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Abstract: Electrocatalysis for the oxygen reduction reaction (ORR) at the cathode plays a critical role
in fuel cells and metal-air batteries. However, the high-cost and sluggish kinetics of the catalytic
reaction have hindered its development. Therefore, developing efficient catalysts to address these
issues is of vital significance. In this work, we summarized the recent progress of nitrogen (N)-doped
metal-free catalysts for the ORR, owing to their high catalytic activity (comparable to Pt/C) and
cost-effectiveness. The synthetic strategy and the morphology structure to catalytic performance are
mainly discussed. Furthermore, the design of N-doped nanomaterials with other heteroatoms in
aiming to further enhance the ORR performance is also reviewed. At the end of the review, we provide
a brief summary of the N-doped carbon-based catalysts in enhancing the ORR performance and give
future perspectives for their further development.
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1. Introduction

Increasingly severe environmental problems have created the need to develop renewable energy
conversion and storage devices. Among the various new energy systems, fuel cells and metal air
batteries are known as two of the best substitutes for traditional fossil fuels, due to their high theoretical
capacity and energy density. For a fuel cell or metal air battery, the oxygen reduction reaction (ORR)
at the cathode is an essential and significant electrochemical reaction which is also recognized as
the “short board” in the battery, because the sluggish kinetics of the ORR restricts the efficiency and
performance of such devices [1-7]. On the other hand, at present, Pt-based electrocatalysts are well
known to exhibit the best ORR performance in both acid and alkaline media [8,9]. However, the high
cost and scarcity of these metals cannot be ignored when considering the scalable applications of fuel
cells and metal-air batteries [10,11]. Thus, research focused on non-precious metals or metal-free
catalysts with low-cost, high performance, and excellent durability to replace Pt-based catalysts
for the ORR has attracted tremendous attention [12,13]. Among the non-precious electrocatalysts,
heteroatom-doped carbon materials as metal-free catalyst have been extensively investigated [14-16],
due to their abundant reserves, excellent catalytic activity, high electron conductivity, and environmental
friendly characteristics.

Various heteroatoms, such as N [17], S [18], P [19], B [20], and I [21], have been introduced into
pure carbon materials in order to enhance the conductivity and tune the electron distribution which
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improve the ORR reaction kinetics. It should be noted that nitrogen-doped carbon nanomaterials are
the most commonly investigated for the ORR relative to other heteroatoms. This can be explained by
the obvious electronegativity difference between C (x = 2.55) and N (x = 3.06), which polarizes the
carbon matrix efficiently and facilitates the adsorption of oxygen. Besides, the resource of nitrogen is
more abundant and environmentally friendly than other heteroatoms. Doping with N changes the
charge redistribution and then enhances the ORR activity. At the electrode interface, the chemisorption
of O, on the catalyst would be changed from the usual end-on adsorption (Pauling model) to a side-on
adsorption (Yeager model) which can effectively weaken the O-O bond and is thus more conducive
to the process of the ORR [22]. It should be noted that the catalytic performance of N-doped carbon
nanomaterials is also correlated with the type of N in the electrocatalysts [23]. In general, the type of N
in the carbon frameworks can be divided into three forms: graphitic N (400.9 eV), pyrrolic N (398.6 eV),
and pyridinic N (397.9 eV) [24]. Pyridinic N possesses a lone electron pair which is deemed as the active
site to enhance the electron donating capability and effectively weaken the O-O band [25,26]. Besides,
some researchers considered graphitic N for the active sites due to the coexistence of different kinds
of N [27,28]. Guo et al. recently demonstrated that the active sites in N-doped carbon nanomaterials
are located at the carbon atoms with Lewis basicity adjacent to pyridinic N [23]. As well as the
types of N, the content of N in the electrocatalyst is also a controversial factor affecting the ORR
performance, where catalysts with excessive N have inferior ORR activity [29]. According to recent
reports, a variety of N-doped carbon nanomaterials have been investigated as metal-free catalysts for
the ORR, including carbon nanosheet [30], carbon nanotube [31], graphene [32-34], and composites
of carbon nanotube/graphene [35-37]. The carbon materials with different structures show different
catalytic activities after doping with N [38]. Thus, the carbon nanomaterial morphology is another
used factor to control the catalytic performance, especially the activity and long-term stability.

Although N-doped metal-free catalysts have yielded tremendous advances for the ORR,
the catalytic performance is still fall behind of commercial Pt [39]. Considerable efforts have been
devoted to optimizing the catalytic performance of N-doped metal-free nanomaterials. It has been
found that the introduction of other heteroatoms, such as P [40], S [39], B [41], and so on [42], to form
two or three co-doped heteroatoms carbon nanomaterials can further enhance the catalytic activity.
For example, S atoms are of particular interest as they were found to easily replace the C atom when
co-doping with N [43,44]. For N and P co-doped catalysts, phosphorous exhibits a larger atomic size but
a lower electronegativity relative to C, which can create defects on the carbon surface-induced active
sites for oxygen adsorption during the ORR [45]. The improvement of the electrocatalytic activity can be
attributed to the synergistic effects between the doped heteroatoms. Besides co-doping, the preparation
of catalysts with various structures can also effectively enhance the catalytic performance, such as
three-dimensional structure [46,47], aerogel [48], and carbon frameworks [17]. In this review, we mainly
focus on the recent progress of N-doped carbon nanomaterials and the strategies to enhance the
N-doped metal-free catalysts for the ORR. We begin by reviewing synthetic strategies and then
we review recent progress on how to further enhance the ORR performance. The challenges and
perspectives in this field are also addressed in the final section.

2. Recent Development of Synthetic Methodologies

The synthesis of N-doped carbon-based nanomaterials is divided into three main categories:
(i) synthesis of nanocarbon-based materials and then doping with N via N-contain resources, like urea,
NHj3 H,O or NHj3 [49,50] (Figure 1a), et al. (ii) the N-doped carbon nanomaterials obtained by pyrolysis
of biomass materials (e.g., prawn shells [51,52], Nori [53], ginkgo leaves [54], fermented rice [55], et al.).
This kind of material is beneficial due to their abundance in nature, which creates the potential for
large-scale production. (iii) Direct synthesis of N-doped carbon via N-containing carbon precursors,
such as polypyrrole [56] and polyanline [57], gelatin [58], etc., by a direct incorporation of nitrogen
atoms into carbon-based nanomaterials (Figure 1b). Such synthetic methods suffer from the relatively
high costs of the N-containing precursors.
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Figure 1. Schematic preparation of N-doped metal-free carbon-based nanocatalysts using urea as N
source (a) [50] Copyright 2015 Elsevier and pyrolysis of N-containing precursor (b) [58]. Copyright
2014 American Chemical Society.

Apart from the above synthetic method, to confirm the N was successfully doped into the
nanocarbon materials framework, a hydrothermal, solvothermal, or high temperature annealing
approach is necessary [48,59,60]. Through these methods, the N-containing small molecules or
N-containing carbon materials undergo pyrolysis or carbonization, in which the N would combine
with carbon frameworks and then form three kinds of N types: pyridinic N, pyrrolic N, and graphitic
N. Besides, the hydrothermal or solvothermal products experienced post-heating annealing are often
used to optimize the catalytic activity due to the enhancement of their electronic conductivity for the
catalysts and removal of extra impurities. Therefore, detailed discussion of the recent reports on the
synthetic methodologies are shown in the following content.

2.1. Co-Pyrolysis of Carbon Materials and N-Containing Sources

Among the various N-containing sources, NHjs is a widely used nitrogen resource in preparing
N-doped carbon-based metal-free electrocatalysts because of its ubiquitous distribution in a tube
furnace at high annealing temperatures. Recently, N-doped 3D cross-linking hierarchically porous
carbon (LHNHPC) was successfully prepared through a simple two-step process [61] (Figure 2a),
in which NHj plays an important role in creating pores and defects in the carbon framework.
The specific surface area increased with the increasing of temperature, meanwhile, the micropore
area decreased which may be due to the disintegration of micropores at high temperature which then
evolved into mesopores. Relative to a microporous structure, mesoporous and microporous structures
can effectively enhance the catalytic performance of the ORR, while micropores are kinetically
inaccessible for O, [62]. N-doped hollow mesoporous carbon spheres (NHCSs) were also prepared
via a hydrothermal-NHj treated strategy (Figure 2b) by using hexamethylentetramine as the carbon
precursor, which also presents excellent catalytic activity for the ORR [63]. Besides NHj, urea is a
general reactant in preparing N-doped metal-free catalysts due to its moderate pyrolysis temperature
(lower than 200 °C), high N content, low cost, and environmental friendly merits. Urea can form
graphitic carbon nitride (g-C3Ny) at about 550 °C which can act as a template to form a nanosheet
structure [64]. The formed g-C3N4 will be decomposed into NHj3 and carbon nitride gases which can
dope into the carbon frameworks [65]. EDTA is another N source which is commonly used act as a
complexing agent in chemical science. It also possesses a high N content for doping into the carbon
frameworks [12,66].



Catalysts 2018, 8, 196 40f17

(b)

P123/50

Emulsion HPS
solution

~ P123
A~~~ Sodiumcleste (S0)
DA:  2.a-dihydroxybenzoic acid

HMT:  Heamethylenetetramine

Figure 2. Schematic illustration images of the N-doped carbon-based materials preparation.
(a) LHNHPC, [61]. Copyright 2017 Elsevier (b) NCMT, [63]. Copyright 2017 Elsevier and (c) NHCSs, [67].
Copyright 2016, Royal Society of Chemistry.

2.2. Pyrolysis of Biomass Materials

Biomass carbon materials are ubiquitous in earth. They are abundant resources of ultra-low
cost and are easy to acquire. Therefore, great efforts have been devoted to improving their catalytic
performance towards the ORR. Facial cotton, a kind of makeup tool which features 100% cotton
and is naturally derived, has been investigated as a carbon precursor in the synthesis of N-doped
porous carbon. Li and co-workers [67] prepared flexible three dimensional (3D) sponges composed
of porous N-doped carbon microtubes (NCMTs) by pyrolysis of facial cotton under NH3 atmosphere
(Figure 2c). The obtained NCMTs were characterized by dictyophora morphology with micro-scale
hollow cores and interconnected tube walls. They also possess high specific surface area (2358 m? g~1)
which endows them with abundant active sites and mass transfer channels. Thus, the synthesized
catalysts exhibit excellent bifunctional catalytic performance towards the ORR and OER. Yu and
co-workers [68] developed a highly active nitrogen-doped carbon nanofiber (N-CNF) aerogel by
direct pyrolysis of the cheap, green, mass-producible biomass of bacterial cellulose, followed by NHj3
activation. When used as a metal-free electrocatalyst, it had superior ORR activity, high selectivity,
and excellent electrochemical stability. Chen and co-workers [69] investigated biomass materials from
the plant Typha orientalis. After high temperature annealing, nitrogen-doped carbon nanosheets with
high surface area (898 m? g~1), abundant micropores, and a high content of nitrogen (highest content
of 9.1 at.%) were successfully prepared which exhibited a, surprisingly high ORR activity. The use
of lignin as a precursor for the preparation of ORR electrocatalysts is an interesting option from a
sustainability standpoint. Esposito and co-workers [70] illustrated the preparation of nitrogen-doped
carbon (NDC) with micro-, meso-, and macroporous structure by using lignin extracted from beech
wood via alkaline hydrothermal treatment and successively functionalized via aromatic nitration.
After being carbonized in the eutectic salt melt KC1/ZnCl,, the NDC exhibited excellent electrocatalytic
performance towards the ORR.

2.3. Pyrolysis of N-Containing Carbon Precursors

N-doped carbon metal-free electrocatalyst can also be obtained from the decomposition of nitrogen
and carbon-containing precursors [71-73]. At present, metal-organic framework (MOF) has been
widely investigated to prepare N-doped carbon nanomaterials for ORR [74,75]. MOF is a novel porous
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materials which has some advantages relative to traditional porous materials, including structural
diversity, high-surface area, diverse nanostructures, and good designability [76]. Thus, MOF has
been applied in gas adsorption and storage [77] and electrocatalyst [78] etc. [79]. Zhang et al. [74]
prepared nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 which possess excellent
electrocatalytic activity for ORR in 0.1 M KOH (Figure 3a). The obtained nanomaterials present some
attracting features, including a high degree of graphitization and high specific surface area with
hierarchical porous structure, which are beneficial for catalytic processes. The catalytic activity for
the ORR correlates to the types of N in the catalyst and the degree of the graphitization. Li et al. [80]
synthesized electrocatalysts for the ORR with a high degree of graphitization and pyridinic-N dopants
by pyrolysis pyridyl-ligand-based MOF (Figure 3b). The prepared MOF exhibits a rod-like structure
and foam morphology nanomaterials were formed, composed of curved graphene nanosheets after
carbonization. It was found that the graphitization degree increased as the pyrolysis temperature
increased, but the content of pyridinic-N content decreased, which can decrease the electron transfer
resistance. The obtained nanomaterials possess the best catalytic activity for ORR in alkaline electrolyte
at high temperatures, demonstrating that the graphitization degree of the electrocatalyst affects the
catalytic performance. Most sizes of MOF are too large even after carbonization to provide abundant
active sites for electrocatalytic processes to occur. Jiang et al. [81] developed a facile strategy using
cetyltrimethylammonium bromide (CTAB) micelles to control the size of ZIF-8 (Figure 3c). As a result,
the size of PC1000@C from ZIF-8@CTAB is about 40 nm which is much smaller than PC 1000 (290 nm)
from ZIF-8, demonstrating CTAB can efficiently manipulate and control the size of ZIF-8. Furthermore,
PC 1000@C presents higher specific surface area, pore volume, and a more mesoporous structure
relative to PC 1000, from which we can deduce that the addition of CTAB affects the nanostructure
of the catalyst. Wang and co-workers [73] derived well-defined carbon nanotubes with controlled
doping of various N species (e.g., pyrrolic, pyridinic, and graphitic N) have been achieved by in situ
pyrolysis of polyaniline (PANI) nanotubes at different temperatures. As a result, carbon nanotubes
fabricated at 700 °C exhibited the highest electrocatalytic ORR activity, long-standing stability, and
good tolerance against methanol in alkaline medium, which is mainly attributed to the high nitrogen
level of the active pyridinic and graphitic N.

K i HK‘JI
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ZIF-8 NGPCs

(<) ‘i N2
{-., —:3 stirrin G:;;EE;?: 1000°C

-
e
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Figure 3. (a) Schematic illustration of the nanoscale MOF (NMOFs)-driven template synthesis of
highly graphitized nitrogen-doped porous carbon nanopolyhedra [74]; Copyright 2014, Royal Society
of Chemistry (b) the synthesis process of PNPC-1000 and corresponding SEM and TEM images [80];
Copyright 2016, Royal Society of Chemistry (c) schematic illustration of PC1000@C derived from
ZIF-8@CTAB [81]. Copyright 2016, Elsevier.
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3. Further Strategies to Enhance the ORR Performance

Although N-doped carbon nanomaterials have achieved great progress towards efficient ORR,
the catalytic performance still does not meet the practical need. Therefore, it is urgent to develop other
strategies to further enhance the catalytic performance.

3.1. Coordination with Other Heteroatoms

As mentioned in the introduction part, the coordination with other heteroatoms to enhance
the ORR performance is an important strategy to optimize the electrocatalytic activity of N-doped
nanomaterials. It should be noted that the S atom is of particular interest because it was found to
easily replace the C atom when co-doping with N [43,44]. Qu and co-workers [82] prepared N,S
co-doped carbon nanosheets (N,S-CN) by using sulfur-modified GO-PDA (polydopamine) as the
substrate, where PDA and 2-mercaptoethanol served as the N and S sources, respectively (Figure 4a).
As a result, N,S5-CN presents the best catalytic activity with a high onset potential and half-wave
potential relative to solely N-doped carbon nanosheets (N-CN). Besides, this catalyst also exhibited
the lowest Tafel slopes relative to other two catalysts, close to Pt/C, demonstrating the favorable
ORR kinetics of the co-doped nanomaterials. Honeysuckles are arching shrubs or twining vines in
the family Caprifoliaceae, native to the Northern Hemisphere. Gao and co-workers [36] prepared
a three-dimensional (3D) porous sulfur, nitrogen co-doped carbon using honeysuckle as the single
precursor. Such excellent ORR performance may be ascribed to the synergistic effects of the numerous
ORR catalytic sites provided by sulfur-nitrogen hetero-doping, favorable reactant transport channels
provided by pore structures, and fast electron transfer rate induced by 3D continuous networks.
Thus, the addition of S to the N-doped nanomaterials were proven to be an efficient strategy to enhance
the catalytic activity. Besides S, phosphorous (P) is the other general atom to exhibit an coordination
effect towards ORR when coupled with N [83,84]. Jiang and co-workers [85] reported an N and
P co-doped electrocatalyst prepared via a self-assembly strategy by using melamine and ATMP as
the gelator. As shown in Figure 4d, the CV curves measured in Ny and O, saturated 0.1 M KOH
demonstrate that the coexistence of N and P (NPCN) can enhance the catalytic activity relative to solely
N or P doped nanomaterials, consistent with the LSVs in Figure 4d. The excellent catalytic activity of
NPCN-900 can be attributed to the synergistic effect between N and P. The N dopants can change the
electric neutrality of the carbon atoms and then P dopants can enlarge the spin density, resulting in
unevenly distributed charge density [86]. Furthermore, the addition of P in the carbon nanomaterials
can introduce defects and edges which can serve active sites for the ORR. Thus, the addition of other
heteroatoms can effectively enhance the catalytic activity for the ORR.
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Figure 4. (a) Schematic illustration of the preparation of N,S-CN. ORR LSVs (b) and Tafel slope (c) of
N,S-CN, N-CN, RGO, and Pt/C [82]. Copyright 2016 Elsevier. CV curves in N, and O,-saturated 0.1 M
KOH (d) and LSVs curves of PCFs, NC, NPCN-900, NPCN-900, and NPCN-1000 (e) [85]. Copyright
2017 Elsevier.

3.2. Structure Modification

The structure and morphology of the catalyst materials play a significant role in ORR performance.
Among the various catalyst materials, graphene is a popular two-dimensional (2D) nanomaterials for
ORR due to its outstanding properties, especially its high surface area (2630 m? g~ 1), which provides
a high density of active sites [87]. Furthermore, this material possesses excellent electrical
conductivity [88], mechanical strength, and stability [89]. Thus, graphene and graphene-like 2D
nanomaterials have been widely studied for ORR [90]. Besides graphene, graphitic carbon nitride
(g-C3Ny) is a quasi-2D organic nonmetallic semiconductor [91] which has been widely used as a
template to prepare 2D carbon nanomaterials [92]. Yu et al. [93] prepared N-doped carbon nanosheets
(N-CNS), using g-C3Ny as the template and nitrogen source. The N-CNS features a high specific
surface area and a porous structure which exhibits superior ORR performance (Figure 5a). The porous
structure in the catalyst benefits the mass transport during the catalytic process and combining
2D nanomaterials with porous structure leads to outstanding ORR catalytic performance. Wei and
co-workers [30] prepared N-doped carbon nanosheets (NDCN) with uniform mesopores using silica as
the template and PDA as the N and C source. The size of the mesopores can be tuned in the preparation
of this materials (Figure 5b). The electrocatalytic activity of the nanomaterial is closely related to the
pore size, and the NDCN with pore size of about 22 nm (NDCN-22) exhibited the best catalytic activity.
The prepared nanomaterials had typical 2D morphology, uniform and size-defined mesopores, and the
mesopores were interconnected on the surface to form 2D planar mesoporous shells (Figure 5¢,d).
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Figure 5. (a) Schematic for the synthesis of N-CNS [93]. Copyright 2016, Wiley-VCH. Copyright
2014, Wiley-VCH. Synthesis of NDCN-x (b) and corresponding TEM images of NDCN-22 (¢,d) [30].
Copyright 2014, Wiley-VCH.

Besides 2D nanomaterials, three-dimensional (3D) structured materials are another kind of
interesting nanomaterials for ORR, especially those with hollow structures, which can provide
ultra-high specific area and an abundance of pores on the spherical walls that provide a triple
phase region to benefit the mass transfer of oxygen and electrolytes during the ORR process [94,95].
Wang’s group have extensively investigated 3D nanomaterials for ORR [93,96-99]. For metal-free
electrocatalysts, N,S-hcs nanomaterials with 3D hollow structures doped with N and S were prepared
through a soft template approach (Figure 6a) [96]. The obtained catalyst exhibited high surface area
and a mesoporous structure, which provided abundant active sites and rapid mass transfer rate.
As a result, the N,S5-hcs nanomaterials exhibit excellent catalytic activity, including highly positive
onset and half-wave potential. Graphene, a typical 2D nanomaterial, has been widely investigated
for ORR, but the severe aggregation due to the 7 interaction during the thermal annealing process
and electrochemical measurement lowers its surface area and mass transfer rate [100,101]. Thus,
a new strategy is urgently needed to settle this issue. Wang and co-workers [99] partially exfoliated
multi-walled carbon nanotubes (MWCNT) to obtain nanomaterials with the coexistence of graphene
and MWCNT which feature a 3D nanostructure and efficiently avoid the aggregation of graphene.
The authors used different masses of KMnQy as “scissors” to exfoliate MWCNT. The mass ratio 1:3
(MWCNT:KMnOy) showed the best catalytic activity for ORR (Figure 6b) and it exhibited the closest
Tafel slope to Pt/C (Figure 6¢). Meanwhile, the prepared NSCNT-3 exhibited a 4-electron reaction
pathway obtained through the Koutecky—-Levich formula (Figure 6d) and rotating ring disk electrode
(RRDE) (Figure 6e) which is in accordance with Pt/C. Wu et al. [95] inserted carbon black into graphene
to avoid the aggregation of graphene and the obtained nanomaterials exhibited high specific surface
area and attractive catalytic performance.
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Figure 6. (a) Schematic illustration of the synthesis of N,S-hcs [96]. Copyright 2016, Royal Society of
Chemistry. LSVs of NSCNT and Pt/C (b) and corresponding Tafel slopes (c) in 0.1 M KOH solution.
(d) LSVs of NSCNT-3 in different rotating speeds and its corresponding Koutecky-Levich value at
different potentials. (e) The electron transfer number n, H,O; yield, and RRDE voltammograms of
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Defects in the nanomaterials can change the electron-hole symmetry and electronic structure,
which would facilitate the catalytic activity towards ORR [102-104]. Wang and co-workers [105]
categorized the defects into four kinds, including point defects, line defects, plane defects, and volume
defects. The created defects in the carbon can provide abundant edges in the defect site and the
edges provide large locations for N incorporation. He and co-workers [106] prepared N-doped
carbon nanoribbons (NDCNRs) by using pyrrole and aniline as monomers with different ratios to
synthesize the nanofibers, and NH4F as a reactant to produce defects in the nanomaterials. As a
result, the optimum catalytic performance was found at an aniline to pyrrole ratio of 1:3, where a
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distinct oxygen reduction peak was present at 0.8 V (Figure 7b,c). The highest double layer capacitance
can provide abundant active sites for the ORR. The authors found that F-NDCNRs had the highest
disorder degree from Raman analysis, and thus could generate catalytically active sites on carbon

nanomaterials [107].
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Figure 7. (a) Schematic illustration of preparing F-NDCNRs (x); (b) CV curve of FFNDCNRs (1:3) in
N, and O,-saturated 0.1 M KOH; (c) LSVs of F-NDCNRs (x) with a rotating rate of 900 rpm [106].
Copyright 2017 Elsevier.

Table 1 displays the parameters of the N-doped carbon-based materials which have been applied
to the ORR. The parameters include the use of precursors, synthetic methodologies, specific surface
area, and half-wave potential. Some conclusions can be drawn from Table 1. (i) The target of lowering
the synthetic cost is becoming prevalent; (ii) materials with mesopores are more likely to exhibit
superior ORR performance; (iii) the half-wave potential is reaching a bottleneck which will require

more efforts to overcome.

Table 1. Parameters of N-doped carbon-based materials applied for ORR.

Materials Precursor Methodology S[m?g~1] Half-Wave Potential Ref.
LHNHPC Resorcinol, formaldehyde carbon-aerogel 2600 0.86 V vs. RHE [61]
NHCSs hexamethylentetramine hydrothermal method 820 —0.215 V vs. SCE [63]
NCMTs facial cotton Pyrolyzing method 2358 / [67]
N-CNF bacterial cellulose Pyrolyzing method 916 0.80 V vs. RHE [68]
NCs Typha orientalis hydrothermal process 898 ~0.75V vs. RHE [69]
NDC Nitro Lignin hydrothermal treatment 1589 0.85V vs. RHE [70]
NGPCs NMOF carbonization process 932 —0.20 vs. Ag/AgCl [74]
PNPC pyridyl-ligand carbonization 1180 / [80]
PC1000@C ZIF-8@CTAB carbonization 1116 / [81]
N,S-CN graphene oxide-polydopamine hybrids carbonization 273 —0.15V vs. Ag/AgCl [82]
PHC honeysuckles carbonization 803 / [36]
NPCN-900 CQDs and ATMP pyrolysis 743 0.78 V vs. RHE [85]
NPCNT-2 partially exfoliated MWCNTs High-temperature heat-treatment / 0.77 V vs. RHE [93]
NDCN graphene/silica nanosheet templating approach 589 —0.13 Vvs. Ag/AgCl [30]
N,S-hcs carbon sphere soft template approach 583 0.81V vs. RHE [96]
NSCNT-3 partially exfoliated MWCNTs High-temperature heat-treatment 472.5 0.81V vs. RHE [99]
NDCNRs PANI-PPy carbonization / 0.86 V vs. RHE [106]

4. Conclusions and Outlooks

The low-cost, readily available, high electronic conductivity, and environmental friendly
characteristics of carbon-based nanomaterials correspond to their great potential in renewable energy
devices. After doping with N in the carbon frameworks, the electronic structure is changed, resulting in



Catalysts 2018, 8, 196 11 of 17

excellent ORR performance, including superior ORR activity, long-term durability, and high methanol
tolerance. These features have attracted tremendous attention to metal-free electrocatalyst for ORR
to replace Pt/C. In this review, we summarized the synthesis strategy of N-doped nanomaterials,
including the co-pyrolysis of carbon materials and N-containing sources, the pyrolysis of biomass
materials, and direct pyrolysis of N-containing carbon-based materials. However, the catalytic activity
of N-doped metal-free catalysts is still unsatisfactory for fuel cells and metal air batteries.

Great efforts have been devoted to further enhance the ORR performance, such as coordination
with other heteroatoms (e.g., S and P), modification of carbon structure, and introduction of defects,
which effectively improved the ORR performance on the basis of N-doped carbon materials. Through
synergistic effects, the coordination of N with other heteroatoms can enhance the catalytic activity.
The design of nanomaterials with various nanostructures and the coexistence of one-dimensional and
two-dimensional structures can provide sufficient active sites for the catalytic process. The introduction
of defects in the carbon base material can change the distribution of the electron density and electronic
charge, which can benefit the ORR process. It should be noted that all the above strategies are not
independent of each other. N doped into the carbon nanomaterials not only change the electron
density and polarize the carbon matrix, but can also create defects in the carbon nanomaterials,
which is generally ignored. Thus, the combination of each strategy is also an effective method to
optimize the catalytic activity.

Apart from the above-mentioned strategies, there are still some potential methods to further
enhance the catalytic performance. The tuning of the pore size distribution affects the catalytic
performance. Mesopores exhibit quicker and more complete transport toward/from the catalytic
sites for the reactants and products relative to micropores [108]. Using various strategies to enhance
the specific surface area, such as an NaCl template [109] and carbon dioxide (CO;) activation [72],
can create abundant active sites for ORR. The content of N in the nanomaterials can affect the catalytic
activity [110], although this method is still controversial.

The development of N-doped carbon-based nanomaterials in the future should focus on the
design of specific structures with high specific surface area, abundant mesopores and macropores,
optimal nitrogen content, rich defects, and so on. Besides, the development of test devices that
accurately imitate real batteries to assess the capability of these new catalysts is becoming a new
tendency in the field. Even though graphitic N or pyridinic N are more likely to act as the ORR active
sites according to the above-mentioned research, more evidence is required, since the effect of the N
bonding state on ORR activity is still under debate.
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