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Abstract: Theoretical investigation of the static and kinetic behaviors of H and H2 on metal
surface plays a key role in the development of hydrogenation catalysts and new materials with
high H2 storage capacity. Based on the density functional theory (DFT) calculation of H and H2

adsorption on Pt(111), H(a) adatom strongly interacts with surface Pt; while H2 weakly adsorbs on
Pt(111). H(a) adatoms stably occupy the face-centered cubic sites on Pt(111) which agrees with the
experimental LERS observations. By using kinetic Monte Carlo (kMC) simulation, the qualitative
effects of the kinetic parameters on the H2 TDS spectra indicate that the H2 desorption peaks
shift to the low temperature with increasing pre-exponential factor and decreasing desorption
barrier. Simultaneously, the desorption peaks shift downwards and broaden to two peaks with the
increase of the lateral interaction energy among H(a) adatoms. Using the kMC simulation based
on DFT calculation, the predicted H2 TDS spectra are well consistent with the experimental ones.
It unanimously proves that the two peaks of TDS spectra are derived from the lateral interactions
among H(a). This work provides the intrinsic kinetics of H(a) and H2 on Pt(111) at an atomic level,
and gives insight into the development of hydrogenation catalysts.
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1. Introduction

The adsorption and reaction behaviors of H and H2 on metals are of great significance due to the
wide application of hydrogenation reactions in heterogeneous catalysis [1–7]. It also provides basic
information for the development of new materials with high H2 storage capacity [8–11]. As a typical
modeling system, the interactions between hydrogen and Pt(111) have attracted much interest and
have been widely studied in experiment and theory [12–20].

Using high-resolution electron energy loss spectroscopy (HREELS), low-energy electron
diffraction (LEED) and thermal desorption spectra (TDS), some consensus issues have been reached.
H2 dissociatively adsorbs on Pt(111) at low temperature; the maximum coverage of hydrogen
(θH) is up to one monolayer (ML) below 100 K [21]; θH gradually decreases with the increase of
temperature [22,23]; H adsorbs at the face-centered cubic (fcc) site verified by using low-energy
recoil scattering (LERS) spectra [24,25]; diffusion activation energy of H on Pt(111) is much lower
than that of H2 desorption. These experimental conclusions were also supported by the related
theoretical works [17–21,26–28]. Gudmundsdóttir et al. [17] investigated the H adsorption behaviors
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on Pt(110)-(1×2) by DFT calculations and found that the binding energy and activation energy for
desorption are strongly dependent on hydrogen coverage. Thermodynamic description of hydrogen
electroadsorption on Pt(111) was calculated by Hanh et al. [18] using first principles. Combining with a
Monte Carlo simulation, the predicted cyclic voltammetry data is consistent with the experimental one.
Hydrogen adsorption on Pt(100), (110) and (111) at high coverage was reported by Shi et al. [19] using
thermodynamics based on DFT calculations. Their results indicated that hydrogen adsorption might
modify the morphology of Pt catalysts. Karlberg et al. [20] proposed a cyclic voltammogram for H on
Pt(111) and (100) from first principles. Combining experimental study of the H-D exchange reaction and
first principles calculations, Xu [21] found that the repulsive interactions between H(a) increase with
H(a) coverage, which leads to a reduction in both the adsorption energy and the desorption activation
energy. Olsen et al. [26] found that a DFT/GGA approach with scalar relativistic effects is capable
of describing the interaction between H(a) and Pt(111). The theoretical results by Watson et al. [27]
indicated that H(a) diffusion barrier on Pt(111) is considerably smaller than that on Ni(111) and Pd(111)
surfaces. By using the extended Hückel molecular orbital theory, Papoian [28] also found that H(a)
moves freely on Pt(111).

Despite of the extensively studies of H/Pt(111) system, there are still some issues in debate.
Christmann et al. [23] and Xu et al. [21] both reported that two H2 desorption peaks at the low and high
temperatures were observed in the TDS spectra on Pt(111). Since there is only one stable configuration
for H adsorbed at the fcc sites on Pt(111) which has been proved by both experimental and theoretical
results, what is the main reason leading to the two peaks? Which factors do determine the peak
position and area of H2 TDS spectra? Are the factors of H2 desorption barrier (Ea), collision frequency
among H(a) (pre-exponential factor, v), or the lateral interaction energy among H(a) on Pt(111) (Eint),
etc.? What are the qualitative and quantitative effects for Ea, v and Eint on the H2 TDS spectra? These
important questions have still not been reported in the literature.

With the rapid development of multi-discipline cooperation in the study of the chemical
reaction mechanism, kinetic Monte Carlo (kMC) simulation based on density functional theory (DFT)
calculation has been applied in exploring the catalytic reaction mechanism [10,29–31]. The reaction
thermodynamics and the potential energy surfaces of the possible reaction pathways on the modeling
catalysts can be calculated by DFT theory [32–36]; while the kinetic reaction information on the
specified surface can be obtained by the kMC simulation [30,37–41]. Hence, kMC simulation based on
DFT calculation might provide the important information for the rational design of catalysts [42,43].

In this work, using DFT calculation, the adsorption, diffusion and desorption behaviors of
H(a) and H2 on Pt(111), as well as their electronic interactions are obtained. Then, the effects of H2

desorption barrier, collision frequency and the lateral interactions among H(a) on the H2 TDS spectra,
are systematically investigated by kMC simulation. Finally, we combine the DFT calculation and
kMC simulation to explore the intrinsic kinetics of the H2 TDS spectra on Pt(111). This work provides
important information regarding the interactions between H and metal materials, and sheds insight
into the development of hydrogen storage material and hydrogenation catalysts.

2. Results and Discussion

2.1. DFT Study of H2 and H on Pt(111)

We systematically investigated the adsorption behaviors of H and H2 on Pt(111) by density
functional theory calculation. The optimized structures are shown in Figure 1 and the corresponding
parameters are listed in Table 1. It can be learned from Table 1 that the adsorption energy of H(a) at the
top site of surface Pt is−8.35 kcal/mol with the Pt-H bond length of 1.572 Å. The adsorption energies of
H(a) at the fcc and hcp sites are −8.86 kcal/mol and −7.47 kcal/mol, respectively. The corresponding
bond lengths of Pt-H are 1.866~1.879 Å. These results are well consistent with those reported by
Graeme et al. [27] and Källén et al. [44].
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Figure 1. Structures of H(a) and H2 on Pt(111). The dark blue and white balls represent Pt and H atoms.

Table 1. Parameters of H(a) and H2 on Pt(111).

Eads/kcal/mol ZPVE Corrected Eads/kcal/mol dPt-H/Å dH-H/Å
Bader Charge/e

H Pt

H-fcc −8.86 −9.12
1.874

−0.100
−0.027

1.872 0.059
1.875 −0.019

H-hcp −7.47 −7.89
1.879

−0.057
−0.062

1.866 0.036
1.878 −0.004

H-top −8.35 −7.35 1.572 −0.035 0.029

H2-fcc −0.09 0.13
3.789

0.7483.712 0.025
3.536 −0.032

Since the adsorption energy difference between H-top and H-fcc configurations on Pt(111) is
just 0.51 kal/mol, the zero-point vibrational energies (ZPVE) are further calculated to determine
which one is the most stable structure. The adsorption energies at the top and fcc sites are −7.35 and
−9.12 kcal/mol, respectively. Therefore, H(a) at the fcc sites is the most stable configurations for H(a)
on Pt(111), which is well consistent with the experimental results [24,25]. However, the adsorption
energy of H2 on Pt(111) with and without the ZPVE energy is 0.13 and −0.09 kcal/mol, respectively.
The H-H bond length is 0.748 Å, which is almost the same as that of free H2 molecule. Meanwhile, the
distances of Pt-H are larger than 3.5 Å. This indicates the very weak interaction between H2 and Pt
surface. This will be further proved by the following analysis of the electronic properties of H(a) and
H2 on Pt(111).

To explore the electronic interactions of H(a) and H2 with Pt(111), charge density differences
(CDD) are calculated and shown in Figure 2. It is defined as: ∆ρ = ρadsorbate/slab − ρslab − ρadsorbate,
where ρadsorbate/slab is the charge density for the adsorbed system; ρslab and ρadsorbate are the charge
densities for the non-interacting slab substrate and adsorbate, respectively. The yellow and grey–blue
parts represent the accumulation and depletion electrons, respectively.
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3.

As shown in Figure 2, H(a) atom gains electrons from the d orbital of surface Pt atoms; meanwhile
the strong Pt-H bonds form due to the electron share between Pt and H(a). However, the electron
transfer between H2 and Pt(111) is almost negligible, which is consistent with the very weak interactions
with the adsorption energy of −0.09 kcal/mol. This conclusion is also in agreement with the result of
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Bader charge as listed in Table 1. That is, H(a) gains electrons with negative charge; Pt loses electrons
with partially positive charge.

As shown in the partial density of states (PDOS) of H(a) in Figure 3a, the s peaks of H(a) broaden
and shift to −8~−6 eV for H-fcc and H-hcp configurations and −6~−4 eV for H-top in comparison
with the free radical H atom. Meanwhile, there are the corresponding electronic peaks of Pt at the
same energy position, as shown in the green peaks of Figure 3b. This indicates the strong interactions
between H(a) and Pt(111). However, the PDOS peak shape of H2 on Pt(111) remains unchanged, and
the corresponding peaks of Pt are almost the same as those of the non-interacting substrate. Therefore,
the very weak interactions between H2 and Pt(111) occur.
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Figure 3. Partial density of states of adsorbates (a) and Pt atom near adsorbates (b). The vertical dot 
line indicates the adjusted Fermi level at 0 eV. 
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2.2. kMC Simulation of H2 TDS on Pt(111)

Before the kMC simulation of H2 TDS on Pt(111) based on DFT calculation is performed, it is
necessary to give a qualitative analysis of the effects of the main kinetic parameters on H2 TDS on
PT(111). This is very important for exploring the key parameters in kMC simulation.

A surface of 128 × 128 Pt atoms is adopted with the different H(a) coverages, in which H(a) atoms
are randomly populated on Pt(111). The pre-covered H(a) models with different coverages mimic the
experimental ones, in which different doses of gas atomic hydrogen are exposed to Pt(111) [21]. The
samples with different H(a) coverages are heated from 100 K to 600 K with a heating rate of 10 K/s,
which also agrees with the ultrahigh vacuum experimental conditions [21]. The H2 TDS spectra include
the following processes.

(1) H adatom diffusion: H(*) + *→ * + H(*)
(2) H2 desorption: 2H(*)→ H2(g) + 2*
(3) H2 dissociation: H2(g) + 2*→ 2H(*)

The asterisk * with and without species denotes an adsorbed species and empty surface site,
respectively. Since the Leybold stainless-steel UHV chamber is continuously vacuuming with the total
pressure of about 10−8 Pa [21], the desorbed H2 molecules will be quickly pumped out of the UHV
chamber. Therefore, the dissociation of H2 is not involved in the kMC simulation.
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To explore the intrinsic kinetics of H2 TDS spectra on Pt(111), we investigate the effects of the
different kinetic parameters on the spectra, as shown in Figures 4–6.

2.2.1. Effects of the Pre-Exponential Factor of H2 Desorption

As shown in Figure 4, one symmetric desorption peak is observed in the H2 TDS spectra at
the low (0.12 ML), medium (0.6 ML) and high (1.0 ML) coverages, respectively. The peaks shift to
the low temperature with the increase of pre-exponential factor (v). Since the pre-exponential factor
represents the collision frequency of reactants upon reaction, the higher v leads to the more possibility
of H(a) desorption at the same temperature. Therefore, the peak of H2 TDS shifts downwards with the
pre-exponential factor. Meanwhile, the peaks become higher and narrower than those of v = 1012 s−1.
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2.2.2. Effects of the Desorption Barrier of H2 Desorption

Similar results are observed for the H2 TDS spectra on Pt(111) with the decrease of activation
energy for H(a) desorption (Ea). That is, only one desorption peak is observed in Figure 5, and it
shifts downwards with the decrease of Ea. Because the H(a) desorption rates increase with the low
desorption barrier at the same temperature, the peak of H2 TDS spectra shifts downwards with the
decrease of Ea. Similarly, the corresponding desorption peaks also become higher and narrower than
those of Ea = 24 kcal/mol.



Catalysts 2018, 8, 450 6 of 14Catalysts 2018, 8, x FOR PEER REVIEW  6 of 13 

 

0.05

0.10

0.15

0.05

0.10

0.15

200 300 400 500
0.00

0.05

0.10

0.15
(c) 0.12 ML

(b) 0.6 ML

(a) 1.0 ML

 

 

D
es

or
pt

io
n 

ra
te

s

 

 Ea=18 kcal/mol
 Ea=20 kcal/mol
 Ea=22 kcal/mol
 Ea=24 kcal/mol

 

Temperature / K  
Figure 5. Effects of the H(a) desorption barrier on the H2 TDS spectra. v = 1013 s−1, Eint = 0 kcal/mol. 

2.2.3. Effects of the Lateral Interactions among H(a) 

To systematically investigate the effects of the lateral interactions among the nearest-neighbor 
H(a) on the H2 desorption behaviors, the H2 TDS spectra on Pt(111) with the different lateral 
interaction energies at the low, medium and high coverages are simulated and shown in Figure 6.  

0.05

0.10

0.15

0.05

0.10

0.15

100 200 300 400 500
0.00

0.05

0.10

0.15
(c) 0.12 ML

(b) 0.6 ML

(a) 1.0 ML

 

 

D
es

or
pt

io
n 

ra
te

s

 

 Eint=0.0 kcal/mol
 Eint=0.2 kcal/mol
 Eint=0.4 kcal/mol
 Eint=0.6 kcal/mol

 

Temperature / K  
Figure 6. Effects of the lateral interactions among H(a) on the H2 TDS spectra. v = 1013 s−1, Ea = 22 kcal/mol. 

At the low coverage (0.12 ML), the H2 desorption peaks at 390 K almost remain unchanged 
with increasing the lateral interaction energy (Eint). This might be attributed to the large distance 
among H(a) species at the low coverage, which leads to the invalid lateral interaction effects on the 

Figure 5. Effects of the H(a) desorption barrier on the H2 TDS spectra. v = 1013 s−1, Eint = 0 kcal/mol.

2.2.3. Effects of the Lateral Interactions among H(a)

To systematically investigate the effects of the lateral interactions among the nearest-neighbor H(a)
on the H2 desorption behaviors, the H2 TDS spectra on Pt(111) with the different lateral interaction
energies at the low, medium and high coverages are simulated and shown in Figure 6.
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At the low coverage (0.12 ML), the H2 desorption peaks at 390 K almost remain unchanged with
increasing the lateral interaction energy (Eint). This might be attributed to the large distance among
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H(a) species at the low coverage, which leads to the invalid lateral interaction effects on the TDS
spectra. If the H(a) coverage increases to 0.6 ML, the main desorption peaks shift to 350, 320 and 290 K
corresponding to the Eint of 0.2, 0.4 and 0.6 kcal/mol, respectively. Meanwhile, two peaks appear
when Eint is larger than 0.2 kcal/mol. When the coverage is up to 1.0 ML, the highest desorption peaks
shift to 330, 290 and 260 K with Eint, respectively. This is attributed to the strong effects of the lateral
interactions, which leads to the decrease of the desorption barrier of H(a) species.

2.3. kMC Simulation of H2 TDS on Pt(111) Based on DFT Calculation

2.3.1. Parameters Calculated by DFT Method

According to the qualitative analysis of the effects of main kinetic parameters on H2 TDS spectra,
it indicates that the activation energies of H2 desorption, pre-exponential factors and the lateral
interaction energy of H(a) play the important roles in the kMC simulation of H2 TDS on Pt(111). Hence,
the key parameters should be calculated by the DFT method before the kMC simulation based on
first principles.

The predicted barriers of H2 desorption and H(a) diffusion on Pt(111) are shown in Figure 7. It
can be drawn from Figure 7 that the desorption barrier of H2 on Pt(111) is 21.29 kcal/mol. For the
transition state structure, two H(a) atoms move to the top site of surface Pt atom with the Pt-H bond
lengths of 1.691 and 1.754 Å, respectively. The distance between the two H(a) is 0.967 Å. If they are
further close to each other, H2 forms and desorbs from Pt(111) surface. The image frequency of TS
structure is 377 cm−1, which its vibration direction points to the dissociated H(a) and H2, respectively.
The diffusion barrier of H(a) at the fcc site to hcp site is 1.71 kcal/mol via a bridge site with the H-Pt
bond lengths of 1.832 Å.
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Based on the harmonic transition-state theory, the pre-exponential factors (νi) of each reaction

step are calculated using the following equation: vi =
∏3N

1 f IS
i

∏3N−1
1 f TS

i
, where f IS

i is the vibrational frequency

at the initial state, and f TS
i is the vibrational frequency at the transition state (excluding the imaginary

one). For the reverse pathway, the vibrational frequencies at the final state ( f FS
i ) are used. Frequencies

used to calculate the pre-exponential factors are listed in Tables S2–S4 of the supplementary materials.
It is reported that the lateral interactions among H(a) are mainly derived from the short-range

pair interaction by the nearest neighbor (NN) adsorbates through surface, and the interactions among
the next nearest neighbor (NNN) H(a) adatoms are generally negligible [21,45]. Therefore, the
lateral interactions among the NN H(a) are calculated by DFT theory in this work. Since the lateral
interactions among H(a) atoms are relatively weak, four models shown in Figure 8 are designed
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to obtain the accurate value. The lateral interaction energy is calculated by the following equation:
Eint =

1
m

(
1
n EnHads − E1Hads

)
, where n is the number of H(a); m is the number of pairwise interactions

per H(a) atom. The corresponding parameters are listed in Table 2.
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Table 2. Parameters of lateral interaction energy among H(a) adatoms.

Eads/kcal/mol Eav/kcal/mol Eint/kcal/mol m

1H-fcc −8.86 −8.86 - 0
2H-fcc −16.93 −8.46 0.39 1
3H-fcc −24.49 −8.16 0.35 2
4H-fcc −31.41 −7.86 0.40 2.5
9H-fcc −61.55 −6.85 0.34 6

Note: m is the number of pairwise interactions per H(a) atom.

It can be learned from Table 2 that the average adsorption energies of H(a) decrease with coverage,
which is derived from the lateral interactions among H(a). The number of pairwise interactions per
H(a) atom for the nH-fcc (n = 2, 3, 4 and 9) on Pt(111) are 1, 2, 2.5 and 6, which corresponds to the
lateral interaction energies are 0.39, 0.35, 0.40, 0.35 kcal/mol, respectively. Therefore, the average value
of 0.37 kcal/mol is adopted in the following kMC simulation based on DFT calculation.

2.3.2. kMC Simulation Based on DFT Calculation

For the kMC simulation based on DFT calculation, all the parameters should be used by the
theoretical predictions. However, the diffusion barrier of H(a) on Pt(111) is just 1.71 kcal/mol,
indicating that most of computer time will be consumed in the calculation of rate constant by using the
Arrhenius equation due to the very low diffusion barrier. To improve the efficiency of kMC simulation,
the effects of H(a) diffusion rates are tested and shown in Figure S1 in the supplementary material.
Based on the tests, the diffusion rate constant has no effects on the kMC simulation results if it is larger
than 10 s−1. In this work, the rate constant of 1000 s−1 is adopted.

The H2 TDS spectra calculated by the kMC simulation based on DFT method at different coverages
are shown in Figure 9. It can be learned from Figure 9 that the desorption peak at 0.05 ML is at 345 K,
which is well consistent with the experimental value of 343 K [21]. It shifts to the low temperature
with the increase of H(a) coverage. When the coverage is larger than 0.6 ML, two peaks are observed.
Furthermore, the desorption peak at the low temperature shifts to 250 K when the coverage is up to
1.0 ML. This is also consistent with the experimental peak temperature at 235 K in TDS spectra [21].
The H2 TDS spectra derived from the kMC simulation based on DFT method unanimously prove that
the two desorption peaks are derived from the lateral interactions among H(a) species. The simulation
results are well consistent with those in experiment, indicating the method of kMC based on DFT
calculation is feasible and reliable.
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3. Model and Method

3.1. DFT Calculation Details

Spin-polarization calculations were performed using Vienna ab initio simulation package (VASP)
code based on a first-principles density functional theory [46,47]. The electron exchange and correlation
were treated within the generalized gradient approximation (GGA) of the revised Perdew Burke
Ernzerhof (RPBE) functional [48]. The Kohn–Sham one-electron wave functions were expanded in a
planewave basis with a cutoff energy of 400 eV. The Brillouin-zone integration was approximated by a
sum over special k-points using the Monkhorst-Pack (MP) [49] grids and Methfessel–Paxton smearing
method with a sigma value of 0.1 eV. The electrons in Pt 6s, 5d and H 1s orbitals were treated as valence
electrons. The ionic cores were represented by the projector augmented wave (PAW) potentials [50].
The Kohn–Sham equations were solved self-consistently. The self-consistent field tolerance for the
energy calculation was set as 1.0 × 10−4 eV; the maximum Hellmann–Feynman force tolerance for the
structure optimization was set as 0.02 eV/Å.

The calculated bulk lattice constant (3.997 Å) of Pt(111) with a MP grid of 13 × 13 × 13 agrees
well with the experimental value (3.924 Å) and the values reported in the literature [27,28]. A Pt(111)
slab model with five layers was chosen for the theoretical calculations. The two bottom layers were
fixed during geometric optimization. The vacuum space was set as 12 Å along the (111) direction to
minimize the interaction between slab surfaces. The p(3×3) (R = 60◦) lateral cell was involved in the
present work with the k-points grid of 3 × 3 × 1. By testing the convergence of k-points, cutoff energy
and size of Pt(111) slab, these settings ensure the required precision.

The total adsorption energy of nH(a) on Pt(111) was defined as Eads=EnH/slab − (Eslab + 0.5nEH2),
in which E(nH/slab), E(slab), and E(H2) represent the total energies of a slab model with adsorbed
hydrogen atoms, the slab, and free hydrogen molecule, respectively. The average adsorption energy
per H(a) on Pt(111) was calculated by Eav = Eads/n. The adsorption energy of H2 was defined as Eads
= EH2/slab − (Eslab + EH2). The vibrational properties were calculated on the basis of the harmonic
vibration of the adsorbed H(a) and H2(a) on Pt(111). The zero-point vibrational energy (ZPVE) is

calculated by the equation of EZPVE = 1
2

n
∑

i=1
fi, where fi is the energy of ith vibrational mode, and its

unit should be converted from cm−1 to kcal/mol or eV. The frequencies used in ZPVE corrections
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were listed in Table S1. Transition states (TS) of H(a) desorption and diffusion were calculated with the
climbing image nudged elastic band (CINEB) method [51]. The activation barrier was defined as the
total energy difference between the transition state and the corresponding stable structures of reactants
or products.

Since it was reported that the van der Waals interactions between adsorbates and surfaces
do influence the adsorption and reaction behaviors of reactants and intermediates [52,53], we also
compared the adsorption energies of H(a) and H2 on Pt(111), as well as the barriers of H(a) diffusion
and H2 desorption using DFT and DFT-D methods with RPBE and PBE functionals, as listed in Table
S5. The theoretical results by the two methods with PBE functional are almost the same. This might
be due to two facts. One is that the volume of hydrogen atom is very small, which leads to the
negligible interactions between nH-fcc through space. The other is that the lateral interactions of
nH-fcc are mainly derived from the repulsive ring among H(a) through Pt(111) surface, which the
corresponding electronic repulsive interactions can be well calculated by DFT method. Therefore, the
results calculated by DFT method are reliable.

3.2. kMC Simulation

The kMC simulation was carried out on a periodic p(128×128) (R = 60◦) superlattice of Pt(111)
surface, which represents the single crystal surface of Pt(111) in the ultrahigh vacuum chamber.
According to the experimental results, H atoms only adsorb at the face-centered cubic (fcc) site of
Pt(111); while H2 very weakly physisorbs on Pt(111). Hence, the initial model of H(a) on Pt(111)
with a designated coverage was produced by H random distribution at the fcc sites on Pt(111).
The temperature-programmed desorption rate of H at Pt(111) was set as 10 K/s. The rate constants
of the elementary surface step follow the Arrhenius equation: rD = vexp(−Ea/kT), where v is the
pre-exponential factor; T is the temperature, and Ea is the activation barrier for the elementary
processes [40,54]. The quantitative effects of the lateral interactions on the H2 desorption barrier is
described by the effective activation energy defined as: Eeff = Ea − ∑xEint, where Ea is the activation
energy of H(a) desorption at zero coverage; x is the number of nearest-neighbor H(a); Eint is the
lateral interaction energy [31]. According to the definition, the effects of the lateral interactions on the
transition state originate from an interpolation between the initial and final states due to the repulsion
among the nearest neighbor H(a). The probability of a process to be chosen and implemented is
directly proportional to the rate calculated by the master equation: [40] dPα

dt = ∑
β
(kαβPβ − kβαPα), in

which α and β are the adsorbates at the different sites; Pα and Pβ are their probabilities of forming
α and β; kαβ is the rate constant of α transforming into β. The master equation was solved by the
discrete event simulation algorithm. There are many kMC simulation programs, such as CARLOS [55],
Multi-scale KMC [56] and kmos [57], etc. The program herein was written in C language [58]. The first
reaction method with the time-dependent rate constants was adopted in the work. A tentative time
was calculated for every possible process [42]. Consequently, the numbers of steps of the temperature
programmed desorption simulation could be obtained.

4. Conclusions

According to the DFT calculation of H and H2 adsorption on Pt(111), H(a) at the fcc site is the most
stable structure. Strong interactions between H(a) and surface Pt occur; while H2 weakly physisorbs
on Pt(111). According to the qualitative effects of the kinetic parameters on the H2 TDS spectra, it is
found that the desorption peaks shift to the low temperature with increasing v and decreasing Ea of
H2 desorption. Simultaneously, the desorption peaks become higher and narrower. With the increase
of Eint, the desorption peaks shift downwards and broaden to two peaks. By the kMC simulation
based on DFT method, the predicted H2 TDS spectra are well consistent with the experimental ones.
This work provides the intrinsic kinetics of H(a) and H2 on Pt(111) at the atomic level, and gives insight
into the development of hydrogen storage material and hydrogenation catalysts.
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