for
the ORR conducted over Fe/N/C catalysts, where the first two-electron reduction to form H2O2 is
catalyzed by metal-free N/C catalytic centers and the following two-electron reduction of H2O2 and/or
the direct four-electron reduction of O2 to form H2O are catalyzed by Fe/N/C-based catalytic centers.
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Figure 2. (a) Damjanovic model, which considers only H2O2 on the disk electrode surface, H2O2

(surf), and (b) Nabae model, which considers H2O2 to be further reduced to H2O in the catalyst layer
matrix, H2O2 (mat), for the analysis of rotating ring-disk electrode (RRDE) voltammograms of the ORR.
Is refers to the current obtained via the series reaction in the catalyst layer matrix and γ is the catalyst
loading density [29].
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3. Pioneering Studies on Nitrogen-Containing Polymers as Precursors of NPM Catalysts

Since the first report by Jahnke on the pyrolysis of a macrocycle complex [9], the majority of
Fe/N/C catalysts have been synthesized by pyrolyzing MN4-type macrocycle complexes such as
porphyrins and phthalocyanines [30–33]. On the other hand, Dodelet and co-workers proposed that
the metal-nitrogen coordination is not essential at the precursor stage, while these authors presented
the idea that the metal-nitrogen coordination is finally formed after pyrolysis and responsible for the
catalytic activity [34,35]. Based on this rationale, the same research group used polyacrylonitrile as the
precursor of Fe/N/C catalysts [36], while focusing on the mechanistic aspect rather than the fabrication
of high performance catalysts. There are several recent examples of nitrogen-containing polymers such
as polyamide [37], polyaniline [38], and poly(nitroaniline) [39], that have been utilized as the precursors
of Fe/N/C catalysts, although none of these studies have paid much attention to the morphology of the
nitrogen-containing polymers. The advantages associated with using nitrogen-containing polymers for
controlling catalyst morphology have been studied in detail by our research group and are discussed
in the next section.
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4. Fe/N/C Catalysts Prepared by Pyrolyzing Spherical Polyimides

4.1. Synthesis of Polyimide Nano-Particles

This section focuses on the studies conducted by our research group on polyimide nanoparticles
as a precursor for Fe/N/C cathode catalysts. The polymerization technique used for these studies can
be classfied into the category of precipitation polymerization, which involves a homogenous system
where the monomer is completely soluble and present in the continuous phase while the polymer is
insoluble and precipitates upon formation [40–43]. Figure 4a shows the synthetic scheme of polyimide
nanoparticles from common polyimide precursors, namely, pyromellitic acid dianhydride (PMDA)
and 4,4’-oxidianiline (ODA) [44]. As shown in Figures 5 and 6, the particle size can be controlled
by changing the temperature and monomer concentration during polymerization. The smallest
particle size obtained using the combination of PMDA and ODA was 100 nm (Figure 7a). Polyimide
nanoparticles of an even smaller size (60 nm, Figure 7b–d) could be synthesized by adding a dispersant,
N,N-dimethyldodecylamine, during polymerization. However, the compact particle size was not
retained during heat treatment for carbonization in polyimides that were prepared from PMDA
and ODA. This was probably because the low molecular weight of the polyimide led to decreased
thermal stability, resulting in the fusion of polyimide nanoparticles. To address this concern, ODA was
replaced with a tri-amine monomer, 1,3,5-tris(4-aminophenyl) benzene (TAPB), to afford higher
thermal stability via cross-linking (Figure 4b) [45]. Fe(acac)3 was chosen as the Fe source for the
above-mentioned polyimide nanoparticles because of its solubility in organic solvents. To afford more
uniform and reliable immobilization of the Fe species at the polyimide stage, the copolymerization of a
Fe-phenanthroline complex, tris(5-amino-1,10-phenanthroline) iron(II) (Fe(amph)3

2+), with PMDA and
TAPB was also studied, as shown in Figure 4c [46]. As mentioned later, while this uniform dispersion
of the Fe species did not drastically improve the catalytic activity of the resulting carbon, this technique
could be important in a scaled-up process because a large-scale production of the precursor would
likely suffer from uniformity of chemical composition.
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Figure 4. Synthetic routes of polyimide nano-particles of different sizes from (a) pyromellitic
acid dianhydride (PMDA) and 4,4’-oxidianiline (ODA) (100–300 nm diameter); (b) PMDA and
1,3,5-tris(4-aminophenyl) benzene (TAPB) in the presence of a surfactant (60 nm diameter); and (c)
PMDA, TAPB, and Fe(amph)3 (uniform dispersion of Fe additive).
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4.2. Fe/N/C Catalysts after the Carbonization of Polyimide Nano-Particles.

The polyimide nanoparticles mentioned above were carbonized to obtain Fe/N/C catalysts by
following the protocols listed in Table 1. The FE-SEM images of the samples after carbonization are
shown in Figure 7e–h. The first pyrolysis step (the first and second entries) involved 5 h of heat
treatment under N2 atmosphere at 600 ◦C, followed by acid washing (aw) with HCl (600-N2-aw).
The original chemical structure was almost decomposed and the majority of Fe species were clustered
in metallic iron or iron carbide forms [47]. A typical second pyrolysis step was 1 h of heat treatment
under NH3 atmosphere at 800 ◦C, followed by washing with HCl (800-NH3-aw). The ammonia
treatment effectively increased the surface area of the resulting carbon (i.e., activation) by decomposing
the amorphous carbon species. The acid washing process in the first and second steps was essential
to retain a meaningful concentration of nitrogen-containing active centers, because extraordinary
amounts of Fe nanoparticles catalyze the decomposition and elimination of nitrogen species. The final
pyrolysis step involved 1 h of heat treatment under NH3 atmosphere at 1000 ◦C. The activation effect
at 1000 ◦C was quite strong and the resulting carbon materials possessed a very high specific surface
area (>1300 m2 g−1). The pyrolysis protocol described in the third and fourth entries is a modification
to avoid the redundant HCl treatment without losing the catalytic activity. To avoid extraordinary
amounts of Fe species during carbonization, pyrolysis was started using a lower amount of Fe. In this
condition, the Fe-catalyzed carbonization was not as effective as the protocol with 2 wt % of Fe species;
therefore, the temperature for the first pyrolysis step was raised to 900 ◦C (900-N2) to enhance the
degree of carbonization. Subsequently, NH3 treatments were performed at 800 and 1000 ◦C without
the HCl treatments (800-NH3 and 1000-NH3, respectively). The catalysts thus obtained showed similar
N and Fe contents and specific surface areas.
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Figure 7. Field emission scanning electron microscopy (FE-SEM) images of polyimide nano-particles
and Fe/N/C catalysts after carbonization. (a–d) are the images of polyimide samples obtained by
following protocols summarized as Entry 1, 2, 3, and 4 in Table 1, respectively. (e–h) are the images of
samples after the carbonization of samples (a–d), respectively.

Figure 8 shows the RRDE voltammograms for the four catalysts described in Table 1. All catalysts
showed good ORR catalytic activities. They showed identical ORR currents in the onset region,
suggesting that the inherent catalytic activities of these catalysts were quite similar. In contrast,
the diffusion limiting currents were slightly different. The catalysts with smaller particles showed
higher diffusion limiting currents, probably reflecting the enhanced oxygen diffusion in the catalyst
layer matrix. The effect of the particle size on fuel cell characteristics is discussed in the next section.
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Table 1. Details of the catalysts prepared with various precursors and protocols.

Catalyst [Ref.] PI Source Fe Source Protocol
Composition (wt %) BET 3 Surface Area

(m2/g)C 1 H 1 N 1 Fe 2

Fe(2.0)/PI(100)
[44]

PMDA 4

ODA 5
Fe(acac)3

2 wt %

1. 600-N2-aw
2. 800-NH3-aw

3. 1000-NH3

90.6 trace 3.1 1.1 1050

Fe(2.0)/PI(60)
[45]

PMDA
TAPB 6

Fe(acac)3
2 wt %

1. 600-N2-aw
2. 800-NH3-aw

3. 1000-NH3

90.9 trace 2.8 2.0 1300

Fe(0.3)/PI(60)
[46]

PMDA
TAPB

Fe(acac)3
0.3 wt %

1. 900-N2
2. 800-NH3

3. 1000-NH3

85.5 0.2 2.2 1.0 1380

Fe(0.3)(amph)/
PI(60) [46]

PMDA
TAPB

Fe(amph)3
2+

0.3 wt %

1. 900-N2
2. 800-NH3

3. 1000-NH3

91.0 trace 3.3 0.8 1390

1 Determined by CHN elemental analysis; 2 Determined by electron probe micro analysis (EPMA);
3 Determied by the Brunauer–Emmett–Teller (BET) method; 4 Pyromellitic acid dianhydride; 5 4,4’-Oxidianiline;
6 1,3,5-Tris(4-aminophenyl) benzene.
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Figure 8. RRDE voltammograms for the samples described as Entry 1, 2, 3, and 4 in Table 1.
The individual voltammograms have been reported elsewhere [44–46] and combined in this figure by
the author. Temperature: RT, catalyst loading: 0.2 mg cm−2, electrolyte: O2 saturated 0.5 M H2SO4,
rotation: 1600 rpm.

4.3. Fuel Cell Performance

Some of the above-mentioned Fe/N/C catalysts, Fe(2.0)/PI(60) and Fe(2.0)/PI(100), were tested
under practical fuel cell conditions. The FE-SEM cross sectional images of the membrane electrode
assembly (MEA) are shown in Figure 9. The Fe/N/C catalyst (4 mg) was applied onto the cathode
side with a Nafion binder, which resulted in a cathode layer with a thickness of approximately
60 µm. The enlarged images in Figure 9 clearly demonstrate a quite porous and uniform catalyst layer.
This ideal morphology could contribute to the successful mass transport diffusion in the catalyst layer.

Figure 10a shows the I-V performance curves for the MEA prepared using Fe/N/C cathode
catalysts. The MEA with the 100 nm cathode catalyst had open circuit voltages of 0.96 and 0.90 V
under pure O2 and air, respectively, and the current density reached 1 A cm−2 at 0.57 V (O2) and
0.32 V (air). The MEA with the 60 nm cathode showed similar open circuit voltages of 0.94 V (O2) and
0.90 V (air) but higher voltages of 0.62 V (O2) and 0.46 V (air) at a current density of 1 A cm–2. The better
performance with the cathode catalyst having 60 nm particle size probably derives from the enhanced
oxygen diffusion in the catalyst layer owing to its well-constructed fine architecture. The performance
of the polyimide-derived Fe/N/C catalyst under air was comparable or even better than that of any of
the state-of-the-art technologies [48–50]. The durability of the MEAs was investigated by operating the
cells over long periods. Figure 10b shows the changes in the cell voltage during operation at 0.2 A
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cm−2 for 600 h. Although the cell voltage certainly decreased, the cells operated successfully for 600 h.
While most of the reported NPM catalysts degrade significantly within 100 h under practical fuel cell
conditions, the durability demonstrated in Figure 10 is quite promising. Interestingly, the durability
attained by using the 60 nm-catalyst was better than that with the 100 nm-catalyst. As H2O2 is
known to cause a serious degradation of MEA, this result could be relevant to the 2 + 2 electron ORR
mechanism because the fine morphology would contribute to decreasing the concentration of H2O2 by
the quasi-four electron reduction.
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Figure 9. Cross-sectional scanning electron microscopy (SEM) image of the membrane electrode
assembly (MEA) with the Fe(2.0)/PI(60) cathode catalyst.
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Figure 10. (a) I–V polarization curves under 0.2 MPa of total pressure with the Fe(2.0)/PI(100) and
Fe(2.0)/PI(60) catalysts and (b) cell voltage stability curves under 0.2 MPa of air at 0.2 A cm−2. Anode:
PtRu/C catalyst with 0.4 mg-PtRu cm−2 loading, humidified H2 at 80 ◦C. Cathode: 4 mg cm−2 catalyst
loading, pure or balanced O2 (humidified) at 80 ◦C. Electrolyte: Nafion NR211. T = 80 ◦C [45].

5. Mesoporous Fe/N/C Catalysts for Enhanced Oxygen Diffusion

In addition to the above-mentioned strategy of morphological control to obtain spherical particles, the
fabrication of mesoporous Fe/N/C catalysts is of considerable interest. Nitrogen-doped mesoporous carbons
have been typically synthesized via hard-template approaches [2,51–53]. A mesoporous Fe/N/C catalyst
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via a hard-template approach for fuel cell application was also proposed by Atanassov and co-workers [54].
However, the hard-template approaches suffer from the removal of silica using hazardous reagents such
as NaOH and HF, and more environmentally friendly approaches are desired. In this context, Hayakawa
and co-workers adopted a soft-template approach to obtain mesoporous Fe/N/C catalysts. Figure 11
shows the schematic of the fabrication of N-doped mesoporous carbon via block copolymer-template
carbonization of a nitrogen-containing polymer [55–57]. In this method, oligo amic acid, resol, and Pluronic
F127 (PEO-PPO-PE triblock copolymer) were used as the N/C source, cross-liner, and soft-template,
respectively. The nitrogen-containing aromatic molecules contributed to a high carbonization yield. In the
meantime, the soft template could shrink together with other C and N sources and this also contributed to
the increase in density of the resulting carbon. In contrast, hard templates such as mesoporous silica do not
shrink and result in fragile carbons [2].

After fabricating the mesoporous carbon in the manner illustrated in Figure 11, Fe additive was
introduced by impregnation, and the Fe-containing mesoporous carbon was activated under NH3 at
800 and 1000 ◦C following the procedure shown in Figure 12. The resulting carbon possessed uniform
and periodical mesopores in each particle, as shown in Figure 13. The peak pore size was determined
as 4.8 nm and the BET surface area was 1660 m2 g−1. Figure 14 shows the RRDE voltammograms for
ORR with the mesoporous Fe/N/C catalyst and a Fe/N/C catalyst prepared without the template.
Both catalysts showed fairly good ORR catalytic activity and the voltammograms at the onset region
corresponded to each other. In contrast, the diffusion limiting current of the mesoporous catalyst was
much better than the catalyst prepared without the template. This result suggests that the mesoporous
structure contributed to oxygen diffusion in the catalyst layer. Further studies including MEA testing
and optimization of the fabrication method need to be performed to maximize the catalytic activity of
such mesoporous Fe/N/C catalysts.
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Figure 12. Schematic of the preparation of mesoporous Fe/N/C catalysts [56].
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Figure 14. Comparison of the ORR performances at room temperature between catalysts prepared by
copolymer-template carbonization and those prepared without using a template [56]. Catalyst loading:
0.2 mg cm−2, electrolyte: O2 saturated 0.5 M H2SO4, rotation: 1600 rpm.

6. Conclusions

The syntheses and catalytic performances of morphology-controlled Fe/N/C catalysts as NPM
oxygen reduction catalysts have been demonstrated. Spherical polyimide nanoparticles synthesized
via precipitation polymerization were converted to very active ORR catalysts by multi-step pyrolysis.
Mesoporous Fe/N/C catalysts could also be synthesized from nitrogen-containing polymers by block
copolymer-templated carbonization. In both cases, the high thermal stability of the nitrogen-containing
polymers contributed to control over the morphology of the resulting carbonaceous catalysts. While the
ORR performances of Fe/N/C catalysts have improved drastically, ensuring a well-controlled
morphology is more important to guarantee sufficient mass transport in the catalyst layer. Building up
the desired morphology from infusible nitrogen-containing polymers is beneficial in terms of green
chemistry as compared to typical morphological control with inorganic hard templates since it does
not suffer from the removal of the template. In addition, further enriched catalytically active sites can
be formed while the chemical structures of the precursor polymers can by synthetically optimized.
Further studies to improve the catalytic activity and to clarify the detailed reaction mechanism will be
conducted in the near future.
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