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Abstract: Spherical microparticles of TiO2 were synthesized by the ionic liquid-assisted solvothermal
method at different reaction times (3, 6, 12, and 24 h). The properties of the prepared
photocatalysts were investigated by means of UV-VIS diffuse-reflectance spectroscopy (DRS),
Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM),
X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated
that the efficiency of the phenol degradation was related to the time of the solvothermal synthesis,
as determined for the TiO2_EAN(1:1)_24h sample. The microparticles of TiO2_EAN(1:1)_3h
that formed during only 3 h of the synthesis time revealed a really high photoactivity under
visible irradiation (75%). This value increased to 80% and 82% after 12 h and 24 h, respectively.
The photoactivity increase was accompanied by the increase of the specific surface area, thus the
poresize as well as the ability to absorb UV-VIS irradiation. The high efficiency of the phenol
degradation of the ionic liquid (IL)–TiO2 photocatalysts was ascribed to the interaction between the
surface of the TiO2 and ionic liquid components (carbon and nitrogen).

Keywords: ionic liquids; ionic liquid-assisted solvothermal reaction; reaction time; titanium dioxide;
heterogeneous photocatalysis; visible light

1. Introduction

A number of recent studies have explored the applications of photosensitized titanium dioxide
photocatalysts inter alia in solar cells, energy storage, hydrogen production via the water-splitting
process, and the photocatalytic degradation of organic pollutants for water/air purification [1–5].
Expected low exploitation costs, prevalence in utility, and safety has created the motivation for
intensified research in the field of solar to chemical energy conversion. The photoactive performance
of the pristine TiO2 nano- and micro-particles is limited by its 3.2 eV bandgap to the absorption of UV
light. As the UV light range constitutes the total radiant energy in only as diminutive an amount as
5%, harvesting a greater range of the solar spectrum is considered vital for achieving the significant
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effectiveness of the photocatalysis [5,6]. The extension of the TiO2 spectral response range to absorb
the photons under visible (43%) or/and near infrared (49% of solar spectrum energy) irradiation is
crucial for this purpose. The TiO2 photocatalytic properties can be controlled and their optical response
can be expanded to absorb photons under visible or/and near infrared light irradiation through the
alteration of the TiO2 bandgap via morphology engineering [7–10].

It was found that, after excitation, the electrons and holes propagate to the nano- and
micro-particles surface where they react with electron acceptors and donors, respectively [6,9,11,12].
Additionally, it has been noted that a slower recombination rate and a larger surface area
accounted for more active adsorption/desorption reactions and the surface transfer of photoexcited
electrons [9,12,13], whereas the potential adverse effects that originate in the highly defective sites,
typically developing with the growth of a large surface area, may be rectified by a higher crystallization
of the particles [9].

Ionic liquids (ILs) have gained increasing attention in terms of their assistance in TiO2

synthesis as solvents as well as spatial and, perhaps, band structuring agents. Their high viscosity,
dielectric constant, and thus polarity and dispersal capacity are widely recognized as the properties
responsible for the charge, steric, and viscous stabilization of small-sized slow-growing crystallites,
as well as the hindrance of aggregation and agglomeration processes that are disadvantageous for
photocatalytic [7,10,11,14–23].

The synthesized photocatalysts in the presence of ILs nano- and microparticles are characterized
by a larger specific surface area, higher crystallization level, and less crystalline defects [17]. Hence,
with the assistance of ILs, the formation of the particles of the beneficial surface reactivity is promoted,
inducing a more effective photon absorption, trapping, and their migration to the surface. Moreover,
an energetically simplified pathway of excited electrons through an ionic liquid’s HOMO and LUMO
orbitals [16], along with prolonged stabilized charge separation was revealed to result in the formation
of a greater amount of reactive oxygen species (ROS) in the subsequent reaction of electrons and holes
with oxygen and water, respectively. The generated reactive oxygen species (•OH and O2•−) are
crucial reagents in the photodegradation of pollutants [16,17,24].

Notwithstanding, the direct relationship between the structure of the ILs and the size/morphology
of the nano- and microparticles of the semiconductors, such as the TiO2 photocatalysts, still remains
ambiguous. Up until now, the following factors had been reported as predominant in effectuating
the structure, and thus the activity of said particles, as follows: (1) IL anion type (the number of
atoms it is composed o growth; apart from this, π–π stacking of imidazolium cations promotes the
ILs role as templating agents); (3) cation–anion interaction energy where the frailer, the weaker
the cation–anion interactions, the firmer the capping on growing the TiO2 particles and the
more efficient the inhibition/hampering of the unfavorable Ostwald ripening process; and (4) the
type of overall interactions (π–π, van der Waals, coulomb and electrostatic forces, and hydrogen
bonding) [15,16,21,25].

Furthermore, the proposed fons et orgio of the influences on the TiO2 photoactivity are tenable,
as follows: (1) doping with N, C, and F elements after ILs thermal decomposition; (2) directly sensitizing
the TiO2 particles; (3) affecting the transfer of photo-generated charges through the bulk of particles;
and (4) favoring oxygen vacancies and Ti3+ species formation during synthesis [26–28]. However,
an up to date kinetics of the formation of the TiO2 particles during ionic liquid-assisted synthesis has
not been presented and discussed.

In this regard, in this study, the TiO2 particles were synthesized solvothermally, with the assistance
of the selected ionic liquid, ethylammonium nitrate [EAN][NO3], which is one of the earliest reported
in the literature of protic ionic liquid [29,30].

Apart from prevailing in studies on the topics of the synthesis process and characterization of
the IL-assisted TiO2 microparticles [22,30–32], we focused on evaluating the functional properties
of the obtained micro-particles, namely, their photoactivity. Alongside this, we strived to infer the
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mechanisms of the ILs assistance through exploring the influence of selected ILs, illustrated with the
example of ethylammonium nitrate [EAN][NO3] [29].

We placed an emphasis on the essentiality of (1) researching VIS-light induced photoactivity in
comparison to the already researched UV-induced photoactivity [19,25,33–35]; and (2) conducting
research in the presence of a model pollutant (2a), neutral in terms of the photosensitization of
TiO2, (2b) proposing a simple mechanism of degradation and mineralization, and (2c) with a low
photoabsorption coefficient [27,36,37]. In contrast to the common choice of organic dyes (methylene
blue, methyl orange, and rhodamine B) [7,10,13,18,19,25,38,39], we applied phenol. Another imperative
was that we excluded the minor ones in facilitating the photocatalysis reaction active species,
while exposing the substantial ones through the active species scavenger tests.

In this article, we present the results of the previously non-analyzed and non-reviewed
comprehensively [EAN][NO3]-assisted TiO2 microparticles, where the photocatalytic effect on the
degradation and mineralization of phenol in aqueous solution vastly exceeded our expectations,
reaching as high as an 82% degradation rate in our tests, which are described below. Moreover,
for the first time, we have examined the kinetics of the TiO2 microsphere formation in the presence of
ethylammonium nitrite ionic liquid.

2. Results

First of all, a set of samples with selected IL to titanium (IV) butoxide (TBOT) molar ratios were
synthesized and characterized, taking into account the surface area and photoactivity. The sample
labeling and the amount of ILs to the precursor used during the preparation procedure, as well as
the specific surface area, pore volume of the obtained photocatalysts, and their photocatalytic activity
under VIS irradiation are given in Table 1. On the basis of the photocatalytic effect, we chose the
sample with the highest activity in order to examine the kinetics of the TiO2 microsphere formation
in the presence of ethylammonium nitrite ionic liquid, which is shown in Figure 1. As presented in
Table 1, the effect of the solvothermal synthesis duration (3, 6, 12, and 24 h) on the surface properties
as well as the photoactivity for the IL:TBOT ratio equaled to 1:1 were also investigated.
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Figure 1. The structure of ethylammonium nitrite [EAN][NO3] ionic liquid (IL).

2.1. The BET Surface Area and SEM Analysis

The results listed in Table 1 revealed the influence of the ionic liquid content on the specific surface
area and the pore volume of the synthesized samples. All of the samples presented a higher specific
surface area in comparison with the TiO2 synthesized without IL (184 m2·g−1), and also than that
reported for the commercially available P25 (50 m2·g−1) [10,40]. The values of the specific surface area
for TiO2 prepared in the presence of [EAN][NO3] ranged from 190 m2·g−1 (sample prepared with the
lowest IL:TBOT molar ratio, 1:10) to 233 m2·g−1 for the sample obtained with IL:TBOT, with a molar
ratio of 1:2. In this regard, the direct relation between the amount of the IL in the reaction mixture and
the specific surface area for these photocatalysts was detected. However, a further increase in the IL
content taken for the synthesis (up to IL:TBOT molar ratio of 1:1) resulted in a decrease of the pore
volume, thus, the specific surface area was due, most probably, to the overloading of the TiO2 surface
with organic salt. This might indicate that the ILs work like a designer agent of the microstructures’
physical and structural properties.
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The scanning electron microscopy images of the pure TiO2 and IL-assisted TiO2 particles obtained
for various molar ratios of IL:TBOT in the presence of [EAN][NO3] are presented in Figure 2.
The pristine TiO2 exhibited a smooth surface with an average size from 0.5–4 µm. In the case of
the IL–TiO2 samples, it showed that the sample with the molar ratio 1:1 and the sample with a low
amount of IL (1:8) presented a spherical structure and did not change in relation to the pristine TiO2.

Table 1. Characteristics of the TiO2 particles obtained by ethylammonium nitrite [EAN][NO3] assisted
solvothermal synthesis. IL—ionic liquid; TBOT—titanium (IV) butoxide.

Sample Time of the
Synthesis

Molar Ratio
(IL:TBOT)

Specific
Surface Area

(m2·g−1)

Pore
Volume

(cm3·g−1)

Phenol
Degradation

Efficiency under
60 min of VIS

Irradiation
(%)

Rate of Phenol
Degradation under

Visible Light
(λ > 420)

[µmol·dm−3·min−1]

TiO2_pristine 24 - 184 0.069 7 0.18
TiO2_EAN(1:10)_24h 24 1:10 190 0.093 28 1.01
TiO2_EAN(1:8)_24h 24 1:8 211 0.102 19 0.55
TiO2_EAN(1:5)_24h 24 1:5 216 0.105 33 1.11
TiO2_EAN(1:3)_24h 24 1:3 216 0.105 36 1.17
TiO2_EAN(1:2)_24h 24 1:2 233 0.113 41 1.32
TiO2_EAN(1:1)_24h 24 1:1 221 0.108 82 3.12
TiO2_EAN(1:1)_3h 3 1:1 239 0.12 75 2.28
TiO2_EAN(1:1)_6h 6 1:1 207 0.101 75 2.38
TiO2_EAN(1:1)_12h 12 1:1 209 0.102 80 2.53
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Figure 2. SEM images of TiO2 obtained from IL-assisted solvothermal synthesis, TiO2_EAN(1:8)_24h,
TiO2_EAN(1:1)_24h, and reference TiO2.

The experiments of the TiO2_EAN(1:1)_24h sample preparation performed at different time
regimes revealed that 3 h of solvothermal synthesis was enough to obtain the TiO2 microspheres (see
SEM images, presented in Figure 3 below). However, the reaction yield was relatively low (only 19%)
and increased with the increasing reaction time (38% for 6 h, 65% for 12 h, and 93% for 24 h). Moreover,
the elongation of the synthesis time resulted, at first, in the decrease of the specific surface area from
239 m2·g−1 (after 3 h) to 207 m2·g−1 (after 6 h), and then in the enlargement of the specific surface area
to 221 m2·g−1 (after 24 h).

An explanation of this observation may be found in the SEM images of the microparticles prepared
with the same amount of substrates (molar ratio of TBOT to ILs equaling 1:1), however, with different
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times of thermal treatment (3, 6, 12, and 24 h) presented in Figure 3. In all of the introduced variations,
the majority of the particles lay within the scope of 1–3 µm for 3 h (48%), 2–3 µm for 6 (24%) and
24 h (28%), and 3–4 µm for 12 h (19%). The percentage contribution of the particles with a diameter
above 4 µm was rarely reached and never exceeded 15% for all of the obtained samples. In the image
sequences presented below, we noted that the sample subjected to thermal treatment for 3 h was
mainly composed of a large number of small spherical particles with a range of 1–3 µm. Nonetheless,
between the particles synthesized in 6, 12, and 24 h regimes, less of a difference was recognized.
In this regard, the high surface area of the particles prepared within 3 h may be related to a higher
contribution of the smallest particles.
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2.2. XRD Analysis

The PXRD patterns for the series of TiO2_EAN are presented in Figures 4 and 5. All of the patterns
looked similar as the samples only contained the anatase (TiO2) phase. The open circles represent the
experimental data points, a solid red line is a profile fitting (LeBail method), and the vertical bars mark
the positions of the expected Bragg reflections for the used model (I 41/a m d, s.g. #141). The LeBail fit
given lattice parameters for TiO2 are gathered in Table 2. The lattice parameters were similar and are
close to those reported by Djerdj and Tonejc [41]. The PXRD reflections were broad, which indicated a
small crystallite size estimated to be between 5.0 and 6.5 nm. However, no correlation was observed
between the amount of ionic liquid taken for the synthesis nor for the preparation time and the
crystallite size.

Table 2. Lattice parameters and average crystallite size of the TiO2_EAN photocatalysts.

Sample a (Å) c (Å) d (Å)

TiO2_EAN(1:1)_3h 3.8051(3) 9.554(2) 65
TiO2_EAN(1:1)_6h 3.7907(7) 9.504(3) 50
TiO2_EAN(1:1)_12h 3.7892(6) 9.507(3) 55
TiO2_EAN(1:1)_24h 3.7890(6) 9.502(3) 60
TiO2_EAN(1:2)_24h 3.7899(7) 9.499(3) 55
TiO2_EAN(1:3)_24h 3.7926(8) 9.506(4) 60
TiO2_EAN(1:5)_24h 3.7814(11) 9.472(6) 65
TiO2_EAN(1:8)_24h 3.7953(9) 9.483(5) 55

TiO2_EAN(1:10)_24h 3.7942(12) 9.476(7) 55
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2.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

The elemental surface composition of the selected IL–TiO2 specimens, evaluated by XPS,
is shown in Table 3. Titanium, oxygen, carbon, and nitrogen were detected and the corresponding
high-resolution (HR) XPS spectra of Ti 2p, O 1s, C 1s, and N 1s are presented in Figure 6. The chemical
character of the elements is identified in the deconvoluted spectra in Figure 6 and Table 3. The Ti 2p,
O 1s, and C 1s spectra exhibited features that were characteristic of the IL–TiO2 specimens [16,42].
The N 1s signal at 400 eV is commonly interpreted as the surface C–N bond. Only for the TiO2_EAN(1:1)
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sample thermally treated for 24 h was the additional signal that appeared at about 402.8 eV observed,
which may be assigned to the oxidized nitrogen surface species.

The XPS data collected in Table 3 revealed that the surface chemical composition of the
TiO2_EAN(1:1)_24h samples were different than the sample of the lower amount of TiO2_EAN(1:8)_24h.
For the last one, the contribution of the Ti(3+) fraction was about 30% smaller and the nitrogen amount
was evidently lower than for the TiO2_EAN(1:1)_24h sample. These observations confirmed a higher
amount of IL on the TiO2_EAN(1:1)_24h sample surface (an analogous relation was also observed
for the carbon atom). In the series of TiO2_EAN(1:1) samples, differing by the time of thermal
treatment, we noted a systematic decrease in the oxygen of the Ti–Osurf fraction, with an increasing
time of the thermal treatment from 6 to 24 h, and a significantly smaller surface concentration of
nitrogen for the 24 h synthesized sample (Table 3). Moreover, for the last sample, the oxidized form
of the nitrogen species appeared in addition to the main nitrogen N–C surface fraction (Figure 6).
These observations indicated the surface transformation of the IL-assisted TiO2 with the prolonged
time of thermal treatment.

To elucidate the effect of the phenol-degradation processing on the chemical composition of the
TiO2_EAN photocatalyst, we analyzed both the sample after three cycles of photocatalytic processing
and the same sample washed with deionized water. The results are compared in Figure 6 and Table 3.
One can see that the nitrogen atom concentration was similar for both of the samples. However,
the water washed sample exhibited a significantly larger surface amount of titanium faction Ti(3+) and
a relatively higher contribution of −OH surface species (see O 1s and C 1s fractions in Table 3).
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Table 3. Elemental composition (in at. %) and chemical character of titanium, oxygen, carbon, and nitrogen states in the surface layer of [EAN][NO3]-modified TiO2

particles, evaluated by X-ray photoelectron spectroscopy (XPS) analysis.

Sample Label ∑∑∑ Ti
(at. %)

Ti 2p3/2 Fraction (%)

∑∑∑ O
(at. %)

O 1s Fraction (%)

∑∑∑ C
(at. %)

C 1s Fraction (%)

∑∑∑ N
(at. %)

N 1s Fraction (%)

Ti(4+)

458.7 ±
0.1 eV

Ti(3+)

457.0 ±
0.1 eV

Ti-Olatt
529.9 ±
0.1 eV

Ti-Osurf
530.5 ±
0.1 eV

–Ti–O–N,
–C=O

531.5 ±
0.1 eV

–OH
532.4 ±
0.1 eV

“A”
C–C

284.8 eV

“B”
C–OH,
C–N

286.2 ±
0.1 eV

“C”
–C=O,

288.9 ±
0.1 eV

N–C
399.9 ±
0.1 eV

N–Ox
402.8 ±
0.1 eV

TiO2_pristine 29.44 97.59 2.41 66.27 62.35 28.60 6.59 2.46 4.15 72.27 13.46 14.27 0.14 100 0
TiO2_EAN 1:1_6h 23.15 93.37 6.63 61.97 63.55 24.13 9.54 2.78 14.35 63.03 29.19 7.78 0.53 100 0
TiO2_EAN 1:1_12h 24.00 94.06 5.94 63.51 68.33 19.89 8.50 3.28 11.94 61.53 27.49 10.99 0.54 100 0
TiO2_EAN 1:1_24h 23.37 93.64 6.36 63.00 74.56 15.33 7.72 2.39 13.24 64.56 27.42 8.02 0.38 84.89 5.11
TiO2_EAN 1:8_24h 24.32 95.44 4.56 63.80 68.52 20.58 7.25 3.65 11.61 73.05 11.18 15.77 0.29 100 0
TiO2_EAN_4-cycles 24.61 94.47 4.78 63.77 70.46 21.06 6.75 1.73 11.14 64.12 25.22 10.66 0.49 100 0
TiO2_EAN_4-cycles

(washed) 23.53 93.10 6.13 62.35 67.42 21.84 8.15 2.59 13.64 65.63 28.52 5.84 0.48 100 0
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2.4. UV-VIS Spectrum

The UV-VIS adsorption spectra of the TiO2 synthesized with various molar ratios of [EAN][NO3]
to TBOT are presented in Figure 7. Pristine TiO2 was only photoactive under the UV region
(λ < 400 nm). The addition of the ionic liquid to the TiO2 synthesis environment increased the
absorption range of IL–TiO2, being noticeably photoactive at above 420 nm. The absorption properties
of the samples prepared with IL were superior in comparison with the pristine TiO2 in the visible light
range, whereas all of the samples showed a similar UV absorption. Generally, a higher IL amount used
for synthesis resulted in the enhancement of the VIS light absorption by the IL–TiO2 photocatalysts.
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Interesting results were also obtained for the experiments where the influence of the reaction
time was taken into account (Figure 8). When increasing the reaction time, the enhancement of the
visible light absorption by IL–TiO2 was observed. Thereby, the sample prepared during 24 h was
characterized by a significantly broader absorption as well as the highest red shift of the absorption
edge; thus, there was a higher effectiveness in creating the electron–hole pairs.
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According to the literature, a significant increase in the absorption of visible light by TiO2 can be
related with the presence of carbon atoms in the sample [43–47]. As the carbon species exist mainly on
the TiO2 surface rather than occupying the lattice of TiO2, the visible light response of the samples was
attributed to the formation of the inter band C2p states [48]. However, our observations revealed that
a correlation between the content of the IL used for the sample preparation and the apparent enhanced
absorption of visible light was not observed. Additionally, based on the XPS analysis, a similar amount
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of at. % of carbon was observed for the samples containing small amounts of IL, as well as the sample
with a higher IL content.

2.5. Photocatalytic Activity of IL–TiO2 in Phenol Decomposition Model Reaction

The photocatalytic activity of the IL–TiO2 samples was evaluated by the degradation of the phenol
model compound under visible light (λ > 420 nm) irradiation. The obtained results are summarized in
Table 1 and presented in Figure 9. As above-mentioned, before illumination, the solution was stirred
for 30 min in the dark to establish a molecular adsorption equilibrium. Pristine TiO2 synthesized
by the solvothermal method, without addition of the ionic liquid, was used as the reference sample.
For comparison purposes, the photocatalytic activity result of P25 TiO2 under UV-VIS irradiation was
also shown.
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It was found that the TiO2_EAN microparticles exhibited a higher photoefficiency than the pristine
TiO2, which is also consistent with the higher BET specific surface areas and enhanced optical properties.
After 60 min of the photocatalytic process, 7% of the phenol was degraded using unmodified TiO2,
however, the TiO2_EAN efficiency was higher, and was strongly influenced by the amount of ILs that
were used during the synthesis. For example, up to 82% of the phenol was degraded in the presence of
photocatalyst TiO2_EAN(1:1)_24h, where the molar ratio of [EAN][NO3] to TBOT taken for synthesis
was 1:1. This value was about 5.5 times higher when compared to the pristine TiO2, indicating its
excellent photocatalytic activity. This observation was correlated with the UV-VIS adsorption spectra,
where the TiO2_EAN(1:1)_24h sample showed the highest extension of the absorption edge to the
visible light region. It was found that the samples prepared with IL:TBOT molar ratios of 1:10 and
1:8 revealed the lowest photoactivity among the photocatalysts that were obtained in the presence of
ethylammonium nitrate IL. In this regard, the photodegradation efficiency increased with the increase
in the quantity of ionic liquid taken to synthesis (thereby, the IL present at the TiO2 surface).

In addition, the efficiency of the phenol total mineralization by the sample with the highest
photoactivity was also determined. The total organic carbon measurements confirmed 20% of the
total mineralization of the phenol after 60 min of irradiation in a presence of the TiO2_[EAN](1:1)_24h
sample that was performed under VIS irradiation and 48% under UV-VIS irradiation.

Moreover, the efficiency of the phenol degradation was also related with the time of the
solvothermal synthesis, as determined for the TiO2_EAN(1:1) sample. The microparticles of
TiO2_EAN(1:1)_3h formed during only 3 h of the synthesis time revealed a really high photoactivity
under visible irradiation at 75%. This value increased to 80% and 82% after 12 h and 24 h, respectively.
The photoactivity increase was accompanied by an increase in the specific surface area, thus the
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pore sizes as well as the ability to absorb UV-VIS irradiation. Additionally, based on the XPS
measurements, it was concluded that the increase in the visible light absorption and the enhancement
of the photocatalytic activity may be related to the highest quantity of the carbon and Ti(+3) defects at
the TiO2 surface.

To investigate the degradation/regeneration capacity and the structural stability during the entire
process, we performed stability tests for the sample characterized by the best photocatalytic activity
under VIS light irradiation. In the stability tests, the same sample was repeatedly used in the phenol
photodegradation reaction three times. As shown in Figure 10, a significant drop in the phenol removal,
from 84% to 33%, was found.
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In order to further clarify the possible mechanism of phenol degradation, reactive species
trapping tests were designed. Controlled photoactivity experiments using different radical scavengers
(ammonium oxalate as a scavenger for h+, AgNO3 as a scavenger for e−, benzoquinone as a scavenger
for O2•− radical species, and tert-butyl alcohol as a scavenger for •OH species) were carried out
similarly to the above described photocatalytic degradation process. The only exception was that the
radical scavengers were added to the reaction system. The addition of ammonium oxalate and AgNO3

had a weak inhibition efficiency of the phenol degradation, indicating that h+ and e− had a negligibly
small effect on the mechanism of photocatalytic degradation. The photocatalytic conversion fell by
approximately half when the tert-butyl alcohol (TBA) as the scavenger for the hydroxyl radicals was
used. As shown in Figure 11, when benzoquinone as the trapping agent of O2•− was added into
the phenol solution under visible irradiation, the photodegradation of phenol significantly declined
to about 7%. These results clearly suggest that the photocatalytic degradation of phenol under VIS
irradiation in the presence of TiO2_EAN(1:1) was mainly intimate, with the photogenerated superoxide
radical species. Secondly, the photogenerated OH radicals were also involved in the decomposition
of phenol.

To explain what might have contributed to the increase in the photoactivity of TiO2_ILs,
the decomposition level of the ionic liquid cations was investigated using chromatography techniques.
It was demonstrated that the ethylammonium nitrate ionic liquid was degraded in 97% after 24 h of the
solvothermal reaction. Therefore, it is most likely that TiO2 could be doped with nitrogen and carbon,
and/or surface-modified by carbon species. However, based on the XPS analysis, the Ti–N interactions
between the released nitrogen atoms, resulting from the IL’s thermal decomposition, and the TiO2

matrix, have not been observed. Thus, although we could expect the incorporation of nitrogen and
carbon atoms in a crystalline lattice of TiO2, the performed analysis did not confirm it. Nevertheless,
it should be remembered that because of the low ionic liquid content on the TiO2 surface, a low level
of XPS detection (d.l. = 0.1 at. %) could affect the results. According to the literature, it could be
generally stated that if TiO2 particles grow in the presence of the N and C precursors and under
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elevated temperature conditions, usually, the N and C atoms are incorporated into the crystal lattice of
the semiconductors [49–51].
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To identify the origin of visible light-induced activity, the phenol degradation rate was plotted
depending on the surface area values as well as the carbon and nitrogen content in the surface layer.
The data presented in Figure 12 suggests that the observed increase in photoactivity could be most
interpreted by the presence of nitrogen in the surface layer. Although the origin of photoactivity
is not clear at this moment, it is crucial to note that the preparation of highly active TiO2 spheres
was developed.
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3. Materials and Methods

3.1. Materials

For the aforementioned synthesis’ purpose, the following reagents were applied: (1) titanium
(IV) butoxide (TBOT) as the TiO2 micro-particles direct precursor, and (2) 36% hydrochloric acid (HCl)
as a pH stabilizer, sourced from Sigma-Aldrich; (3) anhydrous ethyl alcohol (99.8% ethanol) as the
reaction medium (from POSCH S.A., Troine, Luxembourg); (4) ethylammonium nitrate (from IOLITEC,
Heilbronn, Germany, purveyed with ≥97% of purity) as the assisting ionic liquid; and (5) deionized
water, provided locally.

3.2. Preparation of IL-Assisted TiO2 Particles

The preparation of the TiO2 micro-particles was carried out emulating the method reported by
Paszkiewicz et al. [16], summarized as follows: (1) TBOT was dispersed in ethanol through dropwise
pouring under constant vigorous stirring; and (2) HCl, deionized water, and the due amount of
IL—adequate to the applied molar ratio of TBOT to IL—were dissolved under unchanged conditions,
to the point of attaining a pellucid solution. Afterwards, the ensuing mixture was transferred into
an inner Teflon and an outer stainless steel autoclave, to be incubated at 180 ◦C for 24 h (for various
TBOT to IL molar ratios) and for 6, 12, and 24 h (for 1:1 TBOT to IL molar ratio) for the purpose of
the kinetics of the crystal growth evaluation. Subsequently, the autoclaves were cooled down to room
temperature and the obtained precipitate was cleansed through numerous washings with deionized
water and ethanol, and then dried at 60 ◦C for 4 h. The preparation ended with the 2 h calcination
of plateau at 200 ◦C, which was reached at the 2 ◦C/min slope. For reference, the pristine TiO2 was
as-synthetized, with the exception of the IL presence.

3.3. Surface Properties Characterization

The Brunauer–Emmett–Teller (BET) surface area was calculated by the N2 absorption–desorption
isotherms at 77 K on a Micromeritics Gemini V200 Shimadzu analyzer (equipped with the VacPrep
061 Degasser) (Norcross, GA, USA). The morphology of the TiO2 micro-particles was studied by
scanning electron microscopy (SEM) analysis, performed under a Hitachi TM-1000 microscope
(Tokyo, Japan). The chemistry of the surface was researched by X-ray photoelectron spectroscopy
(XPS), the results were obtained with a PHI 5000 VersaProbeTM (ULVAC-PHI, Chigasaki, Japan)
spectrometer of monochoromatic Al Kα radiation (h = 1486.6 eV). The phase purity of the samples
was determined by powder X-ray diffraction (PXRD) using a PANalytical X’Pert Plus diffractometer
(Almelo, The Netherlands) with Cu Kα radiation. To determine the unit cell parameters, the profile
fits were performed on the powder diffraction data through the use of the HighScore program using
Thompson−Cox−Hastings pseudo-Voigt peak shapes. The average crystallite size was calculated
using the Scherrer equation.

The decomposition level of the ionic liquid cations was analyzed using a Dionex ICS 1100 liquid
chromatograph. Deionized water containing 0.21% (v/v) of methanesulfonic acid (Sigma Aldrich,
St. Louis, MO, USA) was used as a mobile phase. The separation was carried out isocratically using a
Dionex (Sunnyvale, CA, USA) ION PAC, CS16 column (3 × 250 mm Dionex) at 35 ◦C. The flow rate
was 0.36 mL min−1. Each sample (before and after solvothermal reaction) was measured in triplicate.
The decomposition level was calculated as follows:
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3.4. Evaluation of Photocatalytic Activity

The photocatalytic activity was measured through the phenol decomposition rate under
visible-light irradiation. For this aim, we dispersed 0.125 g of the obtained photocatalyst in 25 mL of
phenol aqueous solution (C0 = 25 mg/L), inside a cylindrical reactor with a circular quartz window.
In use, there was a reactor fitted with a cooling jacket; during the reaction, it was cooled by the constant
flow of water at ≤10 ◦C, supplied in aeration at 5 dm3/h. The reactor’s quartz-windowed side was
exposed to the illumination of intensity equaling to 3 mW/cm2 (by 1000 W Xenon lamp, 6271H Oriel;
optical filter >420 nm, GG 420).

In order to establish the absorption–desorption equilibrium between the phenol and photocatalyst
prior to the reaction, the suspension was allocated to 30 min long stirring in the dark, preliminarily to
the photo-initiation of the catalysis; then, about 1 mL of the suspension was sampled from the reactor.
During the irradiation, the samples were taken in 3 and 20 min intervals. Each sample was filtered
through syringe filters (Φ = 0.2 µm) for the removal of the photocatalyst micro-particles, anterior to
the due evaluation. The concentration of the remaining phenol was measured colorimetrically
(λmax = 480 nm), after the derivatization with diazo-p-nitroaniline with a UV-VIS spectrometer
(Evolution 220, Thermo-Scientific, Waltham, MA, USA).

The controlled photoactivity experiments were carried out using different scavengers (ammonium
oxalate as a scavenger of photogenerated holes, AgNO3 for electrons, benzoquinone for superoxide
radical species, and tert-butyl alcohol for hydroxyl radical species). The scavenger concentration
was equal to the phenol content, and experiments were performed analogously to the photocatalytic
degradation of the phenol described in the manuscript, except that the scavengers were added to the
reaction system.

4. Conclusions

This study is the first step towards enhancing our understanding of the effect of ethylammonium
nitrate ionic liquids on the surface properties of the TiO2 spheres formed in the solvothermal synthesis.
In summary, the TiO2 microspheres with a superior visible-light photocatalytic activity were prepared
in the presence of the ethylammonium nitrate ionic liquid, using a solvothermal method followed by a
calcination process. It should be highlighted that the most active TiO2 samples formed in the presence
of [EAN][NO3] possessed almost the same activity induced by visible light than P25 TiO2 under UV
radiation. The phenol degradation rate was equal to 3.12 µmol/dm3/min for the TiO2_EAN/Vis
system, and 3.46 µmol/dm3/min for the P25/UV system. In this paper, the kinetics of the highly active
TiO2 microsphere formation in the presence of ethylammonium nitrate ionic liquid was examined.
The obtained results revealed that the micro-particles of TiO2_EAN(1:1)_3h that formed during only
3 h of synthesis time revealed a really high photoactivity under visible irradiation at 75%. This value
increased to 80% and 82% after 12 and 24 h, respectively. However, the reaction yield for the 3 h
synthesis time was relatively low (only 19%) and significantly increased with the increasing reaction
time (38% for 6 h, 65% for 12 h, and 93% for 24 h). The photoactivity increase was accompanied
by an increase in the specific surface area, thus the pore sizes as well as the ability to absorb the
VIS irradiation.

The effective interactions between the ionic liquid components, mainly carbon, nitrogen, and the
micro-particles surface of TiO2, were clearly demonstrated by the XPS analysis. This factor could result
in excellent visible-light photocatalytic activity for the IL–TiO2 samples prepared. The radical trapping
experiments revealed that O2•− and OH• were the main active species during the degradation process.
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