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Abstract: In this work, we hypothesize that Brensted acids can activate urea-based catalysts by
diminishing its self-assembly tendency. As a proof of concept, we used the asymmetric Friedel-Crafts
alkylation of indoles with nitroalkenes as a benchmark reaction. The resulting 3-substituted indole
derivatives were obtained with better results due to cooperative effects of the chiral urea and
a Bronsted acid additive. Such synergy has been rationalized in terms of disassembly of the
supramolecular catalyst aggregates, affording a more acidic and rigid catalytic complex.
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1. Introduction

Asymmetric organocatalysis has become a powerful synthetic strategy over the last decade,
being crucial for the development of new catalytic processes [1-13]. Among different families of
organocatalysts [14], those acting by hydrogen bond interactions represent a noteworthy part of the
overall developed organocatalysts [15-17]. One of the main organocatalytic structures covering this
large group are (thio)urea derivatives [18-34]. After the pioneering work of Curran’s group on the use
of urea as an organocatalyst [35,36], a number of considerable efforts have been devoted to the design
and synthesis of new (thio)urea structures as suitable catalysts for a series of important enantioselective
processes [18-34]. It is remarkable that the works reported by Etter’s group, where they were able to
get co-crystal complexes with a urea and a variety of hydrogen bond acceptors, were the real starting
point for the development of this field [37-40].

Most of the works in this field have so far focused on the development of more reactive catalytic
systems in order to overcome disadvantages exhibited by organocatalysis [41], such as the necessity of
high catalyst loadings and ensuing low turnover rates [42]. In this sense, progress has been made on
modification of the (thio)ureas skeleton in order to increase their acidity. Within this context, more
efficient catalysts were prepared, on introducing internal acidic elements (Figure 1). For instance,
taking our catalyst 1a [43-51] as a model, subsequent analogues 2 [52], 3 [53] and 4 [54] were designed
and have been proved to increase catalytic activity. Using this approach, the authors changed the most
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acidic moiety of the model catalyst (i.e., 3,5-bis-CF3-phenyl group) for different acidic moieties, while
retaining the aminoindanol structure (Figure 1) [55,56].
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Figure 1. Comparative variation of acidity in (thio)urea structures.

In this respect, Sigman and co-workers demonstrated that both the reaction rate and the
enantioselectivity could be correlated to catalyst acidity and it could be efficiently used for the tuning
and design of new catalyst structures for hydrogen-bond-catalyzed enantioselective reactions [57].

Among the most appealing organocatalyzed reactions, the Friedel-Crafts alkylation reaction has
received great attention and is a very efficient strategy for C—-C bond formation [58—-61]. Based on
our previous experience using (thio)urea catalysts [43-51,62-66], we reported a pioneering concept
regarding the cooperative effect between a Brensted acid additive and a chiral thiourea organocatalyst [45].
In this work, we hypothesize that similar beneficial effects could take place with urea organocatalysts
in combination with a Brensted acid, which could activate the urea by diminishing significantly its
self-association tendency and, therefore, increasing its acidity.

2. Results and Discussion

2.1. Cooperative Effect in the Mixture (Urea Catalyst + Bronsted Acid)

We have previously studied both (thio)urea-catalyzed Friedel-Crafts-type alkylation reactions
(Figure 2) [43-51]. However, the poorer results obtained with the ureas in comparison with thiourea
analogues made us discard this family of structures in successive studies. The unfavorable results
found with ureas have been explained based on the most acidic N-H protons in the thioureas [67]
and their less tendency to self-aggregate due to lower electron density on the sulfur atom [68-70].
Hence, it is not surprising to find more thiourea-based organocatalysts than ureas reported in the

literature [16].
CFs CF, CF, CF,
jeR s INe R Es!
FsC N” N CF, FaC N” N CF,
H H H H

5a 5b
CF, CF,
iQ\m &Q
OH OH
1a 1b

Figure 2. Thiourea and urea catalysts previously tested in Friedel-Crafts-type alkylation reactions.

As a matter of fact, self-association of ureas has been identified as the major drawback for
hydrogen-bonding organocatalysis (Figure 3, I) [71,72]. Our previous results obtained with thioureas
motivated us to investigate whether the addition of a Brensted acid hampers the hydrogen-bonding
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pattern of the urea, allowing an equilibrium with free molecules in solution and/or smaller and soluble
aggregates. In addition, molecules of “free” urea could be activated by a stronger proton donor (II),
disrupting the interactions between neighboring urea molecules and, thus, increasing their efficiency
as a hydrogen-bonding organocatalyst (Figure 3). In principle, the activation mode III should also be
considered, since it was proposed by others when using thiourea catalysts and carboxylic acids [73-78].
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Figure 3. Mechanistic hypothesis.

To this aim, we explored in detail the Friedel-Crafts alkylation of indole 6a with nitrostyrene 7a
using urea catalyst 1b, both in the absence and in the presence of an external Brensted acid (Scheme 1).

Ph,
Urea 1b (20 mol%) “ NO
(+)-9a (20 mol%) 2
Q_ﬁ v P N0 N
N 7 CH,CI, (0.5 mL), r.t. N
H a H
6a 8aa
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OH ' OH !
OH fj\ D 1b+ OH
0 NN CFy | o
(+)-9a OH "'1b ! (*)-9a i
3 days 3 days 3 days
yield 30% yield 37% yield 44%
ee 0% ee 32% (S) ee 52% (S)

Scheme 1. Exploring the urea-catalyzed Friedel-Crafts-type alkylation reaction in the presence of a
Bronsted acid.

We were delighted to observe a positive effect when using 1b in the presence of acid (£)-mandelic
acid (9a). Interestingly, the enantiomer S (product 8aa) obtained when using complex 1b (£)-mandelic
acid (9a) was the same when using only urea 1b.

At this point, we decided to explore the different parameters that could influence this activation
mode. Thus, we first studied the effect of the solvent, since polarity might play an important role in
governing the interaction between catalysts and reagents (Table 1).
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Table 1. Screening of catalytic complex 1b-(+)-9a in different solvents. *

Ph,
1b (20 mol%) ] NO,
@ + Ph/\/ NO, (+)-9a (20 mol%) N
N solvent, r.t. N
H H
6a 7a 8aa
Entry Solvent Time (Days) Yield (%) b ee (%) ¢
1d CHCl; 3 46 36
2 CHCl; 3 88 55
3d Toluene 3 10 18
4 Toluene 3 38 42
5d Xylene 4 18 28
6 Xylene 4 95 47
7d CH;CN 10 nr. ¢ _
8 CH;CN 4 nd. f 8
9d THF 10 nr© _
10 THF 10 nr© _
114 AcOFEt 10 nr© _
12 AcOEt 10 nr. ¢

2 Unless specified, see Experimental Section; ® After isolation by column chromatography; ¢ Determined by chiral
HPLC analysis (Chiralpak IA, Hex:iPrOH 90:10, 1 mL/min); d Reaction performed in the absence of mandelic acid;
e n.r. = Not reaction observed; f n.d. = Not determined.

A lack of reactivity in polar solvents, with high complexing character, was observed even when
the solubility of the urea was certainly higher in those solvents (Table 1, entries 7-12). Thus, the rupture
or weakening of the hydrogen interactions between the catalyst and the reagents seems to be higher in
these solvents, hampering the reaction. In sharp contrast, good results were achieved on using less
coordinating solvents, such as toluene and xylene (Table 1, entries 4-6). Finally, CHCIl;3 provided the
best results (Table 1, entry 2) and, we hence selected this solvent for further studies. It is remarkable
that, in all cases, better results were obtained in terms of enantioselectivity and reactivity using catalyst
1b in the presence of mandelic acid (+)-9a (e.g. entries 2, 4, 6, 8 vs. entries 1, 3, 5, 7). Interestingly, the
same enantiomeric product S was obtained with thiourea 1a and urea 1b, as well as with a mixture of
urea 1b and Brensted acid (+)-9a. These results suggest that urea catalyst, and not the Brensted acid,
drives the enantioselectivity of the process.

Furthermore, we extended the exploration of this catalytic system using different Brensted acids.
Scheme 2 shows the results obtained with representative derivatives of acetic acid as the structural
core of the mandelic acid (+)-9a.

The results shown in Scheme 2 revealed a cooperative effect between urea 1b and all external acids
used, although without a clear correlation with the pKa of the acid (Scheme S1). (R)- and (S)-mandelic
acid 9a were tested in order to explore the match and mismatch effect. In both cases, the S enantiomer
and the same results were obtained, suggesting that chirality is induced only by catalyst 1b. With this
experiment, we discarded activation mode III (Figure 3), since in such case the chirality of the acid
would be expected to influence the absolute configuration of the final products. In contrast, these
results are in agreement with the activation mode II (Figure 3), where Brensted acid could be activating
urea 1b. Remarkably, (S)-9¢ and (£)-9d also presented similar results than (£)-9a. However, further
studies were done using mandelic acid since, being the cheaper acid, its structure seems to be one of
the most influential on urea self-aggregation, providing good results in terms of enantioselectivity
and reactivity.

Table 2 summarizes the effect of temperature on the behavior of the complex 1b-(+)-mandelic
acid (9a).
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Ph .
1b (20 mol%) / NO,
acid (20 mol%
©\/\> v P N0 ( i N
N CHCI5 (0.5 mL), r.t. N
H H
6a 7a 8aa
OH C:)H MeO, ,CF;
OH - OH OH ) OH
(R)-9a (S)-9a 9b (S)-9¢c
85% yield 90% yield 83% yield 90% yield
55% ee 55% ee 48% ee 56% ee
OMe O 0 OH
> OQLO” ™
(@) (@) o)
(+)-9d 9e of (S)-9g
90% yield 46% yield 60% yield 64% yield
55% ee 42% ee 46% ee 55% ee

Scheme 2. Screening of acids using urea catalyst 1b.

Table 2. Effect of temperature of model reaction. ?

Ph,
1b (20 mol%) 7 NO,
+)-9a (20 mol%
N CHClj, r.t. N
H H
6a 7a 8aa
Entry Acid T(°Q) Time (Days) Yield (%) P  ee (%) ¢

1 - 15 5 24 46
2 9ad 15 4 60 62
3 9a¢ 15 4 77 60
4 9af 15 4 82 57
5 - 25 5 15 57
6 9a¢ 25 5 23 68

2 To a mixture of catalyst 1b (20 mol%, 0.02 mmol), (£)-mandelic acid 9a (20 mol%, 0.02 mmol), and nitroalkene
7a (0.1 mmol) at 15 or —25 °C, indole 6a (0.15 mmol) was added;  After isolation by column chromatography;
¢ Determined by chiral HPLC analysis (Chiralpak IA, Hex:/PrOH 90:10, 1 ml/min); do equiv. of acid (0.04 mmol);
€ 3 equiv. of acid (0.06 mmol); fq equiv. of acid (0.08 mmol).

The results demonstrated that the effect of Brensted acid on the urea-based catalysis is maintained
even at lower temperatures (15 and —25 °C), although a gradual drop in the reaction yield was
observed. On the other hand, it seems that the effect of the external Bronsted acid decreases at a
lower temperature, where presumably the formation of urea aggregates prevails and increases the
insolubility of the acid.

At this point, and since our goal was to test this alternative approach to improve the efficiency of
the urea catalyst, we explored the substrate scope at room temperature (Scheme 3).
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Scheme 3. Scope of the Friedel-Crafts alkylation reaction. The purple values are obtained in the
presence of 1b-(+)-9a and the black values are obtained in the absence of acid (£)-9a. The yields are
obtained after isolation by column chromatography and the ee is determined by chiral HPLC analysis.

In order to compare the results obtained with 1b-HA and the sole catalyst 1b, the reactions were
stopped after three days. The results shown in Scheme 3 indicate that the working hypothesis was valid
using different substituted nitroalkenes 7a—i and indoles 6a—d, affording the corresponding adducts 8
with higher yields and enantioselectivities compared to reactions in the absence of an external acid.
The absolute configuration of adducts 8 was assigned by comparison of their optical rotation with
those reported in the literature for the same compounds.

2.2. Effect of Brensted Acid on Urea Aggregation and Mechanistic Hypothesis

The foregoing results suggest two important facts to be considered when adding an external
acid to the reaction medium: first, the plausible rupture of self-assembled ureas by the acid; and
second, the activation of the “free” urea through coordination by the acid. The fragmentation of
urea aggregates, affording a higher concentration of “free” urea (or smaller soluble aggregates) in
solution, could explain the enhancement of the reaction yield, but not necessarily an increase of the ee.
However, a concurrent activation of the urea with the disassembly process could positively influence
both the yield and the enantioselectivity of the process, as shown in Scheme 2.

With this in mind and in order to gain additional insight on the coordination mode between the
Brensted acid and the urea, we tested some additional key catalysts and additives (Table 3).
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Table 3. Effect of the nature of the catalytic complex. 2

Ph,
Cat.* (20 moI°/%) 7 NO,
@\/\> N NO, additive (20 mol%) @C
N CHCIj3, r.t., 3 days N
H H
4a 5a 6aa
BB
y :,,HLH,Ar H ”/Ar HJ\HAr
OH 1p OH  1¢ 1d
Ar: 3,5-(F5C)CgH3
Entry  Catalyst Acid Yield (%) P ee (%) ¢
1 1b - 46 36
2 1b (£)-9a 88 55
OH
3 1b m 83 48
9b
OH
OMe
4 1b o 57 40
(+)-9h
OMe
OMe
5 1b 0 55 37
(#)-9i
6 1b MeOH 68 40
7 1c (£)-9a 18 (13) 4 Rac. (Rac.) @
8 1d (£)-9a 25 (7) 4 Rac. (Rac.) 4

2 Unless specified, see Experimental Section; ® After isolation by column chromatography; ¢ Determined by chiral
HPLC analysis (Chiralpak IA, Hex:iPrOH 90:10, 1 ml/min); d values in parenthesis have been obtained in the
absence of acid.

Additional important aspects can also be concluded from the results disclosed in Table 3.
For instance, the presence of an OH group in the skeleton of 1b with cis configuration seems to
be crucial for both the enantioselectivity and the reactivity of the process (compare entry 2 against
entries 7 and 8), which is in good agreement with our previous observations with thioureas [45].
When additives 9h, 9i or MeOH were used (entries 4-6), the results were similar to those obtained
with urea 1b alone (entry 1) in terms of selectivity, although a slightly better yield was obtained
with the additives. This supports the scenario in which the additive could break urea interactions,
generating more “free” urea, although in the absence of an additional activation, since only the OH of
the carboxylic acid seems to be responsible for the activation of the urea catalyst. The effect observed
with catalysts 1c and 1d was only evident in the reactivity of the process, since both catalysts alone
afforded racemic products (entries 7 and 8). With these results, we were also able to discard the possible
mode of activation in which both urea and acid simultaneously activate nitrostyrene, as previously
proposed by other authors [79], since in this case the yield should be higher than that achieved with
the use of acid (4)-9a alone (Scheme 1, 30%).

Next, we analyzed the effect on both ee and reaction yield using progressive amounts of (£)-9a
with respect to urea 1b (0.02 mmol) (Figure 4).
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Figure 4. Effect of the addition of acid (4)-9a using 20 mol% of urea 1b.

The results indicated that ca. 2040 mol% of acid is optimal for the activation effect. Higher amounts
of acid further increased the yield, but caused a slightly decrease in the ee of the product, because the
activation of the reaction through the acid alone could also take place, giving rise to a racemic product.

Since NMR techniques can provide important information on self-assembly processes in solution
and in order to support the fragmentation of urea aggregates in the presence of acid, different 'H-NMR
experiments were performed. We thus studied the variation in the signals of the urea catalyst 1b after
progressive addition of acid (£)-9a in CDCl; (Table 4 and Figures S1-58).

Table 4. Effect of the acid on the 'H NMR signals of the urea catalyst. 2

CF3
o 1
Hw H 'VN N CF3
OH H H,
Ent (+)-9a SNH, SH,y, SH. 8Hy4 SHy Ratio Integrals
Y (mmol) (ppm) (ppm) (ppm) (ppm) (ppm) Urea:Standard
1 0 7.937 5.553 4.691 3.238 2.976 0.22:1
2 0.01 7.888 5.818 4.670 3.219 2.949 0.37:1
3 0.02 7.852 5971 4.635 3.177 2.923 0.62:1
4 0.03 7.852 6.030 4.629 3.173 2.926 0.70:1
5 0.04 7.844 6.032 4.630 3.176 2.923 0.79:1
6 0.06 7.845 6.034 4.625 3.167 2.920 0.78:1
7 0.08 7.770 5.960 4.554 3.093 2.820 0.82:1
8 0.1 7.844 6.035 4.631 3.169 2.920 0.88:1

2 To a solution of urea 1b (0.02 mmol) in CDCl3 (0.5 mL) and mesitylene (0.0075 mmol), as internal standard, acid
(£)-9a is added after each measure of 'H NMR.

Among these NMR spectra, we only observed one species of the urea due to the fact that
the chemical exchange between the self-assembled and non-self-assembled species is rapid on
the NMR timescale. Additionally, with the addition of acid, urea signals show sharper peaks in
comparison with broader peaks found when it is mainly aggregated (see supporting information
Figure S1-58). This is because when urea is aggregated, the major part of the signals belongs to the
NMR-silent (entry 1, ratio integrals ureas:standard) [80]. In contrast, when urea self-association is
progressively broken with the addition of acid, the integrals of the urea increase in relation to the
standard (ratio integrals ureas:standard). It was also observed that the NH, signal of urea for a given
concentration (0.02 mmol/0.5 mL CHCI3), when the equilibrium is shifted in favor of the aggregates
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(entry 1), is sensitive to the presence of acid and is progressively highfield shifted with the addition
of acid. This is in agreement with observations made by other authors in different self-assembly
systems [81,82]. These facts could relate to the presence of more free molecules of urea or smaller
aggregates in solution and, therefore, support the disruption of urea self-assembly with the presence
of acid. Other signals of the urea are also affected by the presence of acid, as shown in Table 4.
When 5 equivalents of acid are added (entry 8), the signals of the urea catalysts move in the opposite
direction (to downfield). This could be in agreement with the equilibrium shifted to a predominant
activation of the urea molecules, and therefore, with the ensuing acidification of the signals. A major
variation in urea signals is observed with the addition of 0.02 mmol of acid, as in the catalytic reactions,
a plateau is more or less reached after that, and increasing the amount of acid does not strongly affect
the shifting of the signals. A DOSY NMR experiment [83-85] also supports the coordination of the
acid to the urea, since it is possible to find two different aggregate species in a given sample (urea-acid
0.02 mmol:0.02 mmol): the urea self-assembled and the urea-acid complex (Figure 5).

A ) —
_JJ N = \w\s—”,v_______/J\‘/"’\%~/_/‘l N
r1E-04
\
—::/\' ‘ | Internal standard d"
| o
— i J a
—_— = #" Urea-acid Q +1E-05 E,
“ o~
( w
“ Urea aggregates
~1E-06

T T T T T T T T T T T T T

8.0 75 70 6.5 6.0 4.5 4.0 35 3.0 25 20

5.0
F1 [ppm]
Figure 5. DOSY NMR experiment in CDCl3 (300 MHz).

We also performed a mass spectrum of the mixture urea 1b-acid (£)-9a (0.02 mmol:0.02 mmol)
in 0.5 mL of CHCl3 (Figure 6), since ESI-MS has been incorporated as an important technique for
mechanistic studies of organic reactions [86]. In the cationic ESI spectra obtained directly from solution
to the gas phase, we found different species, and among them the remarkable mass peak of the
active complex proposed in this manuscript (catalyst 1b + mandelic acid (£)-9a) (M + K = 595.1).
Other superior species related to the previous one have also been found in the mixture. Interestingly, we
could not observe mass from the union of two or more ureas, although we cannot discard the presence
of this complex in the mixture of reaction. It could be due to the impact of this technique that they split
into free molecules of urea.
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Figure 6. Cationic ESI-MS spectra experiment in CHCl3.

Based on these evidences and the results of our previous investigations [45,46], TSI is proposed as
the plausible mode of activation between Breonsted acid, urea 1b and the reagents (Figure 7).

CF3

N” N CFj4

TSI

Figure 7. Proposed transition states for the [urea-acid]-catalyzed Friedel-Crafts reaction.

1b-HA complex could be identified as the most reactive species due to the increased acidity
of NH in urea 1b after synergic coordination with Brensted acid. Furthermore, improvement in
enantioselectivity could be attributed to the formation of a more rigid assembly (on combination of
both structures after breaking urea self-association) in the transition state. This mode of activation
supports the fact that the observed enantiomer is a result of the chirality of the organocatalyst used.
Further computational calculations could shed light on this singular mode of activation.
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2.3. Effect of Brensted Acids on the Stability of Urea Aggregates

When the reaction was performed in CH,Cl, or CHCI; using urea 1b alone, the formation of
dense gel-like aggregates was observed, which was in agreement with our previous studies about
the self-assembly behavior of these ureas in solution [47]. The viscosity of the mixture was visually
decreased upon the addition of acid 9a, which could theoretically be in agreement with a weakening
of the self-assembled network, spontaneously generated by the urea catalyst and, hence, with our
mechanistic assumptions from the catalytic experiments. This hypothesis was demonstrated by
analyzing the thermal stability, flow properties and morphological features of the supramolecular gel
made of urea 1b in the absence or presence of various acid additives at different molar ratios urea
1b:acid (i.e. 0.1, 0.3, 0.9). Two solvents (i.e. chloroform—solvent used in the reactions—and toluene)
were used in this study for comparative purposes. In general, gels were transparent in appearance,
although some systems prepared in chloroform were slightly translucent (Figure 8). Most studies in
this section were conducted with gels prepared within approximately 30 min of the corresponding
critical gelation concentrations (CGC) of 1b, which were previously established in 7 g/L (chloroform)
and 3 g/L (toluene) [47]. The detrimental effect of the acid additives was considerably more evident
for the gels in chloroform than in toluene. Therefore, and for the sake of clarity, the most relevant data
refereed to the gels in chloroform are included in this section, whereas most data derived from the
systems in toluene are provided in Supporting Information (Table S1). The first sign of the weakening
effect that the acid additive has on the physical gel network formed by self-assembled urea molecules
was a partial gel-to-sol phase transition, visible to the naked eye (Figure 8B-E). In general, the amount
of expelled fluid usually increased with increasing amounts of acid.

m

Figure 8. Representative photographs of undoped gels and gels doped with different additives under
different conditions: (A) Undoped gel made of 1b in CHCl; (c =7 g/L; 1 mL); (B-D) doped gels made of
1b in CHCl3 (c =7 g/L; 1 mL) and mandelic acid at different molar ratios 1b:acid: (B) 0.9, (C) 0.3, (D) 0.1;
(E) doped gel made of 1b in CHCl3 (c =7 g/L; 1 mL) and benzoic acid (molar ratios 1b:acid = 0.9); (F) doped
gel made of 1b in CHCl; (c =7 g/L; 1 mL) and acetic acid (molar ratio 1b:acid = 0.9); (G) undoped gel made
of 1b in toluene (c =3 g/L; 1 mL); (H) doped gel made of 1b in toluene (c = 3 g/L; 1 mL) and mandelic acid

(molar ratio 1b:acid = 0.9); (I) doped gel made of 1b in toluene (c = 3 g/L; 1 mL) and acetic acid (molar ratio
1b:acid = 0.9).
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This was also accompanied by a gradual decrease of the T of the remaining gel phase (Figure 9
and Table S1) in comparison with the Ty of the pristine gel made of 1b alone (~60 °C). A preliminary
design of experiments with chiral Brensted acids (e.g. mandelic acid) showed no significant differences
on the above-mentioned effects when using either the racemic mixture of any of the corresponding
enantiomers (Table S1). Moreover, gelation kinetics of the doped gels was also notably reduced to
several hours in most cases, compared to pristine gels (Table S1).

In terms of the effect of different acids, the most remarkable outcome was observed with mandelic
acid, which prevented gelation at molar ratio (1b:acid) = 0.9. Taking experiments with mandelic acid
and benzoic acid as representative examples, molar ratios (1b:acid) of 0.6 and 0.9 gave similar results
(Table S1). Moreover, experiments using the corresponding methyl ester caused minor disruption in the
gel, suggesting the critical role of the free carboxylic group in the disassembly of the supramolecular
aggregates. These results are in good agreement with the favorable effect observed in reactions using 1b
and mandelic acid in equimolar amounts. In general, other acids such as acetic, phenylacetic, benzoic
and lactic acids also caused destabilization of the gel network, albeit to a lesser extent. The results
suggest that the acidity of the carboxylic group (e.g., mandelic acid is the most acidic among these
examples) might play a more important role than structural features.

7-gjel (DC)
70

60
50
40
30
20
10
0

AA PAA g

Figure 9. T of the gel made of 1b (c =7 g/L) in CHCl;3 and the effect caused by the incorporation of
selected acids at different ratios (molar ratio 1b:acid = 0.1, 0.3, 0.9). Abbreviations: AA = acetic acid;
PAA = phenylacetic acid; BA =benzoic acid; LA = lactic acid; MA = mandelic acid; MAE = mandelic acid
methyl ester. The average values of at least two independent measurements are shown. Estimated error
+2°C.

The decrease in thermostability of supramolecular urea aggregates upon incorporation of
the acid was also accompanied by a detriment of their mechanical properties, as evidenced by
oscillatory rheological measurements of selected gels prepared in the absence and presence of the
acid. For instance, dynamic frequency sweep (DFS) measurements of gels based on 1b in chloroform
showed that the incorporation of small amounts of mandelic acid (i.e. molar ratio 1b:acid = 0.1) caused
a drop in the storage modulus G” of ~1.8 times compared to the undoped gel (i.e. G" (undoped)
~30493 Pa vs. G’ (doped) ~17096 Pa) (Figure 10A). In addition, the loss factor or tan 5, which represents
mechanical damping or internal friction of the viscoelastic system, increased from ~0.180 (undoped) to
~0.239 (doped). This indicates that the material becomes more dissipative in the presence of the acid.
Both undoped and doped gels were very brittle in nature, as shown by dynamic strain sweep (DSS)
measurements (i.e. gel-to-sol transition occurred between 9-10% strain for all samples) (Figure 10B).
Dynamic time sweep (DTS) plots showing constant moduli values over time within the linear regime
are provided in Supporting Information (Figure S45A). In concordance with the minor effect that acids
showed on the thermostability of toluene gels, additional rheological experiments also showed a lower
influence on the mechanical strength of the gels prepared in toluene (Figure S45B-D).



Catalysts 2018, 8, 305

13 of 21

A
) ®G' (doped gel) OG" (doped gel)
B G’ (undoped gel) OG" (undoped gel)
100,000+ ( ped gel) ( pedg
qems s = = ® . I
e © [ o
= o
e
& 10,000:
o ] coooo O O O ¢
goooo 00 O © (o) o) q
1000 4~ .
0 2 4 6 8 10
Frequency (Hz)
B)
BG' (undoped gel) OG" (undoped gel)
® G' (doped gel) OG" (doped gel)
100,0007
SEREEsEnn
1 oooooooo"as
__ 10,0001 L7 2
© ]
= P99EEEEEEHE5 G0 8
: ] o e
o Q
6 )O
10004 | P
w5
" e
=
5]
100 r
0 1 10

Strain (%)

Figure 10. (A) DFS and (B) DSS measurements of undoped gel made of 1b in CHCl3 (c = 14 g/L),
and doped gel made of 1b (c = 14 g/L) and mandelic acid (molar ratio 1b:acid = 0.1) in CHCl;.

Finally, the observed disrupting effect of the acids on the supramolecular aggregates of 1b
could also be related to changes in the microstructure of the xerogels obtained by freeze-drying the

corresponding gels. An entangled microfibrillar network over a dense

and continuous structure

was observed for updoped xerogels (Figure 11), whereas the incorporation of 10 mol% of mandelic
acid (with respect to 1b) induced the formation of laminar and smoother structures (Figure 11A
vs. Figure 11B). The discontinuous appearance of the doped xerogel could explain a less-effective

immobilization of solvent molecules, which is in agreement with the

observed lower Tg and

mechanical strength of the bulk material. In contrast, FE-SEM images of the corresponding xerogels
showed little effect on the microstructure in comparison with the undoped network (Figure 11C vs.
Figure 11D). It is worth mentioning that the harmful effect of acids on the stability of supramolecular

gel networks was not exclusive to urea 1b.
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Figure 11. Representative FE-SEM images of xerogels derived from (A) pristine gel made of 1b
(c=7g/L)in CHCl3, (B) doped gel made of 1b (c = 7 g/L) and mandelic acid (molar ratio 1b:acid = 0.1)
in CHCl3, (C) pristine gel made of 1b (c = 3 g/L) in toluene, (D) doped gel made of 1b (c =3 g/L) and
mandelic acid (molar ratio 1b:acid = 0.1) in toluene.

3. Materials and Methods

3.1. Experimental Details

All commercially available solvents and reagents were used as received. CHCl3 was filtered
through basic alumina prior to use to avoid the presence of trace amounts of acid. 'H-NMR spectra
were recorded at 300 MHz. CDCl3 was used as a deuterated solvent. Chiral urea catalysts were
obtained following literature procedures: 1b [47], 1c [47], 1d [47] and 1e [87]. 1H and 3C NMR spectra
for compounds 8aa [43], 8ab [88], 8ac [88], 8ad [88], 8ae [88], 8af [89], 8ag [90], 8ah [88], 8ai [88],
8ba [43], 8ca [47] and 8ba [53] are consistent with values previously reported in the literature.

3.2. General Procedure for the 1b-HA-Catalyzed Friedel-Crafts Alkylation Reaction

To a mixture of urea 1b (20 mol%), (£)-mandelic acid 9a (20 mol%), and nitroalkene 7a—i
(0.1 mmol) at 25 °C in a test tube CHCI; (filtered through basic alumina, 0.5 mL) was added and then
indole 6a-d (0.15 mmol). After 3 days, the residue was purified by liquid chromatography (S5iO,;
hexane/EtOAc, 8:2) to obtain the desired adducts 8. Yields and enantioselectivities are reported in
Scheme 3. Spectral and analytical data for compounds 8 are in agreement with those previously
reported in the literature.

(5)-3-(2-Nitro-1-phenylethyl)-1H-indole (8aa) [43]. Following the general procedure, compound
8aa was obtained after 3 days of reaction at room temperature in 88% yield. The ee of the product was
determined to be 55% by HPLC using a Daicel Chiralpak IA column (n-hexane/i-PrOH = 90:10, flow
rate 1 mL-min !, X = 254.0 nm): Tyajor = 15.3 Min; Tminor = 14.0 min. [«]p?* = +10.7 (¢ 0.40, CH,Cly,
55% ee) {lit. [53], [x]p?* + 25.3 (c 0.53, CH,Cl,) for (S)-8aa, 88% ee}.

(5)-3-(1-(4-Chlorophenyl)-2-nitroethyl)-1H-indole (8ab) [88]. Following the general procedure,
compound 8ab was obtained after 3 days of reaction at room temperature in 94% yield. The ee
of the product was determined to be 55% by HPLC using a Daicel Chiralpak IA column
(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min~!, A = 254.0 nm): Tmajor = 20.2 MiN; Tminor = 16.8 min.
[a]p?* = +1.5 (c 0.53, CH,Cly, 55% ee). {lit. [88], [«]p2° + 7.5 (c 1.2, CH,Cl,), for (S)-8ab, 82% ee)}.

(5)-3-(1-(4-Bromophenyl)-2-nitroethyl)-1H-indole (8ac) [88]. Following the general procedure,
compound 8ac was obtained after 3 days of reaction at room temperature in 95% yield. The ee
of the product was determined to be 55% by HPLC using a Daicel Chiralpak IA column
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(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min~!, A = 254.0 nm): Tmajor = 21.2 Min; Tminor = 17.6 min.
[a]p?* = —4.2 (c 0.47, CH,Cly, 55% ee) {lit. [88], [x]p?® — 1.7 (c 1.0, CH,Cl,), for (S)-8ac, 90% ee}.

(5)-3-(2-Nitro-1-p-tolylethyl)-1H-indole (8ad) [88]. Following the general procedure, compound
8ad was obtained after 3 days of reaction at room temperature in 80% yield. The ee of the product was
determined to be 54% by HPLC using a Daicel Chiralpak IA column (n-hexane/i-PrOH = 90:10, flow
rate 1 mL-min~1, A = 254.0 nm): Tmajor = 14.4 MiN; Tminor = 13.0 min. [a]p?® = +5.1 (c 0.43, CH,Cl,, 54%
ee) {lit. [88], [«]p?° + 16.4 (c 0.9, CH,Cl,), for (S)-8ad, 81% ee}.

(5)-3-(1-(4-methoxyphenyl)-2-nitroethyl-1H-indole (8ae) [88]. Following the general procedure,
compound 8ae was obtained after 3 days of reaction at room temperature in 62% yield. The ee
of the product was determined to be 48% by HPLC using a Daicel Chiralpak IB column
(n-hexane/i-PrOH = 80:20, flow rate 1 mL-min~!, A = 254.0 nm): Tmajor = 22.4 MiN; Tinor = 24.3 min.
[a]p?® = +14.4 (¢ 0.19, CH,Cl,, 48% ee) {lit. [38], [x]p?° + 26.4 (c 1.1, CH,Cl,), for (S)-8ae, 81% ee}.

(R)-3-(1-(2,4-dichlorophenyl)-2-nitroethyl)-1H-indole (8af) [89]. Following the general procedure,
compound 8af was obtained after 3 days of reaction at room temperature in 97% yield. The ee of the
product was determined to be 53% by HPLC using a Daicel Chiralpak IA column (n-hexane/i-PrOH = 90:10,
flow rate 1 mL-min ™!, A = 254.0 nm): Tmajor = 14.1 MiN; Tminor = 12.7 min. [a]p® = +32.5 (¢ 0.27, CHCl,
53% ee).

(R)-3-(1-(2-Bromophenyl)-2-nitroethyl)-1H-indole (8ag) [90]. Following the general procedure,
compound 8ag was obtained after 3 days of reaction at room temperature in 94% yield. The ee of the
product was determined to be 54% by HPLC using a Daicel Chiralpak IB column (1-hexane/i-PrOH = 80:20,
flow rate 1 mL-min~!, A = 254.0 nm): Tyajor = 26.7 MIN; Trinor = 18.4 min. [a]p® = +56.4 (¢ 0.20, CHCly,
54% ee) {lit. [90], [e]p?® — 99.9 (c 1.3, CH,Cly), for (S)-8ag, 96% ee}.

(5)-3-(2-nitro-1-(thiophen-2-yl)ethyl)-1H-indole (8ah) [88]. Following the general procedure,
compound 8ah was obtained after 3 days of reaction at room temperature in 68% yield. The ee
of the product was determined to be 52% by HPLC using a Daicel Chiralpak IA column
(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min—!, A = 254.0 nm): Tmajor = 19.1 min; Tminor = 17.2 min.
[a]p?* = +10.6 (c 0.46, CH,Cly, 52% ee) {lit. [88], [x]pZ° + 24.3 (c 1.0, CH,Cl,), for (S)-8ah, 82% ee).

(S)-3-(1-(furan-2-yl)-2-nitroethyl)-1H-indole (8ai) [88]. Following the general procedure, compound
8ai was obtained after 3 days of reaction at room temperature in 58% yield. The ee of the product was
determined to be 50% by HPLC using a Daicel Chiralpak IB column (1-hexane/i-PrOH = 80:20, flow rate
1 mL-min~!, A = 254.0 nm): Trajor = 16.7 MiN; Tyinor = 12.6 min. [a]p® = —16.4 (c 1.24, CH,Cly, 50% ee)
{1it. [88], [«]p?® — 78 (c 1.0, CH,Cly, for (S)-8ai, 78% ee}.

(5)-5-chloro-3-(2-nitro-1-phenylethyl)-1H-indole (8ba) [43]. Following the general procedure,
compound 8ba was obtained after 3 days of reaction at room temperature in 36% yield. The ee
of the product was determined to be 50% by HPLC using a Daicel Chiralpak IA column
(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min—!, A = 254.0 nm): Tmajor = 13.3 Min; Tminor = 12.1 min.
[a]p?® = —14.7 (¢ 0.83, CH,Cly, 50% ee) {lit. [91], [x]p® — 27.8 (c 1.1, CH,Cl,, for (S)-8ba, 90% ee)}.

(5)-5-fluoro-3-(2-nitro-1-phenylethyl)-1H-indole (8ca) [47]. Following the general procedure,
compound 8ca was obtained after 3 days of reaction at room temperature in 43% yield. The ee
of the product was determined to be 53% by HPLC using a Daicel Chiralpak IA column
(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min~!, A = 254.0 nm): Tmajor = 13.7 MiN; Tminor = 12.2 min.
[a]p? = +6.3 (c 0.92, CHCl3, 53% ee) {lit. [47], [x]p2® + 11 (c 0.38, CHCl3, for (S)-8ca, 86% ee}.

(5)-5-methoxi-3-(2-nitro-1-phenylethyl)-1H-indole (8da) [53]. Following the general procedure,
compound 8da was obtained after 3 days of reaction at room temperature in 98% yield. The ee
of the product was determined to be 55% by HPLC using a Daicel Chiralpak IA column
(n-hexane/i-PrOH = 90:10, flow rate 1 mL-min~!, A = 254.0 nm): Tmajor = 20.4 Min; Tminor = 17.1 min.
[a]p?® = —15.5 (¢ 0.34, CH,Cly, 55% ee) {lit. [53], [x]p?’ — 28.4 (c 1.0, CH,Cl,, for (S)-8da, 98% ee}.
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3.3. Evaluation of the Stability of Urea Aggregates

Thermoreversible gels (1 mL volume) were prepared at desired concentration by the gentle
heating-cooling procedure, as previously described [47]. Unless stated otherwise, acid additives
(from a stock solution) were mixed with the urea and the volume was then adjusted with pure solvent.
The heating-cooling cycle was then applied and the formed gels were considered to be stable if they
did not exhibit gravitational flow upon turning the vial upside-down. See Supporting Information for
additional details.

Unless indicated otherwise, gels were equilibrated for at least overnight at room temperature
before thermal analysis. Ty values were determined at desired times after gelation using a calibrated
thermoblock, which was heated using an electric heating plate equipped with a temperature control
couple at ~0.4 °C/min [47]. The temperature at which the bulk gel started to break was defined as T,
Each measurement was randomly made at least twice and the average value was reported with an
estimated error of £2 °C. Reported T values correspond to the gel phase that supported the inversion
of the vial, which enabled separation first of any liquid phase generated by the acid additive.

Flow properties of our compounds were studied by oscillatory rheology using an AR
2000 Advanced rheometer (TA Instruments, Regensburg, Germany) equipped with a Julabo C
cooling system (Regensburg, Germany). A 1000 mm gap setting and a torque of 5 x 107* N/m
at 25 °C were employed for the measurements in a plain-plate (20 mm, stainless steel). The following
experiments were performed for each sample, using 2 mL total gel volume: (a) Dynamic strain
sweep (DSS) = variation of storage modulus G’ and loss modulus G” with strain from 0.01 to 100%;
(b) dynamic frequency sweep (DFS) = variation of G’ and G” with frequency from 0.1 to 10 Hz at
0.1% strain; (c) dynamic time sweep (DTS) = variation of G’ and G” with time keeping the strain
and frequency values constant and within the linear viscoelastic regime (i.e., strain = 0.1% strain;
frequency = 1 Hz). Mechanical inertial effects of the measuring head were determined by the software
package. In addition, fixed rest time after sample loading and pre-shearing to equilibrium at different
shear rates were routinely made in order to minimize prehistory effects.

Field Emission Scanning Electron Microscopy (FESEM) images of xerogels were recorded
with a Zeiss Merlin, Field Emission Scanning Electron Microscope (Zaragoza, Spain) operated at
an accelerating voltage of 10 kV. For visualization, samples were prepared by freeze-drying the
corresponding gels. The obtained fibrous solids were placed on top of tin plates and shielded with Pt
(40 mA during 30-60 s; film thickness = 5-10 nm). Images were taken at the University of Zaragoza
(Servicio General de Apoyo a la Investigacién-SAI)

4. Conclusions

The results obtained in the Friedel-Crafts alkylation reaction suggest that the synergic effect
between a Brensted acid and a urea catalyst is higher than the effect promoted by each species
separately. The experiments are also in agreement first, with the critical role played by the free
carboxylic group in the disassembly of the supramolecular urea aggregates and secondly, in the
activation of the “free” urea through coordination by the acid. This mechanism was demonstrated
by analyzing the thermal and mechanical stability, as well as morphological properties of the
supramolecular gel aggregates in the absence and presence of acid additives at different molar ratios.
In terms of the effect of different acids, the most remarkable outcome (i.e., decrease of gel stability and
significant changes in morphology) was observed with mandelic acid, which prevented the gelation
at molar ratio of 0.9. In contrast, experiments using the corresponding methyl ester caused minor
disruption in the gel, in good agreement with the observations made during the catalytic studies.

The observed behavior is studied for the first time in the literature and could open a new
interesting research line related to the effect of acid on urea-catalyzed reactions. Moreover, this
contribution could become an important starting point for further investigations, since this study
suggests that this phenomenon could be extended to other molecules with similar acidity and/or
hydrogen-bonding ability. This possibility is currently being investigated in our laboratories.
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