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Abstract: The effect of the presence of residual sodium (0.4 %wt) over a Co3O4 bulk catalyst for
methane combustion was studied. Two samples, with and without residual sodium, were synthesized
by precipitation and thoroughly characterised by X-ray diffraction (XRD), N2 physisorption,
Wavelength Dispersive X-ray Fluorescence (WDXRF), temperature-programmed reduction with
hydrogen followed by temperature-programmed reduction with oxygen (H2-TPR/O2-TPO),
temperature-programmed reaction with methane (CH4-TPRe), ultraviolet–visible–near-infrared
diffuse reflectance spectroscopy (UV-vis-NIR DRS), Raman spectroscopy and X-ray photoelectron
spectroscopy (XPS). It was found that during calcination, a fraction of the sodium atoms initially
deposited on the surface diffused and migrated into the spinel lattice, inducing a distortion
that improved its textural and structural properties. However, surface sodium had an overall
negative impact on the catalytic activity. It led to a reduction of surface Co3+ ions in favour of
Co2+, thus ultimately decreasing the Co3+/Co2+ molar ratio (from 1.96 to 1.20) and decreasing the
amount and mobility of active lattice oxygen species. As a result, the catalyst with residual sodium
(T90 = 545 ◦C) was notably less active than its clean counterpart (T90 = 500 ◦C). All of this outlined
the significance of a proper washing when synthesizing Co3O4 catalyst using a sodium salt as the
precipitating agent.
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1. Introduction

Methane is a powerful greenhouse effect gas (25 times higher than that of CO2) that appears as a
residue or flue gas in many different applications. These include thermal plants, refineries or natural
gas engines. To protect the environment from its noxious effect, this pollutant needs to be properly
removed [1]. Usually, the off-gas treatment technology must be efficient at low temperatures when
operating with large gas flows with small amounts of methane. Under these conditions, the most
suitable technique is catalytic oxidation.

The traditional catalysts for oxidation of methane have been based on noble metals, such as
platinum or palladium. In the recent years, extensive research has been made with the aim of finding
other alternatives. This is mainly due to their high price, low availability and tendency to deactivate
and age [2,3]. The most significant part of this research is focused on both single and mixed transition
metal oxides. Materials such as perovskites, hexaaluminates or spinels composed of different metals
have been studied and proven active for the oxidation of methane [4–7]. Spinel oxides, specifically,
are mixed oxides with general formula AB2O4, where A is a metal with oxidation state +2 and
tetrahedral coordination and B is a metal with oxidation state +3 and octahedral coordination [8].
The activity of these types of materials for oxidation reactions lies on the easiness that the metal cations

Catalysts 2018, 8, 427; doi:10.3390/catal8100427 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-0955-1322
https://orcid.org/0000-0001-6595-8728
https://orcid.org/0000-0002-0024-5003
https://orcid.org/0000-0002-1048-3988
http://dx.doi.org/10.3390/catal8100427
http://www.mdpi.com/journal/catalysts
http://www.mdpi.com/2073-4344/8/10/427?type=check_update&version=2


Catalysts 2018, 8, 427 2 of 15

possess to shift between the two oxidation states. This provides oxygen anions in the lattice with high
mobility, making them suitable for reactions following the Mars-van Krevelen mechanism [9].

In the particular case of A and B being cobalt cations, the resulting compound is called spinel
type cobalt oxide (Co3O4), which is one of the most active materials for the oxidation of methane and
other hydrocarbons. This is essentially due to its great redox properties [10]. Nevertheless, the specific
properties of a given Co3O4 catalyst greatly depend on many different factors and parameters, with one
of the most determinant being the synthesis process. Cobalt oxide catalysts can be prepared by a
wide number of methods, including the calcination of a cobalt salt, basic precipitation, combustion
synthesis, hard templating, hydrothermal synthesis, mechanical grinding or sol-gel complexation,
among others [11–15]. Although all of them lead to the same material, each synthesis methodology
provides different properties to the final catalyst, thereby notably affecting its behaviour for a particular
reaction or process.

Regarding this point, various research studies can be found that have tried to define the most
suitable synthesis process for a certain reaction. For example, Liu et al. found that a cobalt oxide
obtained from a citrate precursor prepared by soft reactive grinding was the most active for total
oxidation of propane [16]. Monteverde Videla et al. reported that the most active Co3O4 catalyst for
the oxygen evolution reaction was that obtained by a hard template method using SBA-15 silica [17].
In this sense, de Rivas et al. [18] observed that a Co3O4 bulk catalyst prepared by a simple basic
precipitation process was more efficient for the oxidation of 1.2-dichloroethane compared to samples
prepared by sol-gel complexation or mechanical grinding.

Precipitation-based synthesis processes are among the most commonly used methods to
prepare Co3O4 and many other mixed oxide catalysts. While being a simple method, they usually
produce catalysts with moderately good structural and redox properties, which can be suitable for
oxidation reactions. In addition, precipitation methods are easy to set up on an industrial scale [19].
When proposing a precipitation synthesis route, the choice of the precipitating agent is normally
crucial, since the same catalyst obtained from different precipitants do not perform similarly [20].
Moreover, it must be noticed that after the precipitation, residual amounts of the precipitating agent,
or species derived from it, can remain on the catalytic precursor, generally altering the final properties
of the desired catalyst.

Apart from the routes that involve ammonia-based reagents, the most frequently used
precipitating substances are sodium and potassium bases, namely NaOH, KOH or Na2CO3. This means
that, after the synthesis process, trace amounts of these alkaline metals can be present in the
resulting catalyst. In some cases, this can have a beneficial effect. For example, Park et al. [21]
and Haneda et al. [22], on different papers, demonstrated that residual sodium and other alkali
metals were responsible for the good activity of Co3O4 catalysts for NO decomposition. Meanwhile,
Asano et al. [23] found that a low amount of potassium on Co3O4 promoted the decomposition of N2O.
Regarding N2O decomposition, numerous papers have reported the promotional effects of sodium
and other alkali over Co3O4 catalysts. For instance, Maniak et al. [24] found a significant promotional
effect of potassium over Mn3O4 and Co3O4, characterised by the formation of surface K+-O− dipoles
that facilitated electron transfer from the surface to N2O molecules. On the other hand, Stelmachowski
et al. [25], and Obalová et al. [26] found that the larger promotional effect was achieved by caesium,
due to its larger ionic radius that allows for a higher surface coverage and ionization. In all of these
studies, the promoting effect was deemed to be due to an increase in the amount of Co2+ cations within
the catalyst surface, an increased electron density in the surface and enhanced oxygen desorption from
Co3O4. This was all due to the presence of the alkaline metals.

However, regarding the oxidation of methane, there is not, to the best of our knowledge,
any research study that deals with the effect of residual alkaline metals on Co3O4 catalysts. Considering
the results obtained by the authors mentioned above, it is not clear whether the residual alkaline metals
would have a beneficial effect on the catalytic performance of Co3O4, since methane oxidation over
Co3O4 seems to be controlled by the population of highly reducible Co3+ species.
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For this reason, in the present paper, two Co3O4 catalysts were prepared by a basic precipitation
method, intentionally leaving some residual sodium in one of them to study its effect over the catalytic
activity for the complete oxidation of methane. The obtained catalysts were thoroughly characterised
and the role of the surface cobalt and oxygen species on the oxidation process was ascertained.

2. Results and Discussion

2.1. Synthesis of Co3O4 Precursors

When preparing the two bulk Co3O4 catalysts by precipitation with sodium carbonate, the
catalytic precursors were filtrated and washed with varying amounts of deionized water between
1–8 L. The filtrates extracted from the filtration step were recovered and their pH was measured to
estimate the extent of the removal of residual sodium from the precursor. The evolution of pH value as
a function of the volume of water used for washing is shown in Figure 1.
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Figure 1. pH of the filtrate from the washing step of the catalytic precursors (CC and CC-Na).

It was observed that the pH of the filtrates remained almost constant (pH = 7.8) after washing the
precipitate with four litres of water, which would suggest that all residual sodium from the synthesis
process was removed with this amount of water. This residual pH was somewhat above 7 due to the
basicity and slight solubility of the precipitate.

2.2. Physico-Chemical Characterisation

The structural characterisation of the catalysts was performed by XRD. The diffractograms in
Figure 2a only revealed signals attributable to a pure phase of spinel-type Co3O4 (JCPDS 042-1467).
No signals attributable to Na2O, or any other Co-Na mixed oxides, were detected in the catalyst
with residual sodium (CC-Na). However, the diffraction peaks displayed by the CC-Na sample were
markedly wider than those displayed by the Na-free CC sample and were shifted towards lower
diffraction angles, as can be seen in Figure 2b. This revealed that the presence of trace amounts of
sodium (0.4 wt% as determined by WDXRF) induced a distortion of the spinel lattice of Co3O4.
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Figure 2. (a) XRD diffractograms of the catalysts; (b) detail of the most intense diffraction signal.

The crystallite size of Co3O4 was estimated from the full width half maximum (FWHM) of
the characteristic peak located at 37.1◦, assignable to the (311) crystalline plane, by applying the
Scherrer equation. Besides, the cell size could be calculated by performing a profile matching of the
diffractograms. It was found that the crystallite size of the CC-Na catalyst was almost half of that of
the CC catalyst, while its cell size was notably larger. This was in agreement with the aforementioned
distortion caused by the inclusion of sodium into the spinel lattice. This distortion can be explained in
terms of the difference in ionic radius between Co2+ and Co3+ ions (72 and 69 pm, respectively) and
Na+ ions (113 pm).

The results from the textural characterisation, also displayed in Table 1, showed that the catalyst
with residual sodium exhibited almost twice as much surface area as the Na-free sample, and a pore
volume a 25% larger. This suggested that the distortion caused in the spinel lattice also caused an
enhancement of the textural properties of the Co3O4. The pore size distributions, shown in Figure 3,
also evidenced a shrinking effect over the mean pore diameter when cobalt oxide is contaminated with
residual sodium. These effects have already been reported in other studies regarding the doping of
Co3O4 catalysts with other metallic elements [27,28]. It must be noticed that all those variations were
originated by a relatively low bulk concentration of sodium (0.4 wt%).

Table 1. Results from physico-chemical characterisation.

Catalyst BET Surface Area, m2 g−1 Vp, cm3 g−1 D, nm Dpore, Å Cell Size, Å Na Content, wt%

CC 14 0.09 63 148 8.052 0.00
CC-Na 26 0.12 34 257 8.064 0.39



Catalysts 2018, 8, 427 5 of 15

Catalysts 2018, 8, x FOR PEER REVIEW  5 of 15 

 

Table 1. Results from physico-chemical characterisation. 

Catalyst BET Surface Area, m2 g−1 Vp, cm3 g−1 D, 
nm 

Dpore, 
Å 

Cell Size, 
Å 

Na Content, 
wt% 

CC 14 0.09 63 148 8.052 0.00 
CC-Na 26 0.12 34 257 8.064 0.39 

 
Figure 3. Pore size distributions of the catalysts. 

The structure of the samples were additionally studied by UV-vis-NIR DRS, Raman 
spectroscopy and XPS. Figure 4a shows the UV-vis-NIR diffuse reflectance spectra. Both samples 
displayed absorption bands at 630, 1210, 1300 and 1510 nm, associated with the presence of 
tetrahedral Co2+ species. Since the Co3O4 oxide also contains octahedral Co3+ species, their 
corresponding absorption bands (weak shoulders at 400 and 720 nm) were also expected to be visible 
[29]. However, the former was not detectable, while the latter was somewhat visible, only for the CC 
sample. This could suggest that the amount of Co3+ present in this catalyst was larger with respect to 
the Na-containing oxide. In addition, a band at 1370 nm was only detected for the CC sample. This 
band was associated with the 2ν harmonics band from residual hydroxyl groups [30]. 

 
(a) 

 

(b) 

Figure 4. (a) UV-vis-NIR DRS spectra of the samples; (b) detail of the region around 1200 nm. 

On the other hand, both samples displayed absorption bands at 550, 850 and 1190 nm, related to 
Co2+ ions with octahedral coordination as in CoO. Interestingly, these bands were more noticeable for 

Figure 3. Pore size distributions of the catalysts.

The structure of the samples were additionally studied by UV-vis-NIR DRS, Raman spectroscopy
and XPS. Figure 4a shows the UV-vis-NIR diffuse reflectance spectra. Both samples displayed
absorption bands at 630, 1210, 1300 and 1510 nm, associated with the presence of tetrahedral Co2+

species. Since the Co3O4 oxide also contains octahedral Co3+ species, their corresponding absorption
bands (weak shoulders at 400 and 720 nm) were also expected to be visible [29]. However, the former
was not detectable, while the latter was somewhat visible, only for the CC sample. This could suggest
that the amount of Co3+ present in this catalyst was larger with respect to the Na-containing oxide.
In addition, a band at 1370 nm was only detected for the CC sample. This band was associated with
the 2ν harmonics band from residual hydroxyl groups [30].
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On the other hand, both samples displayed absorption bands at 550, 850 and 1190 nm, related to
Co2+ ions with octahedral coordination as in CoO. Interestingly, these bands were more noticeable for
the CC-Na sample. This suggested that the presence of this species was larger with respect to the CC
sample. An additional feature could also be seen when examining the spectra in detail, as depicted
in Figure 4b. When zooming into the 1150–1250 nm region, where the well-defined absorption signals
at around 1190 and 1210 nm were located, it could be noted that both signals for the CC-Na sample
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were shifted with respect to the CC sample. Specifically, the former was redshifted 12 nm from its
original position, while the latter was blueshifted 10 nm from its original position. These findings
could further confirm the lattice distortion caused by the residual sodium.

Raman spectroscopy results, shown in Figure 5, also pointed out the aforementioned lattice
distortion. The resulting spectra for both samples showed five Raman bands. The bands located at
194, 519 and 617 cm−1 could be attributed to the F2g mode. The bands located at 479 and 687 cm−1

could be assigned to the Eg and A1g modes, respectively [16]. However, the CC-Na sample showed
these bands slightly shifted and became wider with respect to those of the CC sample. Additionally,
the band attributed to the A1g mode also showed a strong asymmetry. This is a clear sign of lattice
distortion according to the bibliography [31,32].
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Figure 6a,b show the Co 2p and O 1s XPS spectra of the samples, respectively. The Co 2p3/2
spectra of both oxides was composed of five different signals. The two features with the lowest
binding energies, located at 779.5 and 780.7 eV, were assigned to Co3+ and Co2+ ions, respectively.
The signal centered at 782.2 eV was attributed to the presence of CoO in the surface of the samples [33].
The abundance of this species was higher for the CC-Na sample (14%) than for the CC sample
(8%), as also suggested by the results from UV-vis-NIR DRS. The two signals with the highest
binding energies (785.7 and 789.3 eV) were identified as the satellite signals from Co3+ and Co2+

ions, respectively. The comparable intensity of both satellite signals pointed out that the surface of
the catalysts was mainly composed of Co3O4 [34]. On the other hand, the O 1s spectra exhibited two
signals for both samples, located at 529.9 and 531.3 eV, respectively. The low binding energy signal
was attributed to lattice oxygen species (Olatt). The high binding energy signal was assigned to weakly
adsorbed oxygen species (Oads) [35]. Finally, for the CC-Na catalyst an extra peak at a binding energy
of 1071.8 eV was attributed to the presence of Na+ ions.

The deconvolution and integration of the XPS spectra allowed for a quantitative analysis of the
composition of the surface, as shown in Table 2. It must be noticed that the concentration of sodium
on the surface of the CC-Na sample was several times higher (5.1 wt%) than in the bulk (0.4 wt%).
This evidenced that the majority of the sodium atoms present in that sample were located on its surface.
A certain amount had likely migrated and diffused into the spinel lattice during the calcination process.
In addition to that, the Co3+/Co2+ molar ratio of the catalyst with sodium was notably lower than for
its clean counterpart, while the Oads/Olatt molar ratio was higher. This was explained as a consequence
of sodium atoms donating electrons to oxygen ions within the spinel lattice. The resulting increase in
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electronic density transformed Na sites into strong Lewis sites that are able to donate electrons to cobalt
cations with a concomitant effective decrease in their overall oxidation state [22,23]. This effect was
further confirmed by the slight shift (0.4 eV) of the O 1s spectra of the CC-Na towards lower binding
energy values. This indicated an increase in the electron density of oxygen anions and also caused a
weakening of Co-O bonds, which is coherent with observed increase in the Oads/Olatt molar ratio.
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Table 2. Surface composition results from XPS.

Catalyst O, %at. Co, %at. Na, %at. Co3+/Co2+ Oads/Olatt

CC 66.5 33.5 0.0 1.96 0.40
CC-Na 57.6 35.4 7.0 1.20 0.57

2.3. Redox Characterisation

Figure 7a shows the H2-TPR profiles of the cobalt oxide samples. As described by other authors,
the TPR profile of a Co3O4 catalyst, namely the CC sample, consisted of two different contributions to
the H2 uptake [36,37]. A first contribution, located at 310 ◦C, assignable to the reduction of Co3+ ions
into Co2+; and a second contribution, centered at 350–400 ◦C, attributable to the subsequent reduction
of Co2+ into metallic cobalt. The TPR profile of the sample with residual sodium also exhibited these
two contributions, but their shape was notably different. This was probably a consequence of the
distortion of the spinel lattice caused by sodium. Furthermore, the second H2 uptake did not take the
shape of a single peak, but instead was formed of at least two different contributions. This suggested
the presence of Co2+ species with different reducibilities, namely free CoO that was detected by both
DRS and XPS analysis along with Co2+ from the spinel lattice.

Immediately after the H2-TPR analysis, an O2-TPO run was carried out to check the capacity of
reoxidation of the catalysts after their complete reduction to metallic cobalt. The TPO profiles, shown
in Figure 7b, clearly evidenced the influence of sodium on the reoxidability of the Co3O4 catalysts.
The CC sample showed a high intensity oxidation peak centered at 330 ◦C with a tail starting around
200 ◦C. The sample with sodium showed a much lower intensity peak located at about 360 ◦C, with a
tail starting around 250 ◦C. Furthermore, the total O2 uptake of the Na-containing sample was only
51% than that of the Na-free oxide. These results revealed that not only the sample with sodium
was more difficult to reoxidize, but also that it could not be completely reoxidized, after complete
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reduction, below 600 ◦C. This was likely due to the reducing effect of sodium ions over cobalt species
and the subsequent weakening of Co-O bonds, which in turn made more difficult the reincorporation
of oxygen into the spinel lattice.
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Nevertheless, in spite of the differences in reducibility between the two catalysts, their reduction
started at the same temperature (about 200 ◦C) as can be seen in Figure 7a. This could be attributable to
the high reducing power of hydrogen, that may hide subtle differences in reducibility. For this reason,
a CH4-TPRe experiment in the absence of oxygen was conducted over both oxides, since the ability of
methane for reducing is lower than that of hydrogen. The results are shown in Figure 8.
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The CH4-TPRe profiles of the Co3O4 catalysts consisted of two reaction peaks, in a similar fashion
to the H2-TPR profiles. However, these peaks did not exhibit the same shape as the TPR peaks, nor did
they appear as the same temperatures. The CC sample was characterised by a low temperature
reduction peak, assigned to the reaction of methane with O2− ions associated with Co3+ ions, centered
at 469 ◦C. The corresponding peak of the CC-Na sample was centered at 544 ◦C. On the other hand,
the second reaction peak, attributed to the reaction of methane with O2− ions associated with Co2+

ions, appeared at 627 ◦C for the CC sample. For the sample with sodium, it did not appear until the
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isothermal step at 850 ◦C. On the basis of these results, it was evident that the presence of sodium
in the Co3O4 catalyst remarkably decreased the mobility of the oxygen species of the spinel lattice,
as well as the reducibility of the cobalt ions themselves. However, this was only clearly visible when
the reduction of the samples was carried out with methane.

It must be considered that according to the results from the CH4-TPRe tests, these Co3O4 catalysts
were not completely reduced during the reaction process. This is because the temperature levels
needed for their complete reduction with methane were higher than 600 ◦C, and their reoxidation
occurred at temperatures around 300 ◦C. For this reason, the results from the O2-TPO analysis may
not be too relevant, but they could serve as an additional indication of the detrimental effect of sodium
on the redox properties of Co3O4.

2.4. Catalytic Performance

The activity tests were carried out three times consecutively for each catalyst. In both cases,
the second and third cycles were characterised by an identical light-off curve. The light-off curves
for the first and second/third cycles are shown in Figure 9. It was clear that the sample without
sodium was far more active than the sample with sodium, thus evidencing the inhibiting effect caused
by this metal. Considering that the primary mechanism of methane oxidation over metallic oxides
is the Mars-van Krevelen mechanism, the negative effect of sodium on the activity of the CC-Na
catalyst could be explained as a consequence of the reduced oxygen mobility. This was demonstrated
by CH4-TPRe, and the decrease on the amount of Co3+ on the surface and the subsequent decrease
in the active lattice oxygen species, as shown by the XPS results. However, it must be noticed that
both samples were able to achieve a 100% methane conversion at 600 ◦C. This pointed out that the
aforementioned inhibition effect was only apparent at low temperatures, as can be observed from the
marked differences between the T10 and T50 values (Table 3).
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A differential kinetic analysis was performed for conversion values below 10%, assuming a
first order with respect to methane and zeroth with respect to oxygen, which is a suitable model
for the Mars-van Krevelen mechanism in the presence of excess oxygen [38,39]. The results shown
in Table 3 further confirmed the negative influence of residual sodium over the CC-Na catalyst.
The activation energy of this sample was significantly higher with respect to the CC sample. In addition,
the pre-exponential factor of the CC-Na sample was about four times higher than that of the CC sample,
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which could be a consequence of the beneficial effect of residual sodium over the structural properties
of this catalyst.

Table 3. Results from the kinetic analysis of activity results.

Catalyst T10, ◦C T50, ◦C T90, ◦C Activation Energy, kJ mol−1 k0 × 10−5, L min−1 gcat
−1

CC 335 430 500 74 1.1
CC-Na 400 480 545 99 25

The fact that the first reaction cycle was characterised by a different light-off curve pointed out that
it worked as ‘conditioning’ cycle, after which the tested catalysts became stable under the employed
reaction conditions. For this reason, the tested catalysts were characterised after the reaction tests to
look for differences with respect to fresh counterparts that could be caused by this conditioning process.
The results from the textural/structural characterisation, shown in Table 4, revealed a loss of specific
surface area and pore volume for both catalysts. The loss of specific surface area was comparable
between the two catalysts (around 33% in both cases). The loss of pore volume was more severe
for the Na-free catalyst. Additionally, a general enlargement of the average pore size was observed
for both catalysts. Interestingly, the loss of surface area and pore volume of the CC catalyst was not
accompanied by a marked increase in the crystallite size, as it would be expected if the effect were
caused by sintering. Moreover, the shrinkage of the cell size was noticed for both samples (from 8.052
to 8.046 Å over the CC sample and from 8.064 to 8.048 Å over the CC-Na sample). All this suggested
that the conditioning cycle caused a moderate surface restructuring of the catalysts that made them
slightly less active, but more thermally stable.

The effect of such surface restructuration could be seen through the XPS analysis of the samples
after the light-off runs. A decrease of the Co3+/Co2+ molar ratio was found for both samples, from 1.96
to 1.64 for the CC sample and from 1.20 to 1.02 for the CC-Na sample; which was accompanied by an
increase in the Oads/Olatt molar ratio from 0.40 to 0.52 for the Na-free oxide and from 0.57 to 0.70 for
the sample with sodium. In addition to that, the CC-Na sample suffered an increase in the Na surface
concentration with respect to its fresh counterpart, achieving a molar concentration of 11.3% (9.0 wt%)
of sodium.

Table 4. Comparison of textural/structural properties between fresh and used catalysts.

CC CC-Na

Fresh
Sample

3 Light-Off
Runs

150 h
at 450 ◦C

Fresh
Sample 3 Light-Off Runs 150 h at

450 ◦C

SBET, m2 g−1 14 9 12 26 18 19
Vp, cm3 g−1 0.09 0.02 0.07 0.12 0.08 0.12

Dpore, Å 257 319 302 148 142 190
D, nm 63 61 64 34 46 33

2.5. Stability over a Prolonged Time

Finally, the stability of the catalysts over a prolonged period of time (150 h) was tested at 450 ◦C.
This was to check if the presence of residual sodium could also affect the performance of the catalysts.
It must be pointed out that a fresh sample of both oxide catalysts was used for this run. Both catalysts
were thermally stable, although the conversion level they could achieve was remarkably different
(Figure 10). The catalyst without sodium achieved a constant methane conversion of around 75%.
The CC-Na catalyst could only achieve around 40% conversion for the entire time span of the test.
This evidenced that the presence of residual sodium did not affect the thermal stability of the catalysts,
but it did influence their activity.

The characterisation of the post-run catalysts revealed the effect of prolonged periods of operation
over their properties. As can be seen in Table 4, the loss of properties for the sample without sodium was



Catalysts 2018, 8, 427 11 of 15

less marked than for the catalyst with sodium. However, interestingly, none of the catalysts exhibited
any crystallite size growth after the stability test, which pointed out that they were structurally stable
at temperatures up to 450 ◦C.
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Comparing the impact caused by the light-off cycles with the loss of properties caused by
the prolonged operation at constant temperature (450 ◦C), it became clear that operating at higher
temperatures (600 ◦C) for short periods of time is more critical than operating at lower temperatures
for extended periods of time. Indeed, if we compare the conversion levels obtained at 450 ◦C for the
two aforementioned cases, it can be seen that the difference in conversion between the first and the
third light-off cycle (around 20%) was much larger than the difference in conversion between the first
light-off cycle and the start of the stability tests (around 5%). This evidenced that the loss of properties
in the light-off cycles took place during the time the catalysts were operated at high temperatures
(above 450 ◦C). For the stability tests it took place during the first hour of the test.

3. Materials and Methods

3.1. Catalyst Preparation

Two bulk Co3O4 catalysts were prepared following a simple precipitation route, described
elsewhere [18]. This route consisted of an aqueous basic precipitation of a cobalt precursor, resulting in
the formation of cobalt hydroxycarbonate. A solution of Na2CO3 (Sigma-Aldrich, St. Louis, MO, USA)
1.2 M was added drop-by-drop to 100 mL of Co(NO3)2·6H2O (ACS reagent, Alfa Aesar, Haverhill, MA,
USA) 0.5 M, while the temperature was kept constant at 80 ◦C, until pH 8.5 was attained. After that,
the obtained precipitates were filtrated and washed with different amounts of deionised water between
one and eight litres. In this way, the so-called CC-Na precursor was washed with two litres of water
to allow some residual sodium to remain within the catalytic precursor. On the contrary, the CC
precursor was washed with up to eight litres of water with the aim of removing all the remaining
sodium from the precipitation process. The catalyst precursors were dried in static air at 110 ◦C for
16 h and subjected to calcination in static air at 600 ◦C to produce the final catalysts.
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3.2. Characterisation Techniques

Textural properties of the catalysts were determined from the nitrogen-adsorption isotherms at
−196 ◦C obtained with a Micromeritics TriStar II apparatus (Micromeritics Instrument Corp., Norcross,
GA, USA). The specific surface of the samples was obtained by the BET method. All samples were
degassed prior to analysis on a Micromeritics SmartPrepapparatus (Micromeritics Instrument Corp.,
Norcross, GA, USA) at 300 ◦C for 10 h with a N2 flow.

Wavelength Dispersive X-ray Fluorescence (WDXRF) was used to determine the sodium content
of the catalysts. From each sample in powder form, a boron glass pearl was prepared by fusion
in an induction micro-furnace, by mixing the sample with the flux agent Spectromelt A12 (Merck
KgaA, Darmstadt, Germany) in an approximate proportion of 20:1. The chemical analysis of each
pearl was performed under vacuum, using a PANalytical AXIOS sequential WDXRF spectrometer
(Malvern Panalytical Ltd., Malvern, UK), equipped with a Rh tube and three different detectors (gas
flow, scintillation and Xe sealed).

Structural properties of the catalysts were determined by X-ray diffraction. XRD analysis were
performed on a X’PERT-PRO X-ray diffractometer (Malvern Panalytical Ltd., Malvern, UK) using
Cu Kα radiation (λ = 1.5406 Å) and a Ni filter. The X-ray tube was operated at 40 kV and 40 mA of
current. The samples were scanned from an initial value of 2θ = 5◦ to a final value of 2θ = 80◦, with a
step size of 0.026◦ and a counting time of 2.0 s for each step. The cell size of the Co3O4 phase was
obtained by profile matching of the whole XRD patterns using FullProf.2k software (Version 6.30,
Institut Laue-Langevin, Grenoble, France, 2018).

Redox properties and Co species distribution were investigated by means of different techniques.
Temperature-programmed reduction with hydrogen (H2-TPR) was performed on a Micromeritics
Autochem 2920 apparatus (Micromeritics Instrument Corp., Norcross, GA, USA), using a 5%H2/Ar
mixture as the reducing gas. The analysis protocol involved an initial pre-treatment step with a
5%O2/He mixture at 300 ◦C for 30 min. After cooling down to room temperature with flowing He,
the TPR experiment was performed, up to 600 ◦C. Additional information regarding the reducibility
of the catalysts was obtained by means of a subsequent temperature-programmed oxidation with a
5%O2/He mixture (O2-TPO) immediately after the H2-TPR run and by temperature-programmed
reaction with a 5%CH4/He mixture in the absence of oxygen (CH4-TPRe). The O2-TPO runs were
performed just after the H2-TPR runs without exposing the samples to the atmosphere by keeping the
samples under an inert gas flow between the two consecutive runs.

X-ray photoelectron spectroscopy (XPS) analysis was performed using a SPECS system (SPECS
GmbH, Berlin, Germany) equipped with a Phoibos 150 1D analyzer and a DLD-monochromatic
radiation source. UV-vis-NIR diffuse reflectance (UV-vis-NIR DRS) spectra of the samples were
obtained on a Jasco V-570 apparatus (JASCO, Easton, MD, USA) in the 200–2300 nm wavelength range.

3.3. Catalytic Activity Determination

Catalytic activity tests were performed in a bench-scale fixed bed reactor, Microactivity
modular laboratory system manufactured by PID Eng&Tech S.L. (Process Integral Development
S.L., Alcobendas, Spain), operated at atmospheric pressure and monitored by computer. The reactor
was a stainless steel (Hasteloy X) tube (Haynes International, Inc., Kokomo, IN, USA), manufactured by
Autoclave Engineers (Autoclave Engineers Engineering and Manufacturing, Erie, PA, USA), with an
internal diameter of 8.55 mm and a length of 305 mm. The temperature inside the reactor was measured
by a multipoint K type thermocouple placed in the catalyst bed.

For each reaction experiment, 1 g of catalyst granulated to a particle size of 0.25–0.3 mm was
loaded into the reactor, diluted with 1 g of inert quartz granulated to a particle size of 0.5–0.8 mm
to improve gas flow and heat distribution along the bed and avoid diffusional effects affecting the
reaction rate. The reaction feed consisted of a gaseous mixture of 1% CH4, 10% O2 and N2 as the
balance gas, up to a total gas flow of 500 cm3 min−1. This corresponded to a gas hourly space velocity
of approximately 60,000 h−1 (300 mL CH4 g−1 h−1).
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Catalytic activity was measured from 200 to 600 ◦C. Conversion measurements were taken each
25 ◦C. Additionally, stability tests were carried out for a total time on stream of 150 h at 450 ◦C. Methane
conversion was calculated by the difference between inlet and outlet CH4 concentrations. Inlet and
outlet streams were analysed using an on-line Agilent Technologies 7890N gas chromatograph (Agilent
Technologies, Santa Clara, CA, USA) equipped with a thermal conductivity detector (TCD) and two
columns: a PLOT 5A molecular sieve column (Agilent Technologies, Santa Clara, CA, USA) for the
analysis of CH4, O2, N2 and CO; and a PLOT U column (Agilent Technologies, Santa Clara, CA, USA)
for CO2 analysis. To ensure that the obtained catalytic results were not affected by both mass and
heat transfer limitations, the criteria for intra-granular and extra-granular mass diffusion, energy
diffusion and temperature gradients were checked, according to the Eurokin procedure (Eurokin, Delft,
The Netherlands) [40].

4. Conclusions

Two bulk Co3O4 catalysts were prepared by a simple precipitation method using sodium
carbonate as the precipitating agent. One of the catalysts was properly washed after the precipitation
process while the other kept some residual sodium ions.

The characterization of the two catalysts evidenced that the presence of the residual sodium ions
had a great impact on the properties of the catalyst. Firstly, the insertion of the sodium atoms into
the spinel lattice induced a distortion that improved the structural properties of the Co3O4, inhibiting
crystallisation and increasing the specific surface area. However, this distortion was also partially
responsible for a decrease in the reducibility of the catalyst. This was in a subtle way when the reducing
agent was hydrogen, but severely when the samples were reduced with methane. On the other hand,
the concentration of sodium ions on the surface of the catalyst induced a reduction of the Co3+ ions
into Co2+, due to their high Lewis acidic properties, thus increasing the electron density within the
oxygen ions of the lattice and weakening the Co-O bonds, making it more difficult for the catalyst to
reoxidize. This subsequently provoked a decrease in the abundance of lattice oxygen species that were
active for the methane oxidation reaction. The overall effect of the presence of residual sodium in the
Co3O4 was a notable decrease in the catalytic activity, especially at low temperatures. These results
pointed out the importance of properly washing the catalytic precursors after the synthesis process,
especially when the precipitating agent was a sodium base. In this sense, the use of ammonia-based
precipitants or synthesis routes such as sol-gel complexation may be considered as suitable alternatives
for preparing active Co3O4 catalysts for methane combustion.
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