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Abstract: In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology
were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates.
These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and
characterized in alkaline electrolyte (0.1 M NaOH at 25 ± 2 ◦C) for the hydrogen evolution
reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR)
for their potential application in alkaline electrolyzers or in alkaline fuel cells. The electrochemical
performances of these electrodes were investigated as a function of their crystallized state (amorphous
versus crystalline). Although none of the materials display spectacular HER and OER activity,
the results show interesting performances of the crystallized sample towards the ORR with regards
to this class of non-Pt group metal (non-PGM) electrocatalysts, the activity being, however, still far
from a benchmark Pt/C electrocatalyst.

Keywords: electrostatic spray deposition; Pr6O11; non-Pt group metal (non-PGM); electrocatalyst;
alkaline electrolyte; oxygen reduction reaction

1. Introduction

With the development of renewable electricity—a necessity to face the present fossil energy
crisis and limit the harmful emissions of related greenhouse gases—the means to store this energy
upon production peaks and to release it upon demand peaks is mandatory [1]. One very efficient
manner to do so lies in the so-called hydrogen economy, where H2 (and O2) is produced in water
electrolyzers (acidic [2], alkaline [3], or, if necessary, with advanced physical procedures to boost the
reactions [4]), stored, and then converted back to water and electrical energy in fuel cells. The so-called
unitized regenerative fuel cells (URFC) [5,6], as well as photocatalytic water-splitting devices [7,8]
are also convenient means to do so. In these systems, the reactions of oxygen reduction (ORR)
and oxygen evolution (OER) limit the operation in fuel cell and electrolyzer mode, respectively,
whatever the pH of operation. Moreover, the electrocatalysts that can sufficiently and durably
accelerate these reactions in acidic (proton-exchange membrane) conditions are based on platinum
group metals (PGM) [9,10], which conveys dramatic issues in terms of availability and cost of the
electrodes. As a result, the sustained hydrogen cycle might only be viable for alkaline systems for
which the potential choice of more available and less costly non-noble electrocatalysts is greater (and
simply possible) [11]. There are extremely vast numbers of potential non-PGM electrocatalysts for the
ORR [12–18] and OER [19–28] (these examples being by-no-means comprehensive), and metal oxides
in the perovskite structure play a large role in this hot area, owing to their non-negligible activity
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for the oxygen reduction and evolution reactions, and the extremely large variety of components
available [6,11,29–32]. Perovskite oxides, usually based on rare-earth component(s), are usually not
sufficiently electron-conductive on their own to exhibit sufficient performances, and they are, therefore,
generally used in composite electrodes while including some carbon additive [32–36]. Addition
of carbon is usually very positive for the ORR [37–41] and results from a combination of effects
like (i) an increase of electronic conductivity of the active layer, (ii) a bifunctional mechanism in
which carbon enhances hydrogen peroxide formation, the latter being decomposed/reduced on
the perovskite oxide, and (iii) a change of the perovskite electronic and/or crystalline structure(s)
promoted by carbon [32,35]. On the contrary, adding carbon is detrimental for the OER as a result
of its poor durability in operation [32,37,38]. Nevertheless, very interesting performances have been
reached to date, both for the ORR and OER on this class of materials [31,42], but it is unclear from
these studies what the intrinsic activity of the perovskite component is. More recently, carbon-free
active layers based on perovskite oxides have been described and tested, which shed light on the
intrinsic electrocatalytic properties of the electrocatalysts, and highlighted the role of their electronic
conductivity and lattice strain, two parameters which need a certain balance to reach high ORR and
OER activity [43]. The importance of the crystalline nature of the perovskites has been ascertained,
with smaller crystals yielding larger ORR activity [44]. The influence of the facets has also been put
forth [45] as well as the crystalline versus amorphous nature of the oxide [46,47], but in these cases,
composite electrodes using carbon additives were used.

Rare-earth oxides are also popular in the field of high-temperature solid-state electrochemistry
and in particular for solid oxide fuel cells (SOFCs). For example, Pr6O11 has been reported to
enhance electrochemical ORR performance when used as an additive in composite oxygen electrodes:
Pr6O11-infiltrated LaNi0.6Fe0.4O3-δ (LNF) electrodes exhibited improved performance over LNF
(LaNi0.6Fe0.4O3-δ) electrodes, as reported by Chiba et al. [48] and Ding et al. [49]. More recently,
polarization resistances as low as 0.026 Ω cm2 at 600 ◦C were reported for a pure Pr6O11 columnar-type
cathode prepared by electrostatic spray deposition (ESD) [50]. The ESD technique is a film-coating
method based on the principle of electrostatic atomization [51]. First, a positive high voltage is applied
to the stainless steel nozzle from which positively-charged droplets of a solution of precursors are
generated. Then, they are directed to the grounded substrate thanks to the electrical field. Finally,
the size of the droplets at the moment of impact on the heated substrate and the combined effects
of relative spreading and drying rates will determine film morphology. A schematic drawing of the
ESD system has been presented in Reference [52]. This innovative process is a low-cost and versatile
technique to elaborate a wide variety of oxide materials with large reproducibility and controlled
microstructures [50,53–57].

In the present contribution, Pr-based oxides (Pr6O11) have been prepared for the first time as
thin-films on glassy-carbon substrates by ESD; these electrodes, prepared without any addition of
carbon black additive, were tested for their activity of hydrogen and oxygen evolution reactions (HER
and OER), and oxygen reduction reactions (ORR) in dilute alkaline electrolyte. The oxide crystallinity,
in particular, has been evaluated by comparing the fate of amorphous and crystalline Pr6O11.

2. Results and Discussion

2.1. Microstructural Characterization and Elemental Analysis

The microstructures of the films deposited with a flow rate of Q = 1.5 mL h−1, a substrate
temperature of Ts = 230 ◦C, a nozzle-to-substrate distance of dns = 20 mm, and a deposition time of
t = 3 h, are shown in Figure 1A–F. In these conditions, both as-prepared (amorphous) and sintered
(crystalline) Pr6O11 samples showed similar brain-like type microstructures (Figure 1). The average
grain size was too small to be resolved by Scanning Electron Microscopy, SEM (Figure 1C,F), and was
therefore determined using Transmission Electron Microscopy, TEM, and X-Ray Diffraction, XRD,
analyses (see Section 2.2.). Such microstructure was found reproducible via five replicate coatings.
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Figure 1. SEM micrographs of Pr6O11/GC ESD films obtained with a EtOH:BC (1:2) solution with a 
concentration of 0.02 M at Ts = 230 °C for a nozzle to substrate distance of dns = 20 mm, a flow rate of 
Q = 1.5 mL h−1, and a deposition time of t = 3 h. (A–C) surface view and (D) cross-section of amorphous 
(as-prepared) Pr6O11/GC; (E–G) surface view; (H) cross-section of crystalline (sintered at T = 550 °C 
for 2 h in air) Pr6O11/GC. 
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the droplets that impact the substrate, which depends on the solution properties (solvent density ρ , 
surface tension γ, boiling point b.p., and electrical conductivity K) and the deposition parameters 
(flow rate Q, substrate temperature T, nozzle-to-substrate distance dns, and deposition time t) as per 
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distance of dns = 20 mm, these droplets do not have time to evaporate, and instead spread on the 
heated substrate upon impact. Since the drying step is occurring simultaneously with the boiling 
step, mechanical stress is generated by drying and contraction of the film on the heated substrate. 
This drives the film to severe cracks and a “brain-like” type morphology could be observed (Figure 
1A,B,E,F). The average thickness of the amorphous (Figure 1D) and crystalline (Figure 1H) samples 
was found near similar at around 16 ± 2 µm. The mass of the samples was measured by simply 
weighing the RDE tips before and after deposition. The values obtained were close to the sensitivity 
of the scale used, so only estimates of the samples weight could be given: 0.7 ± 0.3 mg was obtained 
for both the amorphous and crystalline samples. These values led to an apparent density of the 
deposits of ca. 2.23 g cm−3, a value ca. three times smaller than the expected density of Pr6O11 (6.55 g 
cm−3), in agreement with the existence of macro-porosity in the thin-films (Figure 1A,B,E,F), with 
porosity on the smaller scale being monitored by TEM (see Section 2.2). The authors point out that an 
essential understanding of the brain-like type microstructure observed in Figure 1A–H would require 
more in-depth experimental and theoretical work, which is beyond the scope of the present 
contribution. The X-ray energy dispersive (X-EDS) spectra in Figure 2 confirmed the presence of Pr 
and O elements in both films, the amorphous one and the crystalline one, as expected. No noticeable 
differences in film composition were observed upon crystallization. 

Figure 1. SEM micrographs of Pr6O11/GC ESD films obtained with a EtOH:BC (1:2) solution with a
concentration of 0.02 M at Ts = 230 ◦C for a nozzle to substrate distance of dns = 20 mm, a flow rate of Q
= 1.5 mL h−1, and a deposition time of t = 3 h. (A–C) surface view and (D) cross-section of amorphous
(as-prepared) Pr6O11/GC; (E–G) surface view; (H) cross-section of crystalline (sintered at T = 550 ◦C
for 2 h in air) Pr6O11/GC.

With the ESD deposition technique, the microstructure of the film is controlled via the size of the
droplets that impact the substrate, which depends on the solution properties (solvent density ρ, surface
tension γ, boiling point b.p., and electrical conductivity K) and the deposition parameters (flow rate Q,
substrate temperature T, nozzle-to-substrate distance dns, and deposition time t) as per following the
Gañan-Calvo’s relationship (Equation (1)) [58]

ddroplet ∼
(
ε0ρQ3

γK

)1/6

(1)

where ddroplet is the droplet diameter, ε0 is the vacuum permeability and Q is the flow rate.
The physicochemical properties of the precursor solution also play a crucial role on evaporation

of the solvents during the transport and spreading of the droplets when they impact the substrate,
resulting in different microstructures [51,56,57]. In these ESD conditions, the boiling point of the
solution of precursors, around T = 200 ◦C, is close to the deposition temperature (i.e., that of the
substrate, Ts = 230 ◦C). Large droplets full of liquid are therefore expected, according to Equation (1),
especially when a high flow rate of Q = 1.5 mL h−1 is used. In addition, at a short nozzle-to-substrate
distance of dns = 20 mm, these droplets do not have time to evaporate, and instead spread on the
heated substrate upon impact. Since the drying step is occurring simultaneously with the boiling step,
mechanical stress is generated by drying and contraction of the film on the heated substrate. This drives
the film to severe cracks and a “brain-like” type morphology could be observed (Figure 1A,B,E,F).
The average thickness of the amorphous (Figure 1D) and crystalline (Figure 1H) samples was found
near similar at around 16 ± 2 µm. The mass of the samples was measured by simply weighing the
RDE tips before and after deposition. The values obtained were close to the sensitivity of the scale
used, so only estimates of the samples weight could be given: 0.7 ± 0.3 mg was obtained for both
the amorphous and crystalline samples. These values led to an apparent density of the deposits of
ca. 2.23 g cm−3, a value ca. three times smaller than the expected density of Pr6O11 (6.55 g cm−3),
in agreement with the existence of macro-porosity in the thin-films (Figure 1A,B,E,F), with porosity on
the smaller scale being monitored by TEM (see Section 2.2). The authors point out that an essential
understanding of the brain-like type microstructure observed in Figure 1A–H would require more
in-depth experimental and theoretical work, which is beyond the scope of the present contribution.
The X-ray energy dispersive (X-EDS) spectra in Figure 2 confirmed the presence of Pr and O elements
in both films, the amorphous one and the crystalline one, as expected. No noticeable differences in
film composition were observed upon crystallization.
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Figure 2. Typical X-EDS spectra of the Pr6O11/GC film deposited on the glassy-carbon substrate:
(A) amorphous; (B) crystalline, sintered for 2 h in air at T = 550 ◦C.

2.2. Structural Characterization

X-ray diffraction patterns of both the as-prepared film (amorphous) and the one sintered in air for
2 h at T = 550 ◦C (crystalline) are shown in Figure 3. As shown in Figure 3A, the as-prepared film was
indeed amorphous, whereas all diffraction peaks of the sintered one (Figure 3B) were indexed with the
fluorite cubic structure of Pr6O11 (JCPDS 00-042-1121) crystallizing in the Fm3m space group (N◦ 225),
and of the glassy-carbon support. No secondary phases were observed within the detection limits of
the powder XRD. The unit-cell parameter of the fluorite cubic structure Pr6O11 was a = 5.4678(0) Å.
The average crystallite size calculated by using Scherrer equation for (111), (200), (220) and (311)
diffraction peaks was about 16 nm for the films sintered at T = 550 ◦C.
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Figure 3. X-ray diffraction patterns of Pr6O11 ESD film deposited on vitreous carbon substrate:
(A) as-deposited (amorphous); (B) sintered for 2 h in air at T = 550 ◦C (crystalline).
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The microstructure was further investigated by TEM, high-resolution transmission electron
microscopy (HRTEM), and selected area electron diffraction (SAED) as shown in Figure 4. For this,
the powder was scratched from the brain-like type film sintered at T = 550 ◦C (crystalline).
The brain-like morphology of the crystalline Pr6O11 consists of numerous interconnected nanoparticles
of ca. 10–20 nm on average (Figure 4A), in agreement with the XRD data. The HRTEM image in
Figure 4B shows distinct lattice fringes which revealed the high crystallinity of the Pr6O11 coating.
In fact, the SAED pattern (Figure 4C) shows the diffraction rings for the (111), (200), (220), (311) and
(222) crystal planes of fluorite cubic structure of polycrystalline Pr6O11 phase, in agreement with the
XRD results.
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Figure 4. TEM, HRTEM, and SAED pattern of powder scratched from the brain-like type Pr6O11 ESD
film sintered in air for 2 h at T = 550 ◦C (crystalline Pr6O11): (A) TEM, (B) HRTEM, (C) SAED pattern.

2.3. Electrochemical Properties

2.3.1. Pr6O11 As-Prepared (Amorphous)

The behavior of the amorphous (as-prepared) Pr6O11/GC sample (no annealing for crystallization,
hereafter simply denoted amorphous Pr6O11) in supporting electrolyte and under inert atmosphere
is presented on Figure 5 together with the voltamperograms showing incursions to low (HER) and
high (OER) potential values. Obviously, the alkaline HER and OER activity of this sample was
minor versus the state-of-the-art for non-noble electrocatalysts in the literature [59–64]. For this
reason, focus on the ORR activity of the amorphous Pr6O11 electrocatalyst will be made hereafter
(Figure 6). The onset potential of the ORR is ca. Eonset = 0.835 V vs. RHE, in line with the performances
reached by Poux et al. [33,36,65] for similar types of ORR catalytic materials in absence of carbon
electron-conductive additives. However, the reaction kinetics was rather sluggish, and the limiting
plateau was ill-defined (Figure 6); the latter appeared at smaller current densities compared to the
study of Poux et al., which can be connected to the small loading of amorphous Pr6O11 electrocatalyst
immobilized at the RDE tip in the present case (ca. 700 µg, see above). To be more specific, the limiting
current densities monitored were far below (ca. a factor of 15) the ones expected if the ORR was
complete and involving 4 electrons per O2 molecule (in this case, the limiting current densities of ORR
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should be ca. 3.1, 4.6, 6.2, and 7.7 mA cm−2
geometric at RDE revolution rates of Ω = 400, 900, 1600,

and 2500 rpm, respectively, these values being calculated using the Levich equation (Equation (2)):

jlim = 0.62 n F D2/3 C v−1/6 Ω1/2 (2)

with n = 4, F = 96,500 C mol−1, D = 1.9 × 10−5 cm2 s−1 [66], C = 1.3 µmol cm−3 [66] and v = 10−2 cm2

s−1, for a 0.1 M NaOH solution at T = 25 ◦C).
This lower-than-expected limiting current density could be ascribed to an insufficient loading of

amorphous Pr6O11 (though the authors think it is not likely given the coverage of the glassy-carbon
disks being near-complete (see Figure 1)), but also to the fact that (i) the ORR predominantly proceeds
according to a 2-electron pathway generating HO2

− instead of OH−, or (ii) that the electronic
conductivity of the amorphous Pr6O11 layer was insufficient to enable its complete operation (in other
words, it is likely that not all the catalytic sites could operate owing to their “electrical disconnection”
from the GC current collector, the effect being emphasized here because no carbon black additive was
used). This will not be further investigated here, as the results of ORR on amorphous Pr6O11 were not
sufficiently convincing for an application in alkaline fuel cell cathodes.

Besides, the amorphous Pr6O11 did not show adequate tolerance to NaBH4 (Figure 7),
as non-negligible NaBH4 oxidation current was witnessed in nearly all ORR potential regions.
This result is disappointing, as non-noble metals (oxides) usually show remarkable tolerance to strong
reducers (fuels), e.g., rare-earth perovskites [67], monoatomic metal complexes [68–71], manganese
oxides [16,69,72,73], or cobalt oxides [74].

As a result, this material does not reach sufficient performances for application in practical alkaline
fuel cell systems. Therefore, the focus will be made on samples heat-treated at a sufficiently high
temperature to enable crystallization of the Pr6O11 phase.
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Figure 6. Oxygen reduction reaction voltamperogram in 0.1 M NaOH electrolyte of amorphous Pr6O11

(O2 atmosphere); T = 25 ± 2 ◦C, v = 5 mV s−1.
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Figure 7. Oxygen reduction reaction voltamperogram in 0.1 M NaOH + 0.01 M NaBH4 electrolyte of
amorphous Pr6O11 (O2 atmosphere); T = 25 ± 2 ◦C, v = 5 mV s−1.

2.3.2. Pr6O11 Sintered (Crystalline)

The behavior of Pr6O11 heat-treated for 2 h at T = 550 ◦C (sintering/annealing that enabled
crystallization of the Pr6O11 phase, see previous sections, herein denoted crystalline Pr6O11) in
supporting electrolyte and under an inert atmosphere is presented on Figure 8. As for the as-prepared
(amorphous) sample, the HER and OER activity were too small to render the material competitive
versus the present state-of-the-art, even though the performances were slightly better compared to the
amorphous sample. Therefore, the focus will be made on the ORR activity of the material.
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Figure 8. Voltamperogram in 0.1 M NaOH-supporting electrolyte of crystalline Pr6O11 annealed at
T = 550 ◦C (Ar atmosphere), with incursions in the HER and OER regions; T = 25 ± 2 ◦C, v = 20 mV s−1.

The ORR activity of the crystalline Pr6O11 sample was better than that of the as-prepared one
(Figure 9A), as clearly revealed when directly superposing the two sets of data on the same axes
(Figure 9B). While the onset potential value (Eonset = 0.835 V vs RHE, in the average for such
class of materials [46,75–81], although in these papers, the materials were tested with carbon as
electron-conductive additive) was barely changed compared to the amorphous sample, the limiting
current plateaus were better defined. However, they still do not match the expected values for a 4-electron
ORR, by a factor ca. 4, a behavior also noted by Poux et al. in the absence of electron-conductive additives
in their inks [33,36] and by Fabbri et al. [35]. These authors linked this surprising behavior to multiple
(positive) effects in the presence of carbon: (i) an enhanced electronic conductivity; (ii) a bifunctional effect
between carbon (that generates HO2

−) and the perovskite oxide (that converts it to OH−); and also (iii) a
ligand effect that positively modulates the electronic structure of the metal oxides. Whatever the positive
influence of crystallization noted here, one can nevertheless affirm that it is still not approaching the
activity of the best rare-earth oxide-based electrodes for alkaline ORR [33,36,65], and is even less than that
of a state-of-the-art Pt/C electrocatalyst (Figure 9C). In addition, as was for its amorphous counterpart,
the tolerance of the crystalline Pr6O11 to strong reducers was not evident, as NaBH4 oxidation currents
were monitored on the whole ORR potential range (Figure 10); this finding is in opposition to the results
of Yang et al. who used a LaNi0.8Co0.2O3 ORR electrocatalyst [67].
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These results were reproduced for at least two different electrodes in each case: they show that
crystallization of the Pr6O11 phase by 2 h annealing at T = 550 ◦C is beneficial to the ORR activity of the
sample. The so-obtained sample, nevertheless, did not approach the performances of state-of-the-art
rare-earth oxide-based ORR electrocatalysts reported in the literature [33,36,42,59,65,67], but performed
in full-absence of carbon additive to enhance the electronic conduction of the electrode. Although this
last property is clearly a step forward in the practical application of such materials in alkaline fuel
cell cathodes, more work is needed to obtain an electrocatalyst that approaches Pt-group metal-based
ORR electrocatalysts. One possibility would be that the present deposits were too thick to fully benefit
from the high electronic conductivity of the glassy-carbon substrate and the outer surface of the Pr6O11

sample; this shall be tested in the future for thinner (but well-covering) films at the GC substrate.
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Figure 9. (A) Oxygen reduction reaction voltamperogram in 0.1 M NaOH electrolyte of crystalline
Pr6O11 annealed at T = 550 ◦C (O2 atmosphere), (B) comparison with amorphous Pr6O11 (not-annealed,
data set in dashed lines), and (C) comparison of amorphous and crystalline Pr6O11 with a
state-of-the-art Pt/C electrocatalyst at Ω = 900 rpm; T = 25 ± 2 ◦C, v = 5 mV s−1.
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Figure 10. Oxygen reduction reaction voltamperogram in 0.1 M NaOH + 0.01 M NaBH4 electrolyte of
crystalline Pr6O11 annealed at T = 550 ◦C (O2 atmosphere); T = 25 ± 2 ◦C, v = 5 mV s−1.
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3. Materials and Methods

3.1. Pr6O11 Film Preparation

Pr6O11 films have been deposited on glassy-carbon substrates (0.5 mm in diameter,
Sgeometric = 0.196 cm2) by Electrostatic Spray Deposition (ESD), a technique based on the principle of
electrostatic atomization [51,53–57,82–86]. The ESD technique is basically a simple three-step process,
as described hereafter. The first step consists of the creation of an aerosol from the precursor solution at
the needle tip by applying a high dc voltage between the tip and the substrate. The second step is the
transportation of the aerosol from the needle to the surface of the substrate in the electric field. The third
and last step is the formation of the coating from the impact of the droplets on the heated substrate.
The last two steps play a major role in the microstructure of the coating since the droplet size has to be
well-controlled versus the ESD process parameters. For this, a praseodymium nitrate hexahydrate
(Pr(NO3)3·6H2O, 99.9%, Aldrich) based precursor solution of 0.02 M concentration was prepared in a
mixture of ethanol (EtOH, CH3CH2OH, >99.9%, VWR Chemicals, referred as EtOH) and butyl carbitol
(diethylene glycol monobutyl ether CH3(CH2)3(OC2H4)2OH, Acros Organics, 99+%, referred to as BC)
at an EtOH:BC ratio of 1:2, under vigorous stirring. In this contribution, deposition has been carried
out at a nozzle-to-substrate distance (dns), flow rate (Q), substrate temperature (Ts), and deposition
time (t) of, 20 mm, 1.5 mL h−1, 230 ◦C and 3 h, respectively. During the ESD, the voltage was fixed to
approximately 5–7 kV. The as-prepared films (noted Pr6O11/GC) were found to be amorphous and
a subsequent sintering at T = 550 ◦C in air for 2 h led to the crystallization of the films. The area of
the deposited Pr6O11 was 0.196 cm2, corresponding to a full-coverage of the glassy-carbon tip of the
rotating disk electrode (RDE). It is worth adding that the Pr6O11/GC films prepared herein did not
contain electron-conductive additives (e.g., carbon black), which is often encountered in the literature
and known to modulate the apparent activity of such rare-earth-based samples [32–36].

3.2. Microstructural and Electrochemical Characterization

X-ray diffraction (XRD, Philips X’Pert-MPD system, Cu Kα radiation, λ = 1.54056 Å) in the
Bragg–Brentano configuration was used to determine the crystal structure and purity of the prepared
films. Phase identification was carried out using the International Centre for Diffraction Data (ICDD),
the lattice parameters being determined from the refined X-ray pattern by profile matching using
the Fullprof software [87]. The surface-morphology of each film was analyzed by scanning electron
microscopy (ZEISS Ultra 55 instrument, Jena, Germany) with a field emission gun (FEG) and X-ray
energy-dispersive spectroscopy (XEDS) for composition analysis. High-resolution transmission
electron microscopy (HRTEM) and selective area electron diffraction (SAED) were also performed on a
JEOL 2010 (JEOL, Tokyo, Japan) equipped with a LaB6 filament to evaluate the particle size and crystal
structure. For the TEM analysis, the samples were prepared by scratching the surface of amorphous or
crystalline Pr6O11 using the diamond tip, and immobilizing the scratched Pr6O11 on a copper (Cu)
holey carbon grid.

Electrochemical measurements of the activity of both amorphous and crystalline Pr6O11 electrodes
were performed towards usual reactions of electrocatalysis (namely the hydrogen evolution reaction
(HER), oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR), the latter one
performed in absence or presence of a strong reducer in solution (NaBH4) for potential application
in direct borohydride fuel cell cathodes [16,72,88–90]). They were performed in a Pyrex®-based
four-electrode cell, with glassy-carbon as the counter electrode (to avoid any possible contamination
of the working electrode (WE) with the dissolution of the, usually Pt-based, counter electrode [91],
a very likely occurrence in base electrolytes [92–95]), Pt as the auxiliary electrode, a hydrogen reference
electrode (all the potential values are expressed on the RHE scale hereafter) and Pr6O11/GC (either bare
(amorphous) or heat-treated (crystalline)) as the WE. The cell is equipped with an internal PTFE beaker
to limit contamination by the possible dissolution of the Pyrex in strong base [96]. The potentiostat
used was a multichannel VMP3 from Bio-Logic® piloted by the EC-lab software. In any case, the cell
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and glassware were soaked in Caro’s acid overnight and thoroughly rinsed using ultrapure water
(18.2 MΩ cm, <3 ppb total organic carbon, Millipore®, Billerica, MA, USA) prior to each measurement.
All the electrochemical experiments were performed using a dynamic correction of the Ohmic-drop,
the high-frequency resistance being measured prior to each experiment at 10,000 Hz and automatically
corrected at 85%.

An aqueous solution of 0.1 M NaOH at T = 25 ± 2 ◦C for ORR, OER, and HER study, and aqueous
solution of 0.1 M NaOH + 10−2 M NaBH4 aqueous solution (T = 25 ± 2 ◦C) for borohydride oxidation
reaction (BOR) and ORR in the presence of BH4

− for tolerance study, have been used. The aqueous
solutions were saturated by bubbling Ar or O2 in solution (4N purity, Messer, Bad Soden, Germany),
depending on the test. All the salts used to prepare the electrolytes were purchased in Suprapur®

quality (Merck, Darmstadt, Germany) and used without further purification. The electrolytes were
prepared using ultrapure water.

4. Conclusions

In this work, we have successfully prepared brain-like type hierarchical nanostructured Pr6O11

by electrostatic spray deposition (ESD) on glassy-carbon tips of rotating disk electrodes (RDE).
These materials have been tested in liquid alkaline electrolyte (0.1 M NaOH) in view of their potential
application in alkaline electrolyzers or alkaline fuel cells. The as-prepared Pr6O11 film is amorphous
and shows minimal HER, OER, and ORR activities in 0.1 M NaOH electrolyte. The amorphous nature
of the film disappears upon 2 h sintering in air at T = 550 ◦C, leading to crystalline Fm3m fluorite
cubic structure. In that case, the brain-like type microstructure consists of agglomerated crystalline
nanoparticles, with sizes in the range of ca. 10–20 nm on average. The crystalline Pr6O11 exhibits better
ORR activity than its amorphous counterpart but still fails to direct the reaction towards a complete
4-electron pathway and to reach the activity of the best non-PGM electrocatalysts reported in the
literature (and even less than that of PGM-based electrocatalysts). In addition, the material does not
exhibit significant HER and OER activities and does not seem tolerant to BH4

− fuel. Nevertheless,
the significant ORR performances reached were obtained in the absence of any electron-conductive
additive, which grants the material some interest for potential use in alkaline fuel cell cathodes and
leaves hope for improvements in activity if the electronic conductivity of the oxide layer is improved
and/or if its thickness is decreased.
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