## Trimetallic Ni-based catalysts over gadolinia-doped ceria for green fuel production

P. Frontera<sup>a,\*</sup>, A. Macario<sup>b,</sup> A. Malara<sup>a</sup>, S. Santangelo<sup>a</sup>, C. Triolo<sup>c</sup>, F. Crea<sup>d</sup>, P.L. Antonucci<sup>a</sup>

<sup>a</sup> Civil, Energy, Environment and Material Engineering Dept. (DICEAM), Mediterranean University of Reggio Calabria, Reggio Calabria, Italy.

<sup>b</sup> Environmental and Chemical Engineering Dept., University of Calabria, Cosenza, Italy.

<sup>c</sup> Mathematical and Computational Sciences, Physics Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy

<sup>d</sup> Mechanical, Energy and Management Engineering Dept., University of Calabria, Cosenza, Italy. \* corresponding author, email: <u>patrizia.frontera@unirc.it</u>, <u>macario@unical.it</u>



**Figure S1.** SEM-EDX images of NiMoCo/GDC catalyst surface (representative sample) – (a) after impregnation; (b) after calcination.



Map: Cobalt (resolution 32X32 pixels) Map: Molybdenum (resolution 32X32 pixels) Combined map

**Figure S2.** Elements mapping of NiMoCo/GDC catalyst surface after activation (representative sample).



**Figure S3.** Selectivity to syngas ( $H_2$  + CO) of different catalysts, at 600°C and 800°C, after 10 hours, 120,000 h<sup>-1</sup> space velocity.



**Figure S4.** Thermal profiles, TG (black line) DSC (dotted line), of NiMoCu/GDC catalyst after ATR of ethanol at  $T=600^{\circ}$ C, as representative sample.



**Figure S5.** XRD spectrum of NiMoRe/GDC spent catalyst after 10 hours of ATR at T=600°C, without H<sub>2</sub>S in the feed (representative sample).



**Figure S6.** Correlation between the average intensity of the  $Csp^2$  related Raman bands and the relative amount of deposited carbon, as assessed by thermo-gravimetric analysis.