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Abstract: The synthesis of organosulfur compounds via the construction of C−S bonds using CO2

as a C1 resource is very interesting. Herein, a novel method of synthesizing benzothiazolones
via the cyclocarbonylation of 2-aminothiophenols with CO2 was developed. A series of organic
bases was investigated for the catalysis of cyclocarbonylation, and 1,5-diazabicyclo[4.3.0]non-5-ene
(DBN) displayed the best catalytic activity. Then, various reaction parameters such as CO2 pressure,
temperature, amount of catalyst, and reaction time for the catalytic performance were studied. Finally,
a series of benzothiazolones was synthesized under the optimal reaction conditions, and a possible
catalytic mechanism was also proposed.
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1. Introduction

As a typical sulfur-containing organic compound, benzothiazolone and its derivatives are
very important chemical and biological intermediates, and are widely used in the synthesis of
agricultural chemicals, dyestuffs, pharmaceuticals, and achiral templates for asymmetric catalysis [1–5].
To date, numerous efforts focused on the development of improved methods for the synthesis of this
heterocyclic compounds [6–10]. Among them, the direct cyclocarbonylation of 2-aminothiophenols
in the presence of carbonylation agents, such as phosgene [11], CO [12], ClCO2Et [13], dimethyl
carbonate [14], urea [15], and isocyanates [16] (Scheme 1a), is one of the most simple and versatile
methods. However, phosgene is highly toxic and corrosive, the reactions involving CO are generally
catalyzed by transition metals, and the use of super-stoichiometric amounts of carbonyl sources are all
incompatible with green-chemistry principles. Therefore, the exploration of environmentally benign
approaches using renewable carbonylation reagents to synthesize benzothiazolones is highly desirable.

In recent years, the chemical transformation of CO2 drew much attention owing to its easily
available, renewable, abundant, and nontoxic features. Various value-added chemicals were
synthesized using CO2 as a C1 building block via the construction of C–H, C–N, C–O, and C–C
bonds [17–22]. The formation of the C–S bond is one of the important transformations in organic
synthesis [23,24], and the construction of C–S bonds using CO2 as a C1 source is an interesting
topic. In our recent efforts, we discovered a new route for the synthesis of benzothiazoles via
the reaction of 2-aminothiophenols with CO2 and hydrosilanes, which was the first body of work
describing the construction of C–S bonds from CO2 [25,26]. It is worth mentioning that a byproduct,
benzothiazolone, was detected in minute amounts along with benzothiazole, which was formed via
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the reaction of 2-aminothiophenol with CO2. Compared to traditional synthetic methods, the synthesis
of benzothiazolones using CO2 as a carbonyl source is more attractive (Scheme 1b). However, due to
the inherent kinetic inertness and thermodynamic stability of CO2, developing highly efficient catalysts
is a key step for the cyclocarbonylation of 2-aminothiophenols with CO2. In previous work from
our group, Yu, and Zhao et al. found that ionic liquids could catalyze this reaction, providing only
one example with a low yield [27,28]. The further exploration of highly efficient catalysts and the
systematic study of the synthesis of benzothiazolone from CO2 are of great importance.
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Recently, organic bases were widely applied to CO2-joined reactions with highly efficient
catalytic activity. The tertiary nitrogen of these compounds reacted with CO2 to form the carbamate
species, which resulted in the activation of CO2, facilitating the reactions [29–36]. Moreover,
from an organic synthesis point of view, base-promoted reactions also provide a very important
complementary methodology for transition-metal catalyst systems [37–40]. In this work, a series of
organic bases, including 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,1,3,3-tetramethylguanidine (TMG), 1,4-diazabicyclo
[2.2.2]octane (DABCO), 1-methylimidazole (MIm), and hexamethylenetetramine (HMTA) (Figure 1),
was investigated for the cyclocarbonylation of 2-aminothiophenols with CO2. Then, various reaction
parameters were studied, and a possible reaction mechanism was also discussed. This work presents
an environmentally benign method for the synthesis of benzothiazolones directly from a renewable
carbonylation source (CO2).
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Figure 1. Structures of the organic bases used in this study: 1,5,7-triazabicyclo[4.4.0]dec-5-ene
(TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN),
1,1,3,3-tetramethylguanidine (TMG), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1-methylimidazole
(MIm), and hexamethylenetetramine (HMTA).
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2. Results and Discussion

The reaction of 2-aminothiophenol with CO2 was firstly carried out in various bases at 150 ◦C and
5 MPa, and the results are listed in Table 1. This reaction neither proceeded without a catalyst nor in
the presence of inorganic bases (Table 1, entries 1 and 2). Interestingly, the organic bases were effective
in catalyzing this reaction (Table 1, entries 3–8). In particular, DBN showed the best activity, affording
benzothiazolone in a yield of 91% under the experimental conditions (Table 1, entry 5). Compared
to DBN, both DBU and TBD afforded lower yields of the product, which may result from the joint
effects of steric hindrance (DBN < TBD < DBU) and basicity (TBD > DBU > DBN) (Table 1, entry 5 vs.
entries 3 and 4). Using TMG as the catalyst, the product yield decreased expectedly, due to its special
structure (Table 1, entry 6). Other organic bases exhibiting weaker basicity, such as DABCO, MIm,
and HMTA, had little catalytic activity for this reaction, and benzothiazolone was obtained in a yield
of <10% (Table 1, entries 7–9). This is understandable, as their basicity and structure accounted for
their catalytic activity.

The effect of solvents was also tested in the reaction of CO2 with 2-aminothiophenol catalyzed
by DBN at 150 ◦C and 5 MPa. The catalytic activity of DBN was greatly influenced by the nature of
solvent. The product yield increased in the following order: dimethyl sulfoxide (DMSO) < CH3CN <
N,N-dimethylformamide (DMF) < 1-methyl-2-pyrrolidinone (NMP) (Table 1, entries 5, 10–12). This
corresponded with the order of CO2 solubility in these solvents (expressed as Henry’s constant), DMSO
(12.67) > CH3CN (9.049) > DMF (7.966) > NMP (7.61) [41]. Based on the CO2 solubility in various
solvents being expressed as Henry’s constants, it was concluded that the yield of benzothiazolone
increased as Henry’s constant decreased. As such, the lower the Henry’s constant was, the higher the
CO2 solubility, and the higher the yield of benzothiazolone. It was demonstrated that the solvents with
high CO2 solubility were more favorable for the carbonylation reaction. Therefore, DBN was chosen as
the catalyst and NMP was chosen as the solvent to investigate the synthesis of benzothiazolone under
other various conditions.

Table 1. Carbonylation of 2-aminothiophenol with CO2 under various conditions a.
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Entry Catalyst pKa of the Conjugated Acid b Solvent Yield d (%)

1 None — NMP 0
2 NaOH 15.7 c NMP 0
3 TBD 26 NMP 87
4 DBU 24.3 NMP 84
5 DBN 23.8 NMP 91
6 TMG 23.3 NMP 30
7 DABCO (8.7) NMP 7
8 MIm (7.1) NMP 4
9 HMTA 6.2 NMP 0
10 DBN 23.8 DMF 57
11 DBN 23.8 CH3CN 32
12 DBN 23.8 DMSO 16

Abbreviations: 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo
[4.3.0]non-5-ene (DBN), 1,1,3,3-tetramethylguanidine (TMG), 1,4-diazabicyclo[2.2.2]octane (DABCO),
1-methylimidazole (MIm), hexamethylenetetramine (HMTA), 1-methyl-2-pyrrolidinone (NMP),
N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO). a Reaction conditions: 2-aminothiophenol,
2 mmol; base, 2 mmol; NMP, 2 mL; CO2, 5 MPa; 150 ◦C; 24 h. b pKa values in acetonitrile, with values in water
given in brackets. c pKa values in H2O. d Yield was determined using HPLC analysis.

Firstly, the influence of CO2 pressure on the reaction was investigated under identical reaction
conditions (Table 2). As can be seen, pressure had a considerable effect on the yield of the product.
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Initially, the product yield increased dramatically with an increase in pressure from 1 MPa to 5 MPa,
and peaked at 5 MPa with a yield of 91%. However, further increasing CO2 pressure to 9 MPa led to a
relative decrease in the yield of benzothiazolone. This is understandable due to the reaction system’s
phase behavior. There were two phases in the reaction system in the pressure ranging from 1 MPa
to 9 MPa; CO2 not only acted as a reactant, but also as a reaction medium in the reaction process.
On one hand, when the pressure was relatively low, an increase in pressure enhanced the reaction rate
because the solubility of CO2 in the liquid reaction phase increased with increasing pressure, which
helped enhance the reaction rate, since CO2 was a reactant. On the other hand, when the pressure was
higher than 5 MPa, the concentration of CO2 in the reaction phase was high enough. Thus, higher CO2

pressure had almost no contribution to the reaction rate, while possibly decreasing the concentration
of 2-aminothiophenol in the vicinity of the catalyst, which would retard the interaction, thus resulting
in a low efficiency [42–44]. Therefore, 5 MPa was deemed a suitable CO2 pressure.

Table 2. Effect of CO2 pressure on the yield of benzothiazolone a.

Entry 1 2 3 4 5

CO2 pressure (MPa) 1 3 5 7 9
Yield b (%) 28 77 91 83 79

a Reaction conditions: 2-aminothiophenol, 2 mmol; DBN, 2 mmol; NMP, 2 mL; 150 ◦C; 24 h. b Yield was determined
using HPLC analysis.

Table 3 shows the temperature dependence of the reaction. Obviously, the reaction was sensitive
to the reaction temperature. The yield of benzothiazolone increased sharply as the temperature rose
from 110 ◦C to 150 ◦C, and reached 91% at 150 ◦C. The product yield remained unchanged with a
further increase in temperature to 160 ◦C. Accordingly, 150 ◦C was determined as an appropriate
reaction temperature for the synthesis of benzothiazolone.

Table 3. Reaction temperature dependence of benzothiazolone yield a.

Entry 1 2 3 4 5 6

Temperature (oC) 110 120 130 140 150 160
Yield b (%) 37 42 54 78 91 91

a Reaction conditions: 2-aminothiophenol, 2 mmol; DBN, 2 mmol; NMP, 2 mL; CO2, 5 MPa; 24 h. b Yield was
determined using HPLC analysis.

Table 4 shows the effect of catalyst amount on the yield of benzothiazolone. As can be seen,
the product yield increased with an increase in the amount of catalyst, and the maximum yield was
obtained with 2mmol of catalyst. A further increase in the amount of catalyst had no notable effect on
the yield.

Table 4. Influence of catalyst amount on the reaction outcome a.

Entry 1 2 3 4 5

Amount of catalyst (mmol) 0.5 1 1.5 2 2.5
Yield b (%) 41 71 78 91 92

a Reaction conditions: 2-aminothiophenol, 2 mmol; NMP, 2 mL; CO2 , 5 MPa; 150 ◦C; 24 h. b Yield was determined
using HPLC analysis.

The influence of reaction time on the synthesis of benzothiazolone is presented in Table 5.
It was found that the yield noticeably increased with a variation in reaction time from 12 h to 24 h.
Furthermore, a product yield of almost 99% was achieved when the reaction time was prolonged to
36 h.
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Table 5. Dependence of benzothiazolone yield on reaction time a.

Entry 1 2 3 4 5

Time (h) 12 18 24 30 36
Yield b (%) 66 80 91 96 99

a Reaction conditions: 2-aminothiophenol, 2 mmol; DBN, 2 mmol; NMP, 2 mL; CO2 , 5 MPa; 150 ◦C. b Yield was
determined using HPLC analysis.

To explore the scope of the reaction, four substituted 2-aminothiophenols with
electron-withdrawing groups or electron-donating groups were reacted with CO2 using DBN
as a catalyst, and the results are listed in Table 6. These substrates could be transformed to the
corresponding benzothiazolones under the optimized reaction conditions. Methyl-substituted
2-aminothiophenol showed high activity when reacting with CO2, producing the corresponding
benzothiazolone in a yield of 70% (Table 6, entry 2). In contrast, methoxy-substituted
2-aminothiophenol was less active, producing the corresponding benzothiazolone in a yield
of 45% (Table 6, entry 3). The substrates with electron-withdrawing groups (e.g., –Cl and –Br) showed
poor activity, and yields of 36% with 2D, and 23% with 2E were obtained, even when the reaction
time was prolonged to 40 h (Table 6, entries 4, 5). When using the strong electron-withdrawing
group, NO2, on the aromatic ring, the reaction did not take place. This was probably attributed to the
electronic effect of 2-aminothiophenols. Substrates with electron-withdrawing groups showed lower
reactivity, and the yields of the substituted substrates with neither electron-withdrawing groups nor
electron-donating groups were also lower than the model reaction.

Table 6. Scope of the synthesis of benzothiazolones a.
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Based on previous reports and the experimental results [28,33,41,42,45], a probable catalytic cycle
was proposed for the reaction of 2-aminothiophenols with CO2 to benzothiazolones using DBN as
a catalyst, as depicted in Scheme 2. Firstly, CO2 could react with DBN to form the key carbamate
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intermediate 1, leading to the activation of CO2. The 2-aminothiophenols could be activated via
a hydrogen bond between the carboxyl (COO) of intermediate 1, which could weaken the N–H
bond of the NH2 group in 2-aminothiophenols, making it more favorable for the insertion of CO2.
Then, the nucleophilic N atom would easily attack the carbon atom of the activated CO2, and with
the intervention of a new DBN molecule, would form intermediate 3. Subsequently, intermediate
4 could be obtained through a dehydration reaction of intermediate 3, and the release of a DBN
molecule. Finally, the SH group of the substrates could be further activated via a hydrogen bond,
and the intramolecular nucleophilic cyclization of intermediate 4 would take place, thus yielding the
product benzothiazolones.
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3. Experimental Section

3.1. Materials

CO2 was provided by the Beijing Analytical Instrument Company (Beijing, China) with a
purity of 99.99%. Furthermore, 2-aminothiophenol (1a; 98%), 2-amino-6-methylbenzothiazole
(98%), 2-amino-6-methoxybenzothiazole (99%), 2-amino-6-chlorobenzothiazole (99%),
2-amino-6-bromobenzothiazole (98%), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD; 98%), 1,4-diazabicyclo
[2.2.2]octane (DABCO; 97%), 1,1,3,3-tetramethylguanidine (TMG; 99%), 1-methylimidazole (MIm;
99%), hexamethylenetetramine (HMTA; 99%), 1-methyl-2-pyrrolidinone (NMP), and acetic acid
(99%) were purchased from J&K Scientific Ltd (Beijing, China). On the other hand, 1,5-diazabicyclo
[4.3.0]non-5-ene (DBN; 98%), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 98%), and 4-nitroacetophenone
(98%) were purchased from Alfa Aesar (Shanghai, China). Acetonitrile, N,N-dimethylformamide
(DMF), dimethyl sulfoxide (DMSO) were analytical grade, and were provided by the
Beijing Chemical Reagents Company (Beijing, China). NaOH was analytical grade, and
was purchased from the Sinopharm Chemical Reagent Beijing Co., Ltd (Beijing, China).
Finally, 2-amino-5-methylbenzenethiol (1b), 2-amino-5-methoxybenzenethiol (1c), 2-amino-5-
chlorobenzenethiol (1d), and 2-amino-5-bromobenzenethiol (1e) were synthesized according to the
published procedures (Supplementary Materials, References [S1–S5]). The other chemicals were used
without further purification.
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3.2. General Procedure for the Synthesis of 2-Aminothiophenol Substrates

In a typical procedure for the preparation of 2-amino-5-methylbenzenethiol (1b), a mixture of
2-amino-6-methylbenzothiazole (5 mmol) and KOH (50 mmol) in H2O (10 mL) was heated at 120 ◦C.
The reaction mixture was kept on reflux for 24 h, and was then cooled to room temperature. Then, the
mixture was filtered to remove the scraps, and the filtrate was neutralized with acetic acid (50% in
water) to a pH of 6, before the precipitate was collected via filtration. Finally, the pure products were
obtained via the column chromatography separation of the precipitate, and the target compound was
obtained as a light yellow solid.

Similarly, 2-amino-5-methoxybenzenethiol (1c; reaction temperature, 120 ◦C; a yellow-green
solid), 2-amino-5-chlorobenzenethiol (1d; reaction temperature, 140 ◦C; a bright-yellow solid),
and 2-amino-5-bromobenzenethiol (1e; reaction temperature, 140 ◦C; a bright-yellow solid) were
obtained via the same method using 2-amino-6-methoxybenzothiazole, 2-amino-6-chlorobenzothiazole,
and 2-amino-6-bromobenzothiazole, respectively, as their corresponding raw materials.

The purified products were characterized via NMR (Bruker, Karlsruhe, Germany).
The characterization data of the substrates are reported below, and the NMR spectra are given in the
Supplementary Materials (Figures S1–S4).

3.3. Typical Procedure for the Synthesis of Benzothiazolones

The cyclocarbonylation of 2-aminothiophenol with CO2 was conducted in a Teflon-lined
stainless-steel 22-mL autoclave equipped with a magnetic stirrer. In one example, 2-aminothiophenol
(2 mmol, 0.2504 g), DBN (2 mmol, 0.2483 g), and NMP (2 mL ) were successively added into the reactor,
and the reactor was placed into a water bath of 40 ◦C, before CO2 was charged into the reactor until the
desired pressure (e.g., 5 MPa) was achieved. Then, the reactor was placed into an oil bath of desired
temperature (e.g., 150 ◦C), and the stirrer was started. After a certain time (e.g., 24 h), the reactor was
moved into ice water, and CO2 was slowly released. Finally, the reaction mixture was dissolved in
methanol, and then transferred into a volumetric flask (100 mL). The quantity analysis of the products
was conducted on an HPLC, using a Shimadzu LC-20AT pump, a Hypersil ODS2 5-µm column, and
a Soma UV-Vis LC-830 detector at 282 nm. A methanol/water (50:50 v/v) solution was used as the
mobile phase with a flow rate of 0.8 mL min−1.

Similarly, the other benzothiazolone derivatives were obtained using the corresponding
substituted 2-aminothiophenols as the substrates. The yields were determined via 1H NMR using
4-nitroacetophenone as the internal standard. The pure benzothiazolones products were obtained via
column chromatography separation. The characterization data of the products are reported below,
and the NMR spectra are given in the Supplementary Materials (Figures S5–S9).

3.4. NMR Spectral Data of the Substrates and Products

Compound 1b, 2-amino-5-methylbenzenethiol: 1H NMR (400 MHz, DMSO) δ 6.92 (d, J = 8.1 Hz,
1H), 6.81 (s, 1H), 6.65 (d, J = 8.1 Hz, 1H), 5.22 (s, 2H), 2.05 (s, 3H). 13C NMR (100 MHz, DMSO) δ 147.84,
136.08, 132.35, 125.02, 117.12, 115.36, 20.13.

Compound 1c, 2-amino-5-methoxybenzenethiol: 1H NMR (400 MHz, DMSO) δ 6.78 (dd, J = 8.8,
2.8 Hz, 1H), 6.72 (d, J = 8.8 Hz, 1H), 6.61 (d, J = 2.8 Hz, 1H), 5.05 (s, 2H), 3.54 (s, 3H). 13C NMR
(100 MHz, DMSO) δ 150.60, 144.15, 119.12, 119.00, 117.56, 116.61, 55.74.

Compound 1d, 2-amino-5-chlorobenzenethiol: 1H NMR (400 MHz, DMSO) δ 7.13 (dd, J = 8.7,
2.3 Hz, 1H), 6.90 (d, J = 2.2 Hz, 1H), 6.76 (d, J = 8.7 Hz, 1H), 5.71 (s, 2H); 13C NMR (100 MHz, DMSO) δ
149.18, 134.34, 131.39, 118.86, 117.60, 116.64.

Compound 1e, 2-amino-5-bromobenzenethiol: 1H NMR (400 MHz, DMSO) δ 7.24 (dd, J = 8.7,
2.3 Hz, 1H), 6.99 (d, J = 2.2 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 5.75 (s, 2H); 13C NMR (100 MHz, DMSO) δ
149.55, 137.25, 134.14, 118.13, 117.10, 105.84.
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Compound 2A, benzothiazolone:1H NMR (400 MHz, DMSO) δ 11.87 (s, 1H), 7.54 (d, J = 7.9 Hz,
1H), 7.26 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 4.9 Hz, 2H).13C NMR (100 MHz, DMSO) δ 170.47, 136.79, 126.85,
123.76, 123.14, 123.04, 111.94.

Compound 2B, 6-methylbenzothiazolone: 1H NMR (400 MHz, DMSO) δ 11.74 (s, 1H), 7.36
(s, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 2.29 (s, 3H). 13C NMR (100 MHz, DMSO) δ
170.40, 134.45, 132.28, 127.58, 123.73, 123.13, 111.69, 21.10.

Compound 2C, 6-methoxybenzothiazolone: 1H NMR (400 MHz, DMSO) δ 11.67 (s, 1H), 7.22
(d, J = 2.5 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 6.85 (dd, J = 8.7, 2.5 Hz, 1H), 3.72 (s, 3H). 13C NMR (100 MHz,
DMSO) δ 170.24, 155.70, 130.36, 124.82, 113.68, 112.57, 108.19, 56.04.

Compound 2D, 6-chlorobenzothiazolone:1H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 7.61 (d,
J = 8.4 Hz, 1H), 7.19 (dd, J = 8.4, 2.1 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H).13C NMR (100 MHz, DMSO) δ
170.57, 137.94, 131.28, 124.75, 122.91, 122.68, 111.69.

Compound 2E, 6-bromobenzothiazolone:1H NMR (400 MHz, DMSO) δ 12.01 (s, 1H), 7.83 (d,
J = 2.0 Hz, 1H), 7.43 (dd, J = 8.5, 2.0 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H). 13C NMR (100 MHz, DMSO) δ
170.14, 136.10, 129.65, 126.06, 125.48, 114.45, 113.61.

4. Conclusions

In conclusion, we displayed a novel method of synthesizing benzothiazolones via the
cyclocarbonylation of 2-aminothiophenols with CO2 as the C1 building block, catalyzed by DBN.
A series of benzothiazolones was obtained. This work presents a green and environmentally benign
method for the synthesis of benzothiazolones, and also opens a new way for the utilization of CO2 in
the construction of various chemical bonds, such as C–S bonds.

Supplementary Materials: Supplementary Materials are available online at http://www.mdpi.com/2073-4344/
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