Palladium supported on carbon nanotubes as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole

Mengyan Zhu^{a,b}, Lixin Xu^{a,b}, Lin Du^c, Yue An^d and Chao Wan^{a,b,d,*}

^a Hexian Chemical Industrial Development Institute, School of Chemistry and Chemical Engineering,

Anhui University of Technology, Ma'anshan 243002, China

^b Ahut Chemical Science & Technology Co., Ltd., Ma'anshan 243002, China

^c Anhui Haide Chemical Technology Co., Ltd., Ma'anshan 243002, China

^d College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

* Corresponding author. Tel.: +86 555 2311807; Fax: +86 555 2311822.

E-mail address: wanchao1219@hotmail.com (Chao Wan)

Figure S1. XRD patterns for the synthesized Pd/CNTs with 20 wt% Pd loading.

Figure S2. Nitrogen adsorption-desorption isotherms for CNTs and 3.0wt% Pd/CNTs

Figure S3. Pore size distribution for CNTs and 3.0wt% Pd/CNTs

Sample	Pd content(wt %)	
	Practical	Theoretical
1.0 wt% Pd/CNTs	0.9	1.0
2.0 wt%Pd/CNTs	2.1	2.0
3.0 wt%Pd/CNTs	3.0	3.0
4.0 wt%Pd/CNTs	4.1	4.0

Table S1. Content of Pd in Pd/CNTs with different loadings based on ICP-AES analysis