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Abstract: It is essential to prepare a highly efficient and reproducible adsorbent for purifying
industrial dye wastewater. In this work, a novel and efficient BiFeO3/carbon fiber (CCT-BFO)
nanocomposite adsorbent was prepared by the template method and through optimizing the
preparation process. The morphology, physicochemical properties, and specific surface characteristics
of the CCT-BFO were characterized by scanning electron microscope (SEM), transmission electron
microscopy (TEM), X-ray diffraction (XRD) patterns, Fourier-transform infrared spectrometer (FTIR),
and N2 adsorption-desorption isotherm. The CCT-BFO could efficiently remove the Methylene
blue (MB) from aqueous solutions, and the adsorption performance is not easily influenced by
the environment. The equilibrium adsorption data were fitted to the classical models very well;
the maximum capacity of adsorption MB onto the CCT-BFO was higher than many other reported
adsorbents and the data of the adsorption kinetics were described by a pseudo-second-order model.
Furthermore, the CCT-BFO can be recycled by photocatalytic regeneration. And the constant
adsorption capacity was almost retained after recycling five times.
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1. Introduction

With the rapid development of the industries, the problem of water pollution has become increasingly
serious. Many types of industrial wastewater have been produced and discharged [1]. Among them,
the dyeing wastewater produced by the manufacturers of dye productions, textiles, papermaking,
leather, cosmetics, and plastics, etc., possess a serious threat to humans, animals, and plants [2].
Because of its complex structures and properties, dyes cannot be biodegradated and even harmful
to the environment [3–8]. Consequently, before the wastewater discharges into the river, the excessive
dyes have to be strictly treated. Many techniques have been developed to purify the dye-containing
wastewater, such as adsorption [9–12], chemical coagulation [13], membrane separation [14,15],
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ion exchange [16], photo-catalytic degradation [5,16,17], biological degradation [18], and some
optimized combination processes [19,20].

Adsorption is a useful and interesting process because of its low cost, high removal rate, versatility,
and easy synthesis [21]. The exploitation of novel and more effective adsorbents is always an important
focus in related fields. Amorphous carbon materials, with their low cost, environmental friendliness,
high surface area, feasible pore characteristics, and chemical-physical characteristics, have become
potential adsorbents for the removal of contaminants from industrial wastewater [22]. The preparation
of amorphous carbon materials from biomass materials has attracted increasing attention due to their
high efficiency, minimization of chemical sludge, low operating cost, and raw material cost [23–25].

Photocatalytic degradation is also a promising method for the removal of organic pollutants due to
the utilization of natural solar energy and features such as nontoxicity, safety, low energy consumption,
reusability, high stability, and catalytic activity [5,17,26–28]. Semiconductor photocatalysts are
the key to photocatalysis. Bismuth ferrate (BiFeO3) is an inexpensive, stable, highly active,
and environmental-friendly semiconductor photocatalyst with a narrow band gap of 2.0–2.7 eV [29,30].
Quite a few works have revealed that BiFeO3 is an effective photocatalyst for the degradation of
organic compounds [29–32]. The combination of adsorption and photocatalysis performsa synergistic
action, not only will the dyeing wastewater be purified with more efficiency, the adsorbents can be
recycled through the photocatalytic degradation of the adsorbed dyes [20,33]. Thus the method shows
promise in resource utilization, economic benefit, and environmental protection.

Based on the above considerations, a nanocomposite of amorphous carbon fiber incorporated
with BiFeO3 (BiFeO3/carbon fiber) was developed in this work. Herein, the amorphous carbon fibers
were prepared by the carbonization of cotton-linen fiber cloth, which was a biomass material, and the
nanocomposite was prepared by the template method [34] and through optimizing the preparation
process. The adsorptivity of the amorphous carbon fibers and the photocatalytic activity of the BiFeO3

were combined in the developed BiFeO3/carbon fiber nanocomposite, its performance in removing
the organic dyes from water and photocatalytic regeneration were studied. Methylene blue (MB) is a
typical organic dye widely used in many industrial fields [35] and is highly toxic and very difficult
to degrade [36]. Consequently, in this work, MB was selected as a representative dye to be used
in studying the performance of the BiFeO3/carbon fiber nanocomposite. Material characteristics,
MB adsorption properties and their dependence on a variety of parameters, adsorption isotherm
and kinetic characteristics, as well as the photocatalytic regeneration effect were investigated for
the BiFeO3/carbon fiber nanocomposite. The investigation results indicated that the BiFeO3/carbon
fiber nanocomposite, as an adsorbent material, could efficiently remove the MB from the aqueous
solution and the adsorption performance was not easily influenced by the solution environment.
The adsorption capacity could be reproduced by photocatalytic regeneration and could be stable after
repeating the adsorption-regeneration process cycle. The high efficiency, great stability, extensive and
economic applicability, easy production, and recycling of the developed nanocomposite adsorbent are
the highlight of the present work.

2. Results and Discussion

2.1. Characterisation of the Adsorbent Materials

In our manuscript, CT is the cotton-linen fiber cloth. CCT is the sample of the carbonized product
of the cotton-linen fiber cloth. CT-BFO is the sample of BiFeO3 that the cotton-linen fiber cloth was
immersed in and heated at 850 ◦C. CCT-BFO is a sample of BiFeO3 that the carbonized product of the
cotton-linen fiber cloth was immersed in and heated. The X-ray diffraction (XRD) analysis method was
employed to investigate the prepared CCT, CCT-BFO, and CT-BFO, as shown in Figure 1. The XRD
pattern of the CCT shows only two wide peaks around 25◦ and 45◦, which should correspond to the
structure of amorphous carbon [37,38]. The XRD patterns of CT-BFO and CCT-BFO also indicate two
wide peaks of amorphous carbon in similar positions as that of the CCT, but the other peaks that
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can be assigned to the crystal planes of (100), (110), (1-10), (1-11), (200), (2-11), and (310) of BiFeO3

are given in CCT-BFO (JCPDS no. 72-2122). Some peaks of BiFeO3 can also be found in CT-BFO,
but the intensity of these peaks is not strong. It is known from the XRD patterns that the CCT is
an amorphous carbon material without BiFeO3 contained in it; the CCT-BFO and CT-BFO are the
composites of BiFeO3 and amorphous carbon material, but the BiFeO3 in CT-BFO demonstrates less
crystallinity. As described in the “experiment procedures”, the preparation processes of the CCT,
CCT-BFO, and CT-BFO all underwent the thermal annealing stages, therefore the amorphous carbon
material contained in them should be generated by the carbonization of the cotton-linen fiber cloth
material. No BiFeO3 precusor was added during the preparation process of CCT, and thus it was
only the amorphous carbon material, without the BiFeO3 contained in it. The preparation process of
CCT-BFO underwent two stages of thermal annealing. After the first annealing stage, which completed
the carbonization of the cotton-linen fiber cloth material, the obtained CCT was immersed in BiFeO3

precusor solution. After it adsorbed enough of the BiFeO3 precusor, then the second annealing stage
completed the calcination of BiFeO3 precusor and generated the BiFeO3 product. Thus, the obtained
CCT-BFO was a composite of BiFeO3 and amorphous carbon material. In the preparation process of
CT-BFO, the cotton-linen fiber cloth material first adsorbed enough of the BiFeO3 precusor during its
immersion in the BiFeO3 precusor solution. Then, the annealing process of the cotton-linen fiber cloth
material containing the BiFeO3 precusor completed the carbonization and calcination simultaneously.
As a result, the CT-BFO was also a composite of BiFeO3 and amorphous carbon material. Since the
carbonization and calcination proceeded simultaneously, the impurities caused by the pyrolysis of the
cotton-linen fibers might be mixed into the BiFeO3, resulting in the demonstration of less crystallinity of
BiFeO3. We performed the Raman spectra on three samples as shown in the Figure S1 (Supplementary
Materials). The intensities of the D peak and the G peak were different for the three samples. The ratios
of D/G were calculated from the changes in the intensities of the D and G peaks, which are marked
in Figure S1. It can be seen from the figure that most of the carbon contained in the material exists
as amorphous carbon, and the surface chemical states indeed were not the reason for the adsorption
property differences [39].
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Figure 1. X-ray diffraction (XRD) patterns of the CCT, CT-BFO, CCT-BFO respective.

The scanning electron microscope (SEM) images of the prepared CCT, CT-BFO and CCT-BFO
are shown in Figure 2. The figure demonstrates that the amorphous carbon materials, which are
the component parts of the three samples, are fiber-shaped. Figure 2a,c,e demonstrate that the
well dispersed carbon fibers had high length-to-diameter ratios and lengths from several tens of
micrometers to several hundreds of micrometers. Figure 2b,d,f, which are the magnified SEM images,
demonstrate that the diameters of the carbon fibers are from four to ten micrometers. It must be known
from the fracture parts of the carbon fibers, as shown in Figure 2b,d,f, that the carbon fibers had a
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hollow structure with the hollow diameters being about several micrometers. And it can be seen that
there are some pores on the CT-BFO and CCT-BFO samples that show a large surface area compared
with the CCT one. These pores may be from the immersion of the acidic aqueous BFO precursor
etching the fiber to form pores. In addition, the CCT-BFO sample shows smaller BFO nanoparticles
on the amorphous carbon fiber, leading to larger surface area. The acid etching and size of the BFO
nanoparticles can affect the surface area, resulting in a different adsorption property. The SEM images
revealed that the amorphous carbon materials generated by the carbonization of the cotton-linen fiber
cloth material replicated the shape and structure of the cotton-linen fibers, and thus it can be a good
carrier material for the particle materials.
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Figure 2. The scanning electron microscope (SEM) images of CCT (a,b); CCT-BFO (c,d) and CT-BFO
(e,f) respective.

The transmission electron microscopy (TEM) images of CCT, CT-BFO and CCT-BFO are
respectively shown in Figure 3a–c. Figure 3a indicates that the component materials of CCT are
pure hollow-structured carbon fibers without BiFeO3 material incorporated to them. Figure 3b shows
that the carbon fibers in CT-BFO are coated by BiFeO3 particles, and the BiFeO3 particles coated on
the surfaces of carbon fibers are badly dispersed and seriously aggregated. Figure 3c shows that that
the carbon fibers in CCT-BFO are also coated by BiFeO3 particles, but the BiFeO3 particles are well
dispersed and uniformly coated on the surfaces of the carbon fibers. The difference of the states of the
BiFeO3 particles coated on carbon fibers between the CT-BFO sample and CCT-BFO sample should be
ascribed to the different preparation processes of the two samples. CCT-BFO underwent two stages of
annealing while CT-BFO was annealed once. The bad dispersity of the BiFeO3 particles coated on the
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carbon fibers in the CT-BFO sample should be caused by the mutual interference of the concurrent
carbonization and calcination processes.
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Figure 3. The transmission electron microscopy (TEM) images of CCT (a); CT-BFO (b); and CCT-BFO
(c) respective.

The high resolution transmission electron microscopy (HRTEM) images of the CCT-BFO obtained
by the magnification of the TEM observations (Figure 4a,b) are shown in Figure 4c,d. It is indicated
from the HRTEM images that the BiFeO3 particles coated on carbon fibers had nanosized diameters
of about 5 nm. The compact interface between the BiFeO3 nanoparticle and the outer-shell of the
carbon fiber demonstrated in Figure 4c reveals that the jointing between the BiFeO3 nanoparticles and
the carbon fibers was firm. Figure 4c,d also clearly demonstrate the (200) and (110) crystal planes of
the BiFeO3 nanoparticles and the uniform orientations of the lattice fringes reveal that the BiFeO3

nanoparticles coated on carbon fibers might be a single crystal structure.
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(c,d) of the CCT-BFO. The blue square in (a) is (b), and the orange and red square in (b) are corresponds
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From the measurements of XRD, SEM, TEM, and HRTEM, it can be known that the component
materials of the CCT are amorphous structured carbon fibers, the CT-BFO is a composite whose
component materials are the amorphous structured carbon fibers coated by BiFeO3 particles, and the
CCT-BFO is a nanocomposite whose component materials are the amorphous structured carbon fibers
coated by BiFeO3 nanoparticles.
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Nitrogen adsorption and desorption experiments were performed on the samples to measure the
BET specific surface areas and the pore diameter distributions of the CCT-BFO, CT-BFO, and CCT,
respectively. The data curves of the adsorption/desorption cycles are shown in Figure 5. The inset
diagram of Figure 5 shows the pore diameter distributions of the three samples. The surface area of the
sample can be calculated by the BET method from the data in Figure 5a, and the pore size distribution
can be calculated by the BJH method from the data in Figure 5b (inset in Figure 5a). The calculated
BET specific surface areas and the Barrett–Joyner–Halenda (B.J.H) pore distribution volume ratios of
the micropores of the three samples from the measured data of nitrogen adsorption/desorption cycles
are listed in Table 1.
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Table 1. The specific surface area and the micropores volume ratio of the CCT-BFO, CT-BFO,
and CCT, respectively.

Samples CCT-BFO CT-BFO CCT

BET specific surface area (m2/g) 442.55 350.04 278.27
Volume ratio of micropores (<2 nm) (%) 8.63 15.21 18.46

As shown in Table 1, the specific surface area of the CCT-BFO is much larger than those of the
CT-BFO and CCT, while the volume ratio of the micropores of the CCT-BFO is the lowest in the three
samples. This should be ascribed to the fact that the preparation of CCT-BFO underwent two stages
of thermal annealing; the preparation processes of the CCT and CT-BFO both underwent only one
stage of thermal annealing and the immersion of the aqueous acidic BFO precursor to etching the
fiber to form pores. Two annealing stages could create more surface ablations of the carbon fibers,
which thinned the shells of the carbon fibers, enhanced the surface roughness, and the dispersity of
carbon fibers. More surface ablations also caused more fractures of the carbon fibers, resulting in more
hollow structures (with micrometer sized diameters) being exposed, and thus more inner surfaces
being accessible. Therefore, compared to the CCT and CT-BFO, the CCT-BFO had a higher specific
surface area and a lower volume ratio of micropores.

2.2. The Performances of MB Adsorption of the Adsorbents

The measured absorbencies of the MB aqueous solutions with an initial concentration of 10 mg·L−1

and pH value of 7, added by pure BiFeO3, CCT, CCT-BFO, and CT-BFO, respectively, at different
times are shown in Figure 6. This indicates that the peak absorbencies of the MB aqueous solutions
decrease with time increasing due to the removal of MB by the adsorption effects of the adsorbents.
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The decrease in peak absorbency of the MB aqueous solutions added by the pure BiFeO3 was less than
10% after 150 min, which is obviously lower compared to the other three MB aqueous solutions added
by the CCT, CCT-BFO, and CT-BFO, respectively. Thus, this indicates that the adsorption ability of the
pure BiFeO3 is poor. Therefore, we do not further consider the pure BiFeO3 in this study and also do
not consider the influence of the loading amount of BiFeO3.
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Figure 6 demonstrates that the CCT-BFO adsorbent demonstrated the best adsorption effect in
the three amorphous carbon contained adsorbents because the peak absorbency of the MB aqueous
solution added by the CCT-BFO dropped to near 0 within 25 min, while the peak absorbencies of
the MB aqueous solutions added by CCT or CT-BFO dropped to only about half of the initial values
within 150 min. The adsorption performance of the adsorbent has a considerable relationship with
its specific surface area and pore size distribution [40,41]. Among the three adsorbents of CCT-BFO,
CT-BFO, and CCT, the CCT-BFO had the highest specific surface area and the lowest volume ratio
of micropores, which are unavailable for molecular adsorption [42,43], thus it could have the best
adsorption performance.

The change in MB concentration during the adsorption process can be calculated from the
absorbency of the MB aqueous solution. Because the dye concentration is basically directly proportional
to the absorbency in the low concentration range [5], the relative concentration and the removal ratio
of the MB at any time during the adsorption process can be calculated by the following equations:

C/C0 = A/A0, (1)

η = [(C0 − C)/C0] × 100% = [(A0 − A)/A0] × 100% (2)

where C/C0 is the MB relative concentration, C0 is the MB initial concentration, C is the MB
concentration at a certain time, η is the removal ratio of MB, A0 is the initial peak absorbency, and A is
the peak absorbency at a certain time.
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The adsorption capacity Qt (mg g−1) of the adsorbent is calculated according to the
following equation:

Qt = (C0 − C)V/m, (3)

where V is the volume of the solution (L), and m is the mass of dry adsorbent (g).
By calculating the data of Figure 6, the obtained data diagram of time-varying relative

concentrations of the MB aqueous solutions, added by the adsorbents of CCT-BFO, CT-BFO, and CCT
respectively, is shown in Figure 7a. Figure 7a indicates that the MB relative concentrations of the
MB aqueous solutions, respectively added by the CCT adsorbent and CT-BFO adsorbent, dropped to
57.46% and 49.22%, respectively, after 150 min of the adsorption process, meaning a MB removal ratio
of 42.54% and 50.78%, respectively. However, for the MB aqueous solution, which was added by the
CCT-BFO adsorbent, the MB relative concentration dropped to 5.79% after only 25 min of adsorption
process, meaning a MB removal ratio of 94.21%, which nearly removed the MB. The time-varying
adsorption capacities of the three adsorbents calculated from the data of Figure 7a, are shown in
Figure 7b. Figure 7b indicates that the adsorption capacity of CCT-BFO was higher than those of
the CCT and CT-BFO, though they all gradually increased with time due to the amount of adsorbed
MB molecules gradually increasing as the adsorption progressed. The MB relative concentrations
and the adsorption capacities of the adsorbents will tend to be stable as the adsorption equilibriums
are approached. Figure 7 demonstrates that the CCT-BFO added MB aqueous solution reached the
adsorption equilibrium within 25 min, which is much more rapid compared to the CCT added MB
aqueous solution and the CT-BFO added MB aqueous solution. These results indicate that the CCT-BFO
could remove MB with much more efficiency relative to CCT and CT-BFO. Therefore, the following
further study was focused on the CCT-BFO and the CCT-BFO added MB aqueous solutions.
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2.3. Adsorption Isotherm Study

The adsorption characteristics and equilibrium parameters of several adsorption isotherm models
indicate the interaction between the adsorbent and the adsorbate, and give comprehensive information
on the nature of the interaction. The monolayer adsorption on energetically uniform adsorbent sites is
predicted by Langmuir isotherm [44]. The equation can be expressed as [45]:

Qe = (QmkLCe)/(1 + kLCe), (4)

where Ce is the equilibrium concentration of the dyes solutions (mg·L−1), Qe is the adsorption capacity
at equilibrium (mg·g−1), kL is the constant related to free energy of adsorption (L·mg−1), and Qm is
the maximum adsorption capacity at monolayer coverage (mg·g−1). Plotting Ce/Qe against Ce gives a
straight line, and the Qm, kL can be calculated from the slope and intercept.
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The Freundlich model can be used to represent the adsorption at a heterogeneous surface, the
equation of the Freundlich model can be expressed as [46]:

lnQe = lnkF + (lnCe)/n, (5)

where kF (L·mg−1) is a Freundlich constant related to the adsorption capacity, and n is the heterogeneity
factor. Plotting lnQe against lnCe gives a straight line, and the kF, n can be calculated from the intercept
and slope.

Figure 8 shows Langmuir adsorption isotherm and Freundlich adsorption isotherm for the MB
adsorption by CCT-BFO adsorbent. Table 2 lists some key parameters calculated from Langmuir
model and Freundlich model. Figure 8 and Table 2 indicate that the experiment data are well fit in
the Langmuir model and Freundlich model. The determination coefficients (R2) obtained from the
Langmuir model and Freundlich model are all above 0.99, but the R2 obtained from Freundlich model
(0.9937) is a little higher than that obtained from the Langmuir model (0.9925). This suggests that the
adsorption of the MB molecules on CCT-BFO surfaces were mainly homogeneous adsorption because
of the uniform distribution of the active adsorption sites on the carbon fibers’ surfaces of CCT-BFO.
A little adsorption of the heterogeneous surface also existed due to the electrostatic attraction between
the slight negative charge that existed on BiFeO3 nanoparticles’ surfaces and the MB cations. The large
values of kF and n indicate that the adsorption of MB on CCT-BFO was advantageous.
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Table 2. Parameters, for the adsorption of MB onto CCT-BFO, of the Freundlich and Langmuir
isotherm models.

Dye
Langmuir Freundlich

Qmax (mg/g) kL (L/mg) R2 RL kF (L/mg) n R2

MB 98.1264 0.8001 0.9925 0.1111 7.9641 0.4669 0.9937

Furthermore, the essential characteristics of the Langmuir isotherm parameters can be expressed in
terms of a dimensionless constant called the separation factor, and it can be expressed by equation [47]:

RL = 1/(1 + kLC0), (6)

Previous studies have shown that the adsorption is unfavorable (RL > 1), favorable (RL < 1),
linear (RL = 1), or irreversible (RL = 0) [48]. The RL value is showed in Table 2, and its between 0 and 1,
which indicates a gainful process of the adsorption of MB onto the CCT-BFO.
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In the Langmuir model, the maximum adsorption capacity (Qmax) of the CCT-BFO was calculated,
the value is 98.1246 mg/g, and as listed in Table 2. The comparisons of Qmax of the CCT-BFO and
other reported adsorbents for MB are listed in Table 3. In this table, the adsorption capacity for MB of
CCT-BFO is higher than many other adsorbents prepared by different methods.

Table 3. The maximum adsorption capacity of various adsorbents for MB.

Adsorbent SBET, m2/g Qmax, mg/g Source

Charred citrus fruit peel 526 25.5 Dutta et al. [49]
Palygorskite/carbon 46.45 37.79 Xue-ping Wu, et al. [50]

UiO-66 981 24.5 Ji-Min Yang [51]
Fe3O4@Zn–Al–LDH 133 36.9 Liang-guo Yan, et al. [52]

FSAC 1867 52.63 F. Marrakchi, et al. [53]
CCT-BFO 442.55 98.12 This Work

2.4. Adsorption Kinetics Study

In common, adsorption kinetics are generally used to predict the adsorption rate and explain the
controlling mechanism of the adsorption process. Because there is no ideal single-factor condition
in reality, the model needs to be revised. Pseudo-first-order and pseudo-second-order models are
investigated to describe the behavior of MB adsorption onto CCT-BFO.

Pseudo-first order model can usually be expressed as [54]:

ln(Qe − Qt) = lnQe − k1t, (7)

where Qe and Qt (mg·g−1) are the adsorption capacities of adsorbent at equilibrium and at a given
time t, respectively, k1 is the rate constant of the pseudo-first-order adsorption (min−1). Using this
equation, the values of k1 and Qe were calculated from the slope and intercept of the plot of ln(Qe − Qt)
versus t, respectively (see Figure 9a).
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The pseudo second-order adsorption kinetics model can usually be expressed as [55]:

t/Qt = 1/k2Qe
2 + t/Qe, (8)

where k2 is the equilibrium rate constant of pseudo-second-order adsorption (g·mg−1·min−1).
The slope and intercept of the plot of t/Qt versus t were used to calculate the second-order rate
constant (k2) and the adsorption capacity of the adsorbent at equilibrium (Qe) (see Figure 9b).

The two kinetic models were drawn with the key parameters, which are listed in Table 4,
and the fitted plots are shown in Figure 9a,b. Figure 9 demonstrates that, through model fitting
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of the experimental data, a poor correlation is observed for the pseudo-first-order model and the
determination coefficient (R2) was less than 0.90. Therefore, it can be concluded that the process
of adsorption does not effectively follow the pseudo first order kinetics. The experimental data are
more in line with the prediction of the pseudo-second-order model. The determination coefficient
(R2 > 0.998) obtained from the pseudo-second-order model is higher than that of the pseudo-first-order
model, as listed in Table 4. Furthermore, for the pseudo-second-order model, the values of adsorption
capacity at equilibrium are more consistent between the experimental value (Qe,exp, 19.109 mg/g) and
the calculated value (Qe,cal, 18.704 mg/g). Thence, the pseudo-second-order model is more suitable
with the experimental data.

Table 4. Parameters of the pseudo-first-order model and pseudo-second-order model for the adsorption
of MB onto CCT-BFO.

Equations
Qe,exp

(mg/g)

Pseudo-First-Order Equation
ln(Qe − Qt) = lnQe − k1t

Pseudo-Second-Order Equation
t/Qt = 1/k2Qe

2 + t/Qe

k1
(min−1) Qe,cal (mg/g) R2 k2 × 102

(g/(mg·min))
Qe,cal (mg/g) R2

MB 19.109 0.364 19.981 0.8438 5.417 18.704 0.9986

2.5. Effect of Initial Solution pH

In the process of adsorption, the pH value of the solution has an important influence, because of
the features that work on the adsorbent surface and can change the protonation of the functional
groups. Therefore, the pH values were changed from 1.0 to 14.0, and the results of the adsorption
experiments are shown in Figure 10. It can be seen from the figure that the removal ratio of MB and the
adsorption capacity of CCT-BFO were not obviously influenced by the change of initial pH value of
the MB aqueous solution. The reason should be that the oxygen-containing groups on the surfaces of
the carbon fibers of CCT-BFO were almost completely decomposed during the annealing stage of the
preparation process [56].The protonation and deprotonation of the functional groups, determined by
the pH value, did not exist on the carbon fibers’ surfaces [57] and thus the electronstatic attraction effect
between the carbon fibers’ surfaces and the MB ions could not be obviously changed by a different pH
value. This result revealed that the adsorption performance of the CCT-BFO is relatively stable and not
easily influenced by the environmental conditions.
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2.6. Regeneration of the Adsorbent by Photocatalysis

Many traditional adsorbents cannot continue to adsorb the adsorbates after adsorption operations
and can only be discarded, resulting in the waste of resources and the generation of new contaminants.
It is a very important factor for the regeneration and reuse of adsorbents in economy and industrial
productive cost. In this work, the photocatalysis method was used to regenerate the adsorbent.

The FTIR spectra of the as prepared CCT-BFO, the CCT-BFO after 30 min of MB adsorption (which
had already reached adsorption equilibrium, as demonstrated in Figure 7), and the photocatalysis
regenerated CCT-BFO, which was obtained by irradiating the CCT-BFO for 30 min by the 300 W xenon
lamp after MB adsorption, are shown in Figure 11. By comparing Figure 11a,b, it can be seen that
several distinct peaks appeared after the adsorption of the MB molecules on the adsorbent. The peak at
1589 cm−1 reflects the stretching vibration band of C-N bond in the benzene ring [58]. The peak at 1383
cm−1 reflects the rocking vibration of the C-H bond [58]. The peak at 1324 cm−1 corresponds to the C-N
bending vibration of the N atom attached to the benzene ring [59]. The peak at 1040 cm−1 corresponds
to the stretching vibration of the C-S bond [59]. The peak at 884 cm−1 is associated with the rocking
vibration of the phenyl ring skeleton plane [59]. It can be proved that these peaks appeared after
adsorption and belong to the characteristic peaks of MB molecules. Figure 11c demonstrates that the
characteristic peaks of the MB molecules disappeared after photocatalytic regeneration, and the FTIR
spectrum of the photocatalysis regenerated CCT-BFO is basically identical to that of the as prepared
CCT-BFO, which can prove that the MB molecules adsorbed on the CCT-BFO were removed after
photocatalysis regeneration.
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after MB adsorption; and (c) the CCT-BFO after being regenerated by photocatalysis.

The mechanism of photocatalytic regeneration of CCT-BFO is illustrated in Figure 12. Upon the
irradiation, electron-hole pairs were generated in BiFeO3 nanoparticles, the photogenerated holes
and electrons moved in the valance and conduction bands, respectively, and then reacted with the
water molecules, and dissolved the oxygen molecules and hydrogen ions, etc., at the surfaces of the
BiFeO3 nanoparticles to generate the hydroxyl radicals and hydrogen peroxide, etc., which are reactive
molecules possessing a high activity of oxidizing organic dyes [60]. The hydrogen peroxide and
hydroxyl radicals further oxidized the adsorbed MB molecules to finally generate water and carbon
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dioxides, hence the adsorbent was regenerated and could be reused for adsorption. The photocatalytic
degradation process of MB is as follows [60]:

BiFeO3 + hυ = BiFeO3·(e− + h+),

BiFeO3·(e− + h+) + H2O = BiFeO3·(e−) + OH + H+,

BiFeO3·(e−) + O2 = BiFeO3 + O2
−,

O2
− + H+ = HO2,

2HO2 = 2O2 + H2O2,

H2O2 = 2·OH,

OH + MB = CO2 + H2O,

H2O2 + MB = CO2 + H2O,
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In addition, the nanometer sizes of the BiFeO3 nanoparticles are benefical for the high efficiency
of the disassociation of the photogenerated holes and electrons, while the conductance character of
the carbon fibers, which act as the carriers of the BiFeO3 nanoparticles, could effectively inhibit the
recombination of the photogenerated holes and electrons [5]. These two factors could help to enhance
the efficiency of the photocatalytic degradation of the adsorbed dyes, and hence could help to enhance
the rate of the photocatalytic regeneration of the adsorbent.

After the photocatalytic regeneration, the reproducibility becomes another important factor
that can evaluate the performance of the adsorbent material. Whether the performance of the
adsorbent changes after repeated treatments of adsorption-photocatalytic regeneration signifies
whether the adsorbent can be recycled. Experimental results indicated that the CCT-BFO adsorbent
could reproduce the performance of adsorbing MB after the photocatalytic regeneration treatments,
the required time for reaching the equilibrium adsorption decreased as the processing time of the
photocatalytic regeneration increased, but it did not continue to decrease when the processing time of
the photocatalytic regeneration was above 30 min, as shown in Figure 13a.The result indicates that
the adsorption performance of the CCT-BFO adsorbent can be further reproduced after 30 min of a
photocatalytic regeneration treatment. Thus, the processing time of the photocatalytic regeneration in
every cycle of adsorption-photocatalytic regeneration was 30 min. The data diagram of time-varying
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relative concentrations of the MB aqueous solutions, added by CCT-BFO undergoing a different
number cycles of adsorption-photocatalytic regeneration, is shown in Figure 13b. It can be judged
from the figure that the adsorption capacity of CCT-BFO adsorbent remained basically stable after
five cycles of adsorption-photocatalytic regeneration. The calculated final MB removal ratio from
Figure 13b changed from 94.21% to 91.98% after five cycles of adsorption-photocatalytic regeneration.
The difference is less than 3%. Therefore, it is a cost-effective, function-effective, and stable way for the
removing of dyes by using the CCT-BFO as an adsorbent.Catalysts 2018, 8, x FOR PEER REVIEW  14 of 18 
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3. Experiment Procedures

3.1. Materials

Bismuth nitrate (Bi(NO3)3·5H2O), Iron nitrate (Fe(NO3)3·9H2O) and ethanol were purchased from
Tianli Chemical Reagent Co., Ltd. (Tianjin, China). MB with the purity of above 98% was purchased
from Shanghai Yiji Industrial Co., Ltd. (Shanghai, China).The cotton-linen fiber cloth (CT) was from
Shanghai Wangwang Textile Co., Ltd. (Shanghai, China). Nitric acid (HNO3) was purchased from
Xilong Chemical Reagent Co., Ltd. (Guangdong, China). All reagents were analytical reagent grade
and used without further purification.

3.2. Preparation of BiFeO3/Carbon Fibre Composites

BiFeO3/Carbon fiber composites were prepared by the template method from cotton-linen fiber
cloth and BiFeO3 precursor. The cotton-linen fiber cloth was cut into small pieces. These pieces were
washed with deionized water and ethanol five times, respectively, then dried at 80 ◦C for 8 h to
complete the cleaning treatment. The cleaned and treated pieces of cotton-linen fiber cloth were put in
the middle of a horizontal furnace, and then heated at 850 ◦C under nitrogen flow for 2 h to obtain the
carbonized product of the cotton-linen fiber cloth material (CCT). 2.25g Bi(NO3)3·5H2O and 2.71 g
Fe(NO3)3·9H2O (molar ratio of Bi and Fe was 1:1.2) were dissolved in 70 mL HNO3 aqueous solution
(10 wt %) at room temperature under constant stirring for 1 h until clear to obtain the BiFeO3 precursor
solution. CCT was immersed in aquantity of BiFeO3 precursor solution for several minutes, then put
in a horizontal furnace and heated at 800 ◦C under nitrogen flow for 2 h to obtain one sample of
BiFeO3/Carbon fiber composite(CCT-BFO). The cleaned and treated pieces of cotton-linen fiber cloth
were immersed in aquantity of BiFeO3 precursor solution for a few minutes, then put in a horizontal
furnace and heated at 850 ◦C under nitrogen flow for 2 h to obtain another sample of BiFeO3/Carbon
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fiber composite (CT-BFO). Aquantity of BiFeO3 precursor solution was dried at 80 ◦C for 3 h, then put
in a horizontal furnace and heated at 800 ◦C under nitrogen flow for 2 h to obtain the pure BiFeO3.

3.3. Adsorption Experiments

Adsorption experiments were carried out in a glass flask containing 100 mL of MB aqueous
solution with different concentrations that were prepared by proper dilution at room temperature
(20 ± 3 ◦C). The solution pH (pH = 1, 4, 7, 10 and 14 respective) was adjusted by adding diluted
HNO3 or NaOH solution. 0.05 g of adsorbent(CCT-BFO, CT-BFO or CCT, which were ground to be
powder state) was added into the MB aqueous solution, then the suspension mixture was magnetically
stirred in dark. Microsamplings of the suspension were drawn every 5 min, and then centrifugated
for 10 min to obtain the clear sample solutions. Their absorbencies were measured by a “UV-vis
spectrophotometer (Model Shimadzu UV2550, Tokyo, Japan)” at the maximum absorptive wavelength
of MB (664 nm), and used for determining the time-dependent change of the MB concentration.

3.4. The Experiment of Photocatalytic Regeneration of the Adsorbent

Photocatalytic regenerations of the adsorbent were performed at room temperature (20 ± 3 ◦C).
After 30 min of MB adsorption in MB aqueous solution with the initial concentration of 10 mg·L−1

and pH value of 7, the wet adsorbent was separated from the solution by centrifugation, then put in a
glassware that was located 20 cm from the light source and irradiated by a 300 W xenon lamp for a
period of time, which was the processing time of the photocatalytic regeneration treatment.

3.5. Material Characteristics

The XRD patterns of the adsorbent materials were characterized with a Bruker D8 Advance
X-ray diffractometer equipped with a graphite monochromatized Cu Kα radiation (γ = 1.541874 A).
The structures and morphologies of the adsorbent materials were characterized by transmission
electron microscopy and high resolution transmission electron microscopy(TEM, HRTEM,
JEOL-JEM2100, Tokyo, Japan), and field emission scanning electron microscopy (SEM, Hitachi S-4800,
Hitachi High-Technologies Corporation, Tokyo, Japan). The surface functional groups of the
adsorbent materials were determined by the Fourier-transform infrared (FTIR) spectra (Bruker Equinox
55 Spectrometer, Bruker Optics, Berlin, Germany). The specific area and the pore volume of the
adsorbent materials were measured by the BET method and the B.J.H. method [61]. The employed
apparatus was a Tristar II 3020 s.

4. Conclusions

In this work, a novel and efficient CCT-BFO nanocomposite adsorbent with superior adsorption
capacity for the removal of dye is prepared by a template method and optimizing the preparation
process. Through the carbonization-immersion-calcination procedure, the superior adsorption capacity
of the amorphous carbon material and the photocatalytic property of BiFeO3 were combined in the
prepared CCT-BFO nanocomposite adsorbent, consequently MB could be photodegraded after being
adsorbed, and thus achieve the regeneration of the adsorbent. The prepared CCT-BFO adsorbent was
well structured and its specific surface characteristics are beneficial for the adsorption of contaminations.
It removed most of the MB molecules from the aqueous solutions within several tens of minutes,
and the adsorption performance is not easily influenced by the solution environments. The equilibrium
adsorption isotherm revealed that the adsorption process could be well described by the classical
models, and the maximum adsorption capacity of the MB onto the CCT-BFO was higher than many
other reported adsorbents. The kinetic adsorption followed the pseudo-second-order kinetic model.
Furthermore, the CCT-BFO could be effectively regenerated by the photocatalysis method due to the
photocatalytic degradation of the organic compounds by the BiFeO3 nanoparticles contained in it.
The adsorption capacity of the CCT-BFO could be reproduced under light irradiation for several tens of
minutes, and could be stable after five cycles of the adsorption-regeneration process. The investigation
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proved that the CCT-BFO nanocomposite is an efficient, cost effective, and recyclable adsorbent for
practical application in the treatment of dye wastewaters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/7/267/s1,
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