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Abstract:  Structure-function relationships of a novel 2’-deoxyribosyltransferase from the
psychrotolerant bacterium Bacillus psychrosaccharolyticus (BpNDT) have been exhaustively studied
by biochemical and high resolution crystallographic analyses. Despite ByNDT exhibiting some
structural features characteristic of cold-adapted enzymes such as localized flexibility in critical
loops, its biochemical properties are typical of mesophilic enzymes. ByNDT is a highly symmetrical
homohexamer with tightly associated subunits that possesses flexible and short loops bordering
the active sites. The catalytic center is essentially identical to that of other mesophilic homologues.
Moreover, BPNDT shows that it is a mesophilic-like enzyme since it is not heat-labile and exhibits
an apparent unfolding temperature (T,,) of 49 °C, being active during 96 h at 40 and 50 °C. Finally,
BpNDT synthesizes natural and modified nucleosides, with preference for purines as acceptors and
pyrimidine nucleosides as donors. Remarkably, the synthesis of several therapeutic nucleosides
has been efficiently carried out. In this sense, 5-hydroxymethyl-2’-deoxyuridine (5-HMdUrd),
7-deaza-6-hydroxypurine-2’-deoxyriboside (7-DHPdRib) and theophylline-2’-deoxyriboside were
synthesized for the first time by an NDT enzyme, showing the biotechnological interest of ByNDT.

Keywords: 2'-deoxyribosyltransferase; enzymatic synthesis; oligomeric assembly; protein
crystallography; nucleoside analogues; therapeutic nucleosides

1. Introduction

Cold-adapted microorganisms are a valuable source of enzymes of biotechnological interest,
since these biocatalysts are more efficient at low temperatures than their mesophilic and thermophilic
counterparts [1,2]. Enzymes from psychrophiles present flexible structures, which render them labile
at higher temperatures [3,4], but allow high turnover numbers (kcat) at low-to-moderate temperatures.
Psychrophiles are defined as organisms which have an optimal growth temperature at 15 °C or below,
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a minimal growth temperature at 0 °C or below and a maximum growth temperature at approximately
20 °C [5]. Another group of cold-adapted microorganisms display optimal growth at about 20 °C
but grow fairly well at temperatures close to 0 °C and are unable to grow at temperatures above
30 °C. These are called psychrotrophs or psychrotolerant organisms. The term psychrotolerant also
encompasses mesophilic species which manage to survive at low temperatures [6]. An example
of psychrotolerant bacteria is Bacillus psychrosaccharolyticus (CECT 4074, ATCC 23296, DSM 6),
a facultative anaerobic Gram-positive bacterium that can be found in soil and lowland marshes.
In the context of mesophilic Bacillus species, this sugar-digesting and spore-forming rod bacterium
most closely resembles Bacillus circulans, although they differ in maximal growth temperature and
in cell morphology [7]. This bacterium should be considered psychrotolerant because it reaches its
optimal growth temperature at 20 °C. In fact, at low temperatures, B. psychrosaccharolyticus expresses
cold-induced proteins, the likes of those expressed during the cold shock response in B. subtilis,
an observation that points to systematic protein recomposition as the main psychrophilicity mechanism
in this microorganism [8].

The genome of B. psychrosaccharolyticus has been published and a gene codifying a putative
nucleoside 2'-deoxyribosyltransferase has been identified within it [9].

Nucleoside 2’-deoxyribosyltransferases (NDTs) are a group of enzymes which catalyze exchange
of the 2’-deoxyribosyl moiety between 2’-deoxyribonucleosides and nucleobases. Traditionally,
nucleoside synthesis has been performed by multistep chemical methods, including several
protection-deprotection steps and the use of chemical reagents as well as organic solvents that
are expensive and environmentally harmful [10,11]. In this sense, enzyme-catalyzed synthesis of
natural and non-natural nucleosides in a one-pot, one-step reaction involving NDTs is an interesting
alternative to chemical methods [12]. Nucleoside analogues are pharmacologically active compounds,
which include cytotoxic, antiviral, and immunosuppressive molecules [13,14]. As an example,
5-halogenated derivatives from 2'-deoxyuridine are widely used as anticancer agents, inhibiting
thymidilate synthase, an important enzyme for DNA synthesis in cell proliferation [15,16]. On the other
hand, 2,6-diaminopurine nucleosides are used as drugs or prodrugs depending on their susceptibility
to adenosine deaminase (ADA) activity in vivo [17].

Nucleoside 2’-deoxyribosyltransferases have been described in mesophilic microorganisms,
including several lactobacilli [12,18-20] as well as in pathogen bacteria, such as Borrelia burdogferi [21]
or protozoans like Trypanosoma brucei [22] or Leishmania mexicana [23]. In previous reports,
our group described B. psychrosaccharolyticus as a psychrophilic source of a nucleoside
2’-deoxyribosyltransferase [24], and reported the draft genome of B. psychrosaccharolyticus (CECT 4074,
ATCC 23296, DSM 6) under accession number AJTN02000000 [9]. A homology search with BLAST
program using the amino acid sequence of the 2’-deoxyribosyltransferase from Lactobacillus reuteri
(L¥NDT; NCBI reference sequence YP_001271569) allowed identification of a homologue, 142-residue
sequence with 25% identity. We have previously reported the cloning and expression of this sequence
and the purification of the recombinant enzyme from B. psychrosaccharolyticus (BpNDT) [25] and
showed that it is a type II nucleoside 2'-deoxyribosyltransferase, (NDT) since it catalyzes the transfer
between purines and/or pyrimidines (Pur<>Pur, Pur<+Pyr, Pyr<+Pyr) (Scheme 1). This contrasts with
type I nucleoside 2’-deoxyribosyltransferases (also known as purine deoxyribosyltransferases, PDTs),
which are specific for purines (Pur<«+Pur) [12,18,19].
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Scheme 1. 2'-deoxyribosyltransferase reaction catalyzed by ByNDT. E, enzyme; By and By, purine
or pyrimidine.

Here, we report on biochemical and high resolution structural characterization of ByNDT,
including demonstration of its ability to catalyze the synthesis of several natural and non-natural
nucleosides. The high resolution structure of ByNDT revealed some characteristics typical of
cold-adapted enzymes although its biochemical behavior is mesophilic. Finally, the enzymatic
production of modified nucleosides, including antiviral and antitumoral nucleosides, was successfully
carried out.

2. Results

2.1. Biochemical Characterization of Recombinant BpNDT

Optimal conditions of pH (8.0) and temperature (40 °C) were previously determined by our
group [25]. Here, the effects of several cations and other additives as well as ionic strength (I) on
BpNDT activity have been studied. As shown in Table 1, neither monovalent cations nor the presence
of Ba?*, Ca?* and Mg?* significantly affected activity, whereas Co?*, Cu?*, Mn?* and Zn?** showed
deleterious effects. Also, the presence of 2-mercaptoethanol did not interfere with activity as expected
for an enzyme lacking cysteines like BINDT, whereas 5 mM Al** dramatically reduced enzyme activity.

Table 1. Effect of several additives on the activity of ByNDT.

Additive Relative Activity (%) at1mM  Relative Activity (%) at 5 mM
None 100 100
K;504 105.8 96.1
KCl 105.1 104.8
LiCl 102.0 100
NaySOy 97.1 95.7
NaCl 96.6 98.2
RbCl 95.9 101.8
BaCl, 98.1 91.8
CaClp 84.0 74.7
CoCl, 33.0 21.8
CuSOy 63.7 22.3
MgSOy4 86.6 95.7
MgCl, 88.5 90.1
MnCl, 32.6 8.1
ZnSOy 91.5 57.2
(NH4),504 103.8 98.8
2-mercaptoethanol 98.9 97.5
Aly(SOy4)3 90.7 18.2
FeCl3 95.6 114.8
EDTA 101.3 110.8

The effect of ionic strength (I) on ByNDT activity was studied by adding different concentrations
of NaCl to reaction mixtures. Activity was unaffected at concentrations up to 1.0 M NaCl, while
activity decreased 25% in the presence of 1.5 M NaCl (data not shown).
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Thermal inactivation of ByNDT was analyzed by pre-incubating the enzyme at different
temperatures, after which aliquots were withdrawn at the indicated times and tested for activity using
2’-deoxyadenosine synthesis from 2’-deoxycitidine and adenine under standard conditions (Figure 1).
Remarkably, ByNDT remained stable at 40 and 50 °C for at least 96 h. Whereas at 60 and 70 °C,
deoxyribosyltransferase activity diminishes following a single exponential decay, with a three-fold
higher half-life at 60 °C than at 70 °C (Table 2).

Furthermore, in order to characterize the thermal stability of the enzyme, heat denaturation
temperature (melting temperature), Ty;, of BPNDT was determined by fluorescence spectroscopy
and differential scanning calorimetry (DSC) experiments (Figure 2). The effect of temperature on the
intrinsic fluorescence of ByNDT (excitation at 295 nm; emission from 300 to 420 nm) was evaluated at
temperatures ranging from 20 to 80 °C. The values of fluorescence intensity at 335 nm were used to
determine the T,;, which was 49 °C. DSC experiments showed a similar T}, value: 49.1 °C.
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Residual activity (%)
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Figure 1. Thermal inactivation profile of ByNDT at 40 °C (@), 50 °C (4), 60 °C (m) and 70 °C (4).

Table 2. Thermal inactivation parameters of ByNDT.
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Figure 2. Determination of apparent melting temperature (T);) of ByNDT: (a) Effect of temperature on
fluorescence emission at 335 nm. (b) Differential scanning calorimetry (DSC) analysis.

2.2. Substrate Specificity

A summary of the results obtained from the analysis of the transglycosilation reaction between
natural bases and 2’-deoxynuceosides catalyzed by ByNDT is shown in Table 3. According to these
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results, ByNDT is a type II NDT since it catalyzes the transfer of 2’-deoxyribose between pyrimidine
and purine bases with a marked preference for the latter as acceptors.

2'-Deoxycytidine (dCyd) is the best donor, followed by 2’-deoxyuridine (dUrd) and thymidine
(dThd). In turn, the most and least preferred acceptors are hypoxanthine (Hyp) and uracil (Ura),
respectively. Compared to previously described NDTs [18,19,26,27], BPNDT exhibits higher specific
activities, except when compared to LrINDT. The synthesis of dIno from Hyp and dAdo proceeds
5.4 times faster in the presence of ByNDT than with LrINDT or PDT from Lactobacillus helveticus
(LhPDT), whereas the transfer between Thd and Ura is twice faster with LrINDT or Lactococcus lactis
NDT (LIcNDT) than with BpyNDT. Formation of dAdo from Ade and Thd by ByNDT is 1.5-fold and
4.3-fold more efficient than by LrINDT or LhPDT, respectively. Transfer between dCyd and Hyp is
catalyzed by BpNDT 12 times better than by NDT from Lactobacillus fermentum (LfNDT) or LhiPDT.

Table 3. Analysis of the substrate specificity of ByNDT in the synthesis of natural nucleosides @.

Donor Specific Activity (IU/mg Protein) with Acceptor

Ade Ura Cyt Thy Hyp
dAdo -- 244 36.8 26.1 43.5
dUrd 40.0 -- 454 249 41.7
dCyd 61.2 60.0 -- 47.8 84.6
dThd 51.0 26.1 31.3 -- 383
dIno 20.7 15.4 18.0 40.6 --
dGuo 38.8 16.2 36.3 8.1 224

2 Reaction conditions: ByNDT (0.40 ug) was incubated at 40 °C for 5 min with 10 mM substrates in 50 mM HEPES
buffer, pH 8 in a final volume of 40 pL.

2.3. Structural Analysis of BNDT

BpNDT (10 mg/mL in 20 mM Tris-HC], 0.1 M NaCl pH 8.0) crystallized in numerous conditions
from the commercial screens used in the initial high throughput crystallization trials. High-quality
diffraction crystals were prepared manually in 3 M sodium nitrate, 0.1 M sodium acetate trihydrate,
pH 4.6 (protein/precipitant drop ratio 1:2). A complete dataset up to 1.9 A resolution was collected at
beamline ID29 at the European Synchrotron Radiation Facility (ESRF; Grenoble, France) and the crystal
structure of BPNDT was solved to that resolution by molecular replacement using atomic coordinates
of LhPDT as search model (Protein Data Bank (PDB) entry 152G).

BpNDT crystallized as a hexamer in the trigonal R3 space group, with two subunits per asymmetric
unit (Figure 3A) that superpose almost perfectly (r.m.s.d. for 137 Ca atoms is 0.68 A). The final model
included residues 2-138 (out of 142 amino acids) from both chains (A and B) together with 104 water
molecules. The 2F,-F. electron density map showed continuous density for the whole protein excluding
some residues coming from the same three regions in both chains: connecting loop 2-x3 (chain A:
Pro42; chain B: GIn40, Leu41), connecting loop 33-a4 (chain A: Glu75; chain B: Glu75, Asn76, Tyr77)
and connecting loop $4-a5 (chain A and B: Glul04). These loops appear highly flexible, which is
highlighted by the high B-factors in these regions of the structure. All residues occupy favorable
regions of the Ramachandran plot. Data collection and refinement statistics are shown in Table 4.
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Figure 3. Overall structure of ByNDT. (A) The two subunits of ByNDT that form the asymmetric unit of
the crystal are shown as ribbon model (blue) and ribbon plus transparent surface (magenta), respectively.
The regular secondary structure elements are indicated. (B) Two orientations of the hexameric assembly
identified within the BpNDT crystal are shown. Each dimer is depicted in surface model.
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Table 4. Data collection and refinement statistics.

BpNDT
PDB code 6EVS
Data collection
Synchrotron source ESRF
Beamline 1D29
Wavelength (A) 0.9792
Space group R3
. a=0b=10755c=61.24

Unit-cell parameters w=B=90°, 7 =120°
Resolution range (A) 37.07-1.90
No. of measured reflections 2 108,568 (14,833)
No. of unique reflections 20,796 (3009)
Mean (I/ol) 14.8 (2.9)
Completeness (%) 100 (100)
Multiplicity 5.2 (4.9)
Rmeas (%); Rpim (%) 5.7 (59.8); 2.5 (26.7)
CC1/2 0.988 (0.2845)
B-factor (Wilson plot, AZ) 32.7
Molecules/non-H atoms

Protein 2/2257

Water 104/104
Refinement statistics

Rwork(%)/Rfree(O/O) . 17.7/21.6

Average B-factors (A2

protein 47.3
water 47.2

Rms deviation bond length (A) 0.009

Rms deviation angles (°) 0.927
Ramachandran

Favoured (%) 95.6

Disallowed (%) 1.48

2 Values for the highest resolution shell are given in parentheses.

The architecture of the ByNDT subunit is composed of a central, parallel, five-stranded (3-sheet
(with 21,345 topology), with helices packed against each of its sides («1-0i4-5 and «3-x6, respectively).
The structure is highly asymmetric due to the orientation with respect to the 3-sheet and length
of the &3 helix. The overall structural features of the ByNDT subunit are highly similar within the
2’-deoxyribosyltransferases as can be manifested by structural similarity searches carried out either
with DALI Lite server v3 [28] or FATCAT [29]. The closest structural homologue found in both cases is
LhPDT (r.m.s.d. of 1.5 for 130 Cox atoms and a sequence identity: 31%; PDB entry 152L), followed by the
2'-deoxyribosyltransferase from Lactobacillus leichmannii (LINDT) [30] (r.m.s.d. of 2.0 for 136 Cox atoms
and a sequence identity: 26%; PDB entry: 1F8X). These two protein homologues are homohexamers
endowed with D3 molecular symmetry, similarly to ByNDT (see below), which resulted from the
association of three dimers. In fact, the analysis of the ByNDT crystal protein packing by the PISA [31]
server suggested a hexamer as the highest-order stable oligomer formed by three tightly bound
dimers. The contacting interface between subunits forming these dimers is large (~2740 A?) and
comparable to those from LhPDT (~3300 A2) or LINDT (~3200 A2), although much smaller than the
values observed from the distant, dimeric, eukaryotic homologues from Trypanosoma bruceii (~4950 A2)
or from L. mexicana (~4500 A?). This contacting interface resulted from the close packing of o4 helices
from the two participating subunits and from the fact that the &5 helix of each subunit is sandwiched
between helices o3# and od4# (# refers to structural elements from the other subunit). This latter
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structural feature is crucial within the NDTs since it revealed that each substrate-binding pocket is
in fact made up of residues contributed by the two associated subunits, supporting the idea that the
dimeric assembly is the minimum catalytic unit required for 2’-deoxyribosyltransferase activity [30].

BpNDT is a homohexamer with D3 molecular symmetry that results from the tight association of
three dimers (Figure 3B) with a total contacting interface between them of ~7400 A2. The structural
elements that participate in this contacting regions are the a3 and «4 helices and the corresponding
a3-33 and «4-B4 connecting loops. These elements configure a smooth, convex surface that faces the
inner, three-fold molecular symmetry axis of the assembly. It is notable that the latter two connecting
loops are much shorter (2 residues in both cases) than those from the opposite side of each subunit that
protrude towards the bulk solvent and flank the entry to the substrate-binding pockets (loop $1-1:
5 residues; loop a2-a3: 10 residues; loop $3-o4: 7 residues; loop 4-ab: 8 residues). As expected,
whereas the structure of the contacting region with the shortest loops is highly conserved in the
three hexameric enzymes ByNDT, LhPDT and LINDT, the region facing the solvent shows the highest
structural variability, which is most probably related to the distinct substrate specificity of each
particular enzyme.

Since a structural characteristic of multimeric, cold-adapted enzymes is a comparatively reduced
cohesion between monomers than in the mesophilic homologues [32], we analyzed the associative
behavior of ByNDT in solution in order to check for the possibility of hexamer dissociation phenomena.
With this aim, we studied the average molecular mass of ByNDT by analytical ultracentrifugation
assays. Sedimentation velocity experiments showed the existence of one homogeneous species with
an experimental sedimentation coefficient of 5.9 S (sy0,w = 6.24), which is compatible with a globular
species with a molecular mass of 93 kDa. Conversely, the results from sedimentation equilibrium
experiments agree well with the latter ones since they are well described by a unique species with a
molecular mass of 91 kDa. Consequently, analytic ultracentrifugation experiments demonstrate that
BpNDT in solution is well described as a unique, homogeneous species with a molecular mass that
agrees with that of a homohexamer (theoretical molecular mass of ByNDT estimated from its amino
acid sequence is 16,398 Da) in agreement with the crystallographic results.

2.4. Active Site of BPNDT

As an a priori cold-adapted enzyme, the crystal structure of ByNDT should offer the opportunity to
deduce potential structural features of the catalytic machinery of 2’-deoxyribosyltransferases reflecting
adaptations to low temperature. In this sense, the superposition of its crystal structure with those from
the mesophilic homologues LINDT and LhPDT (Figure 4A) revealed that the catalytic residues occupy
almost identical positions (Figure 4B), a characteristic that has been observed in other cases (see [32] for
a review). With the aim to check the participation of such residues in the catalytic mechanism within
the context of cold-adaptation, an exhaustive mutagenesis analysis was carried out by preparing a
battery of single-point variants of ByNDT (Table 5).

As expected, substitution of the nucleophile Glu85 abolished enzymatic activity of ByNDT.
This inactivating effect is obtained either by a shortening of the side chain while maintaining the
carboxylate moiety (Glu85Asp variant) or by an exchange of this carboxylate for an amide group
(Glu85GlIn variant). These results highlight the relevance of the specific orientation and position of
the nucleophile side chain in the proposed catalytic mechanism of 2’-deoxyribosyltransferases [20].
This can also be deduced from the Tyr5Phe variant where the removal of the hydroxyl group of the
Tyr5 side chain fully inactivates BpNDT, which reveals the critical role of the 2.9 A H-bond between
this OH group and the carboxylate OE2 atom of Glu85. On the other hand, the nearby Asp59 side chain
(Asp59Asn variant) also resulted essential in the catalytic mechanism, most probably participating
in the delocalization of the negative charge in the purine/pyrimidine ring during the cleavage of the
glycosidic bond as proposed for LhiPDT [20].

Replacement of GIn40 for Glu abolishes catalytic activity of ByNDT. In LINDT this residue was
demonstrated to interact with the O2 and N3 atoms of the pyrimidine ring, therefore being critical
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for the productive binding of pyrimidine bases [20,30]. This residue is substituted with Gly in the
type II 2/-deoxyrobosyltransferases LhPDT [20]. Remarkably, and in contrast to LINDT, the GIn40 side
chain in ByNDT is not orientated towards the substrate-binding pocket, presumably revealing that
dynamic properties of the 32-a3 connecting loop should be important for catalytic activity [20,23].
In fact, GIn40 and Leu41 from chain B are ill-defined in the electron density map that together with the
high B-factors of this loop is indicative of high flexibility. Probably, this should also be the case for the
33-a4 connecting loop of BNDT where Asp79 is located, which resulted essential for catalytic activity
(Asp79Asn variant) similarly to Asp92 in LINDT or Asp95 in LhPDT.

A ﬁl B2 a2
0

BpNDT = — ------ LASPE‘FNEE"LKHVSK LGH----TVFS NQLP-=-======
LINDT - -~ -MPKKT}84FGAGWETD! "‘quxz NPTIDLENSY DNQYKGIRV-DEH
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BpNDT EVEFGSFE_RTFVFKJ?EH] ADITFGIIGDNYD\ ETAWILE) syn.@ <PHMI;€SPT
LINDT PEYLHD! TATYN}» TNDIMLGVYIPDEE! G ALSQGH'! (LI*VIPD
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Figure 4. Structural analysis of the ByNDT active site. (A) Multiple sequence alignment of the
2'-deoxyribosyltransferases ByNDT, LINDT and LhPDT. Conserved residues are depicted in white,
bold characters within red boxes and highly similar ones in red characters. Catalytic important residues
are marked with asterisks. (B) Three dimensional superposition of catalytic residues from BpNDT
(yellow, sticks model; PDB code: 6evs), LINDT (cyan, sticks model; PDB code: 1f8y), and LhPDT
(magenta, sticks model; PDB code: 1s2d). Numbering is with respect ByNDT sequence (excluding
residues marked with and asterisk). The symbol # indicates residues from the accompanying
subunit. The ligand 2-methyl-pseudouridine (2-MPU) is shown to clarify the pyrimidine-binding
mode (PDB code: 1f8y). (C) Ribbon models of ByNDT, LINDT and LhEPDT (color code as above)
highlighting the different conformation of the catalytically important loop 32-a3.

Table 5. Impact of different mutations on the activity of BNDT .

Mutation None Tyr5Phe Tyr5His  GIn40Glu GIn40Lys Asp59Asn Asp59His Asp79Asn
Relative activity (%) 100 1.17 1.38 0 591 5.8 0 0

Mutation Asp79His  Glu85Asp Glu85GIn Glu85His Asn107Asp Asnl107His Lys142Tyr AK142
Relative activity (%) 0 0 0 0 0 2.12 97.72 21.5

a Reaction conditions: 0.40 ug of enzyme were incubated at 40 °C for 5 min with 10 mM 2’-dUrd and Ade in HEPES
50 mM buffer pH 8 in a final volume of 40 uL.

Finally, the catalytic role of the C-terminal residue of Lys142 is demonstrated in our study with the
variants Lys142Tyr and AK142. Our results agree with previous ones showing the critical role of the
carboxylate group of the C-terminal end [20,30,33]. In our case, the Lys142Tyr variant resulted as active
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as native ByNDT, whereas truncation of Lys142 retained significant activity (Table 5). Unfortunately,
the specific location of the Lys142 side chain of ByNDT could not be determined since the last four
amino acids were not interpretable in the 2F,-F, electron density presumably due to intrinsic disorder.

A molecular adaptation to low temperatures observed in some X-ray structures is that catalytic
cavities seem to be larger and more accessible to ligands in psychrophilic enzymes than in mesophilic
ones [34,35]. This can be achieved by a reduction in the length of the loops flanking the active sites,
the presence of distinct conformations and/or increases in local flexibility. In this regard, superposition
of the structures of ByNDT, LINDT and LhPDT reveals that the catalytically relevant 32-o3 connecting
loop shows a conformation highly variable in the three enzymes (Figure 4C). Also, it is very much
shorter in ByNDT (10 residues) than in LINDT or LAPDT (21 residues), which results in a more open
entrance to the binding pocket. Whereas the length and conformation of the rest of the loops around the
catalytic cavity (31-o1, 33-a4 and 4-«5) are similar between ByNDT and LINDT, the 34-«5 connecting
region in LhPDT is much longer than in ByNDT (13 residues versus 7, respectively). Interestingly, these
crystal structures also provide indications of dynamic regions through B-factor analysis. As shown in
Figure 5, crystallographic B-factors reveal that the 32-a3, 33-a4 and $4-o5 loops of ByNDT are much
flexible than in LINDT or LhPDT indicative of a cold-adaptation for ByNDT.

BpNDT

Figure 5. Analysis of flexibility regions of ByNDT, LINDT and LhPDT. (A) Crystallographic B-factors
are used as probes to reveal flexible regions within the structures the corresponding subunits. These
regions correspond to loops at the entrance to the substrate-binding site. B-factors are indicated by
color, from blue to red, and via a putty tube representation. Red regions correspond to more flexible
regions, which is clearer for ByNDT. (B) The flexible loops of ByNDT within the hexamer are located at
the equatorial region of the assembly, facing the bulk solvent.

2.5. Enzymatic Production of Nucleoside Analogues

Non-natural nucleosides were synthesized from specific bases and from the best natural
nucleosides, dUrd and dCyd (Table 6). ByNDT was able to catalyze the transfer reaction using
most of non-natural bases as acceptors, with a slight decrease in yield with respect to the
one described for L¥rNDT [18] when the donor is dUrd. As observed in the case of natural
bases, higher activities were obtained when purine bases were used, such as benzimidazole,
2,6-diaminopurine and 2-fluoroadenine. Furthermore, we observed efficient catalysis of the
synthesis of four nucleoside analogues: 5-hydroxymethyl-2’-deoxyuridine, 2-fluoro-2’-deoxyadenosine,
7-deaza-6-hydroxypurine-2'-deoxyriboside and theophylline-2’-deoxyriboside. ~ This result is
unprecedented for NDTs.
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Table 6. BpNDT-catalyzed synthesis of non-natural nucleosides from natural nucleosides and
non-natural bases 2.

Specific Activity, IU/mg Protein (Conversion, %) with Donor:

Acceptor
dUrd dCyd
5-Azacytosine (5-Acyt) 4.2 (42) ND
Benzimidazole (B) 7 (75) 6.2 (68)
5-Ethyluracil (5-Eura) 3.6 (40) 3.5 (40)
2-Fluoroadenine (2-FAde) 7.5 (86) 6.2 (72)
5-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione (TFThy) 4.2 (42) 3.5(35.5)
2,6-Diaminopurine (DAP) 8.9 (89) 7.4(82)
6-Mercaptopurine (6-M) 5.5 (55) 4 (40)
5-Chlorouracil (5-ClUra) 3.8 (38) 3.5(35)
5-Fluorocytosine (5-FCyt) ND 5 (50)
5-Fluoro-2-methoxy-4(1H)pyrimidinone (FMP) 1.15 (18) 0.4 (5)
5-Fluorouracil (5-FUra) 4.0 (40) 4.0 (40)
5-Bromouracil (5-BrUra) 0.5(3.6) 1.0 (3.5)
5-Iodouracil (5-IUra) 4.1 (41) 3.9(39)
7-Deaza-6-hydroxypurine (DHP) 1.6 (15) 1.6 (16)
5-Hydroxymethyluracil (5-HMUra) ND 4(42)
5-Methylcytosine (5-MCyt) 0.9 0.7
Theophylline (Teo) 4.5 (45) 4.2 (42)

2 Experimental conditions: 0.40 ug of enzyme at 40 °C for 2 h with 1.95 mM substrates in 50 mM HEPES buffer,
pH 8 in a final volume of 40 puL. ND, not detected.

3. Discussion

Nowadays, psychrophilic microorganisms are being paid much attention as a source of
cold-adapted enzymes with biotechnological interest, since these biocatalysts are more productive
at low temperatures than their mesophilic or thermophilic counterparts [1,2]. An example of
psychrotolerant bacteria is B. psychrosaccharolyticus (CECT 4074, ATCC 23296, DSM 6), which has
been used to investigate the mechanism of solvent stress. So, Hsp33, a stress response protein that
increases resistance of microorganisms in solvent stress conditions has been identified [36]. Likewise,
two enzymes with biotechnological application from B. psychrosaccharolyticus have been described:
(i) alanine racemase, which showed high catalytic activity even at 0°C and was extremely labile above
35 °C [37]; and (ii) lactate dehydrogenase, widely used in diagnostics and analytical applications [38].
Interestingly, B. psychrosaccharolyticus whole cells have been also reported to display nucleoside
2'-deoxyribosyltransferase activity [24] and the analysis of its genome permitted the identification of
the ndt gene that codifies a putative NDT [9]. Subsequently, this gene was cloned and overexpressed
and the recombinant protein produced and immobilized [25,39].

BpNDT is the first 2’-deoxyribosyltransferase studied among psychrotolerant bacteria. Substrate
specificity analyses show that it is a type II NDT since it catalyses the transfer of 2’-deoxyribose
between purines and pyrimidines. Remarkably, the dependence of its catalytic activity on temperature
reveals that ByNDT is not heat-labile (Figure 1), a characteristic of cold-adapted enzymes that results
from catalytic centres more mobile or flexible. Indeed, although we have observed that some loops
flanking the substrate cavity of ByNDT are more flexible than in the mesophilic LINDT or LhPDT
(Figures 4 and 5), it is obvious from the thermal inactivation experiments that this structural feature
does not result in a heat-labile enzyme: ByNDT exhibits highest activity at 40 °C and pH 8 [25]. In fact,
it is active under these conditions for a longer period of time than the mesophilic LrINDT: the half-time
at 60 °C of ByNDT (21.8 h) is remarkably higher than the one observed for LrNDT (17.9 min) [18].

A consequence of mobile and flexible active sites in psychrophilic enzymes is that they have higher
Ky values than their mesophilic counterparts [40]. In this case, BPNDT also behaves as a mesophilic
enzyme since the kinetic parameters we determined using dCyd and Ade as nucleoside donor and base
acceptor, respectively (dCyd: Ky = 2.0 & 0.3 mM and ket (571) = 24.6 & 0.1; Ado: Ky = 0.4 £ 0.1 mM and
keat (s71)=28240.1) compare well with published values for other mesophilic homologues [18,27,41,42].

The mesophilic character of ByNDT is also observed when analysing its unfolding behaviour,
either by calorimetry or by intrinsic fluorescence spectroscopy. The unfolding temperature value
determined in both cases is 49 °C, an unusually high value for a psychrophilic enzyme.
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Monovalent cations did not affect BNDT activity, in contrast to other reports [26]. It was only
diminished by the presence of some divalent cations (Co**, Cu®*, Mn?*, Zn?*) and AI**. That behaviour
could be related to an unspecific effect since ByNDT is not a metalloenzyme, and therefore these ions
would create an electrostatic environment where pKa values of functional groups involved in catalysis
and/or structure of the enzyme might be altered. Additionally, dramatic reduction of enzyme activity by
ALt might be due to the well-known pro-oxidant activity of aluminium. On the other hand, ByNDT has
no cysteines in its primary sequence and 2-mercaptoethanol did not interfere with its activity. Scarcity
or even absence, as in this case, of disulphide bridges is characteristic of cold-adapted enzymes [1,32].

Regarding substrate specificity, BPNDT accepts different natural and non-natural bases, showing a
clear preference for purines as base acceptors (Hyp > Ade > Cyt > Thy ~ Ura) and pyrimidine nucleosides
as donors (dCyd > dUrd ~ dThd ~ dAdo > dGuo > dIno). This substrate specificity is similar to other
well-known NDTs [12,18,19] except for the strong preference for Hyp as acceptor, only comparable with
that of L. lactis subsp. lactis NDT [26]. This result suggests that high specificity for Hyp is not exclusive for
type I NDTs, traditionally associated with the metabolism of dIno for that reason, among others [19].

The enzymatic production of different nucleoside analogues was also catalyzed by BpNDT,
obtaining different therapeutic nucleosides, such as 5-azacytosine-2’-deoxyriboside (decitabine, an FDA
approved drug for the treatment of myelodysplastic syndromes [43]), 2-fluoro-2’-deoxyadenosine
(a potential prodrug for suicide gene therapy [43]), 5-fluoro-2’-deoxyuridine (floxuridine, an FDA
approved drug for the treatment of advanced colon cancer, kidney cancer and stomach
cancer [14]) or 5-iodo-2'-deoxyuridine (idoxuridine, approved FDA drug for the treatment of herpes
simplex keratitis [14] among others). In addition, 5-hydroxymethyl-2’-deoxyuridine (5-HMdUrd),
an effective prodrug that produces DNA damage in BRCA1-/- and BRCA2-/- mutant cells [44],
7-deaza-6-hydroxypurine-2’-deoxyriboside (7-DHPdRib) and theophylline-2’-deoxyriboside were
synthesized for the first time by an NDT enzyme.

4. Materials and Methods

4.1. Chemicals

Culture media were purchased from Becton Dickinson (Franklin Lakes, NJ, USA). Substrates
(nucleosides, 2'-deoxynucleosides and bases) and all other chemical reagents were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cloning, Sequencing and Tagging of BPNDT

The gene encoding nucleoside 2'-deoxyribosyltransferase from B. psychrosaccharolyticus CECT 4074
was amplified by the Polymerase Chain Reaction (PCR) with a 6-His tag coding sequence added to its
5" end using pET28a(+)-BpNDT [25] as template. DNA amplification was performed under standard
conditions in a Mastercycler (Eppendorf, Hamburg, Germany) thermocycler using Pfu DNA polymerase.
The amplified 0.43-kb product was inserted into a pET28a(+) vector, purified with the High Pure Plasmid
Isolation Kit (Roche Diagnostics, Basel, Switzerland) and sequenced to confirm the absence of mutations.
This recombinant plasmid (pET28BpndtHis) was used to transform competent E. coli BL21 (DE3) cells
before growing them at 37 °C on LB (Luria Bertani) medium with kanamycin (50 pg/mL).

DNA manipulation and transformations were carried out according to standard methods [45].
DNA sequencing was performed by the dideoxy chain termination method [46] with an automated
sequencer, 3730 DNA Analyzer (Applied Biosystems, Foster City, CA, USA).

4.3. Production and Purification of Recombinant His-Tag BpNDT

E. coli BL21 (DE3) cells harboring pET28BpndtHis were grown at 37 °C in LB medium
supplemented with kanamycin (50 pug/mL). When cultures reached an optical density of 0.6 at
600 nm, expression of BpndtHis was induced with 0.5 mM IPTG for 2.5 h at the same temperature.
Cells were then harvested by centrifugation at 3500 x g for 10 min, resuspended in buffer A (20 mM
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sodium phosphate, 500 mM NaCl, 10 mM imidazole buffer, pH 7.5) and disrupted by sonication on ice
employing a Digital Sonifier 450 (Branson Ultrasonics Corporation, Danbury, CT, USA). The resulting
cell extract was applied onto a 1 mL Nickel Rapid Run Cartridge (ABT, Torrejon de Ardoz, Spain)
equilibrated with buffer A and washed at a flow rate of 1 mL/min until the eluate contained no protein.
Adsorbed protein was then eluted using buffer B (20 mM sodium phosphate, 500 mM NaCl, 500 mM
imidazole buffer at pH 7.5). Purified BpNDT-His was analyzed by SDS-PAGE using a gel containing
15% acrylamide [47]. Protein concentration was measured by the Bradford method [48].

4.4. Site Directed Mutagenesis of His-tag BPNDT

pET28a(+)BpndtHis was used as template to perform site directed mutagenesis of His-tag BPNDT
using Quikchange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA).
The following 15 single-residue mutations were introduced: Y5E Y5H, Q40E, Q40K, D59N, D59H,
D79N, D79H, E85D, E85Q, E85H, N107D, N107H, K142Y and AK142. Resulting plasmids were
sequenced to confirm the intended mutation or deletion and were used to transform E. coli BL21 (DE3)
cells. Expression and purification of mutated proteins were carried out as described above for the
native one.

4.5. N-Deoxyribosyltransferase Assay

Reaction mixtures contained 0.40 ug of electrophoretically pure enzyme, 10 mM 2’-deoxyuridine
and 10 mM adenine in 50 mM HEPES buffer, pH 8.0 in a final volume of 40 pL. Reactions were
conducted at 40 °C with shaking (30 r.p.m.) for 5 min and were stopped by addition of 40 uL of cold
methanol and heating for 5 min at 95 °C. After centrifugation at 9000x g for 2 min, supernatants
were half-diluted with water and analyzed by HPLC using an Agilent 1100 Series system (Agilent,
Santa Clara, CA, USA) equipped with an ACE® C18-PFP column (dimensions: 250 x 46 mm;
particle size: 5 um) (Advanced Chromatography Technologies Ltd., Aberdeen, UK) at a flow rate of
0.980 mL/min. The nucleoside product was eluted into the diode array detector for quantification
at 254 nm by applying two successive gradients: 100 to 90% trimethyl ammonium acetate and 0 to
10% acetonitrile in ten minutes followed by 90 to 100% trimethyl ammonium acetate and 10 to 0%
acetonitrile in ten minutes. One unit of enzyme activity was defined as the amount of enzyme required
to produce 1 umol of product per minute under these conditions.

Synthesis of natural nucleosides was studied using 10 mM substrates (2’-deoxyribonucleosides
and bases) while 2 mM was used for non-natural nucleosides. The buffer was 50 mM HEPES at pH 8.0
in both cases.

Retention times for reference compounds were as follows:

(a) Natural compounds: uracil (Ura): 5.41 min; 2’-deoxyuridine (dUrd): 9.16 min; adenine (Ade):
10.14 min; 2’-deoxyadenosine (dAdo): 15.50 min; hypoxanthine (Hyp): 7.34 min; 2’-deoxyinosine
(dIno): 10.95 min; cytosine (Cyt): 4.14 min; 2’-deoxycytidine (dCyd): 8.22; thymine (Thy): 9.13 min;
thymidine (dThd): 13.25; uric acid (UAc): 3.50 min; 2’-deoxyguanosine (dGuo): 13.25 min.

(b) Non-natural compounds: 5-fluorouracil (5-FUra): 5.94 min; 5-chlorouracil (5-ClUra):
8.71 min; 5-fluorocytosine (5-FCyt): 5.41 min; 5-bromouracil (5-BrUra): 10.28 min; 5-iodouracil
(5-IUra): 13.10 min; 5-fluoro-2-methoxy-4(1H)pirimidinone (5-FMP): 8.47 min; 2,6-diaminopurine
(2,6-DAP): 8.71 min; 6-mercaptopurine (6-M): 8.85 min; benzimidazole (B): 24.26 min; 5-azacytosine
(5-azaCyt): 3.52 min; N-benzoyl adenine (N-BAde): 26.06 min; 5-ethyluracil (5-EtUra): 11.49 min;
2-fluoroadenine (2-FAde): 10.14 min; trifluorothymine (5-tFThy): 9.63 min; 7-deaza-6-hydroxypurine
(7-DHP): 826 min; 4-hydroxy-2-mercapto-6-methylpyrimidine (4-HMMeP): 6.94 min;
6-propyl-2-thiouracil (6-PTUra): 18.13 min; 6-methyluracil (6-MeUra): 7.33 min; 5-hydroxymethyluracil
(5-HMeUra): 4.71 min; 5-methylcytosine (5-MeCyt): 6.51 min; theophylline (Theo): 18.75 min;
5-fluoro-2’-deoxyuridine (5-FdUrd): 9.8 min; 5-fluoro-2’-deoxycytidine (5-FdCyd): 9.16 min;
5-chloro-2’-deoxyuridine (5-CldUrd): 13.3 min; 5-bromo-2’-deoxyuridine (5-BrdUrd): 15.7 min;
5-iodo-2'-deoxyuridine (5-IdUrd): 17.73 min; 5-fluoro-2-metoxy-4(1H)pirimidinone-2'-deoxyribose
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(5-FMPdRib):  13.42 min; 2,6-diaminopurine-2’-deoxyribose (2,6-DAPdRib): 1429 min;
6-mercaptopurine-2’-deoxyribose  (6-MdRib): 11.96 min; benzimidazole-2'-deoxyribose
(BdRib): 28.95 min; 5-aza-2’-deoxycytidine (5-azadCyd): 7.14 min; 5-ethyl-2’-deoxyuridine
(5-EtdUrd): 14.82 min; 2-fluoro-2’-deoxyadenosine (2-FdAdo): 15.41 min; 5-trifluorothymidine
(5-tFdThd): 1149 min; 7-deaza-6-hydroxypurine-2’-deoxyribose (7-DHPdRib): 11.87 min;
5-hydroxymethyl-2’-deoxyuridine (5-HMedUrd): 7.42 min; 5-methyl-2’-deoxycytidine (5-MedCyd):
8.75 min; theophylline-2’-deoxyriboside (TheodRib): 22.9 min.

4.6. Thermal Inactivation Studies

Thermal inactivation kinetics were studied by incubating enzyme aliquots for different times
(2 to 96 h) at several temperatures ranging from 40 to 70 °C. After thermal treatment, aliquots were
put on ice for 5 minutes and the remaining activity was determined by incubating 5 uL of the
treated enzyme with 10 mM 2’-deoxycytidine and 10 mM adenine and quantifying synthesis of
2’-deoxyadenosine at 40 °C in 50 mM HEPES buffer at pH 8.0.

Data were fit to single exponential decays assuming first-order, unimolecular and irreversible
reactions involving only two different enzymatic states (Eactive — Einactive). This is algebraically
described by Equation (1):

A = Ag-e Kinact (1)

where A and Ay are the residual and initial activities, respectively, for a given inactivation time (¢) and
Kinac s the first-order inactivation rate constant.

4.7. Effect of lonic Strength and Cations on Enzyme Activity

The effect of ionic strength on 2'-deoxyribosyltransferase activity was studied by incubating
0.40 pg of enzyme with different concentrations of NaCl (0-1.5 M) in 50 mM HEPES buffer,
pH 8.0 at 40 °C under standard conditions described for enzymatic assay. Similarly, synthesis of
2'-deoxyadenosine from 10 mM 2’-deoxyuridine and 10 mM adenine was evaluated in presence of
different monovalent and divalent cations. Reaction mixtures contained 1 or 5 mM of the corresponding
salts of monovalent (K,SOy4, KCl, LiCl, Nay,SOy4, NaCl and RbCl) and divalent (BaCl,, CaCl,, CoCl,,
CuSOy4, MgSO4, MgCly, MnCl, and ZnSOy) cations. Additionally, the effects of (NH4)»,SO4, Alp(SO4)s3,
FeCl3, EDTA and 2-mercaptoethanol were also studied.

4.8. Analytical Ultracentrifugation Analysis

Sedimentation velocity and sedimentation equilibrium experiments for BpNDT were performed
in 50 mM potassium phosphate buffer, pH 7.0 at 50,000 g using an Optima XL-1 analytical
ultracentrifuge (Beckman—Coulter Life Sciences, Indianapolis, IN, USA), equipped with absorbance
optics, an An-60 Ti rotor and standard (12-mm optical path) double-sector center pieces of
charcoal-filled Epon. Baseline offsets were determined at 200,000x g. The apparent sedimentation
coefficient distribution, c(s), and sedimentation coefficient s were calculated from sedimentation
velocity data using program SEDFIT 12.52 [49]. The whole-cell weight-average bM,, (buoyant molar
mass) values were obtained by fitting experimental data to the equation for the radial concentration
distribution of an ideal solute at sedimentation equilibrium, using program HETEROANALYSIS
1.1.44 [50]. The corresponding apparent weight-average molar masses (M,,) were determined from the
buoyant masses, taking into account the partial specific volumes of the protein (0.738 mL/g) obtained
from the amino acid composition using program SEDNTERP version 201220111 BETA [51].

4.9. Enzyme Crystallization and Data Collection

Crystallization of ByNDT was performed at 291 K by the sitting-drop vapour diffusion method
with Innovaplate SD-2 96-well plates using a Nanodrop Innovadyne robot. Each drop contained
250 nL of protein (9 mg/mL) in Tris-HCI buffer (20 mM Tris—HCl pH 8.0 containing 0.1 M NaCl) and
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250 nL of reservoir solution. Drops were equilibrated against 65 pL reservoir solution. Crystals were
observed in numerous conditions from all tested screens. After scaling and optimisation of preliminary
crystallization conditions, high-quality diffraction crystals were prepared in 3 M sodium nitrate, 0.1 M
sodium acetate trihydrate, pH 4.6 (protein/precipitant drop ratio 1:2).

For diffraction data collection, BPNDT crystals were transferred to an optimized cryoprotectant
solution consisting of mother liquor plus 10% (v/v) 2-methyl-2,4-pentanediol before being cooled to
100 K in a cold nitrogen-gas stream. Diffraction data were recorded on a Pilatus 6M pixel detector
(Dectris LTD) at beamline ID29 at the European Synchrotron Radiation Facility (ESRF) (Grenoble,
France). A total of 1800 images were collected with a 0.1° oscillation angle. Diffraction images were
processed with XDS [52] and the space group examination was performed with POINTLESS from the
Collaborative Computational Project N° 4 (CCP4) software package [53]. Crystals of ByNDT belonged
to the trigonal space group R3, with two molecules in the asymmetric unit and 41% solvent content
within the unit cell. A summary of data collection statistics is provided in Table 4.

4.10. Structure Solution and Refinement

The structure of ByNDT was solved by molecular replacement using phenix. phaser [54].
The atomic coordinates of nucleoside 2’-deoxyribosyltransferase from Lactobacillus helveticus were used
as search model (LhPDT; PDB entry 152G). Model rebuilding was performed manually using COOT [55]
and refinement was carried out with phenix.refine [56] in PHENIX [57]. Refinement steps included
xyz refinement, TLS (Translation, Libration, Screw), individual atomic displacement parameters
(ADPs), addition of ligands and solvent molecules. The refined structure has a final R-factor of 18.5%
(Rfree = 22.3%) for data up to 1.90 A. Analysis of the interfacial surfaces was done with the PISA
server [31]. Analysis of the secondary structure was done with the DSSP (Dictionary of Secondary
Structure of Proteins) server [58]. Stereochemistry validation was done with the Phenix MolProbity
tool plus de wwPDB Deposition server. PYMOL [59] was used for structure visualization and figure
preparation. Data collection and refinement statistics are listed in Table 1.

4.11. Spectroscopic Studies

The molar extinction coefficient of the native enzyme (enat) was determined using an accurate
method which includes both measured and calculated properties [58] and uses Equation (2):

Anat _ €nat )
Aunf Eunf

where Apat was the absorbance at 280 nm of ByNDT (70 pg/mL) in 10 mM potassium phosphate buffer,
pH 7.0; Aunf is that for unfolded protein (in presence of 6 M guanidine hydrochloride) and ¢, is the
molar extinction coefficient of the unfolded protein, which was calculated to be 30,940 M~1.em™! from the
amino acid composition of the enzyme using ProtParam program (http://web.expasy.org/protparam).

The effect of temperature on fluorescence spectra of pure ByNDT was evaluated from 20 to 80 °C
increasing 20 °C/h, using an excitation wavelength of 295 nm. Fluorescence emission spectra were
recorded using an SLM-Aminco-Bowman Series 2 spectrofluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with thermostatted cell holder with 0.4 cm and 1 cm path-lengths for
excitation and emission, respectively. Both excitation and emission slit widths were 5 nm. The scan
rates were 60 nm/min. Protein concentration was 0.1 mg/mL in 50 mM potassium phosphate buffer,
pH7.0.

4.12. Differential Scanning Calorimetry Studies

Differential scanning calorimetry (DSC) studies were performed using a Microcalorimeter VP-DSC
calorimeter (Malvern Instruments, Malvern, UK). Five scans of pure BpNDT (0.36 mg/mL in 50 mM
potassium phosphate buffer, pH 7.0) were recorded from 15 to 90 °C at a scan rate of 20 °C/h.
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4.13. Kinetic Studies

Kinetic parameters were calculated for the synthesis of 2’-deoxyadenosine from 2’-deoxycytidine
and adenine with one substrate fixed at different concentrations (1, 2.5, 5, 7.5, 10, 15 mM) while
varying the other one from 0.25 to 60 mM. Ky and kcat were determined by fitting velocity data to the
Michaelis—-Menten model using non-linear regression analysis.

4.14. Accession Number

The atomic coordinates and structure factors have been deposited in the Protein Data Bank with
the accession code 6EVS.

5. Conclusions

The present work on BpNDT has provided structural and biochemical results that are apparently
inconsistent regarding the adaptation of this enzyme to work at low temperatures. Hence, the thermal
inactivation and unfolding experiments on BpyNDT showed that this enzyme is not heat labile,
presenting unfolding curves typical for a mesophilic enzyme. Conversely, the structural analyses
do not reveal clear-cut features characteristic of cold-adapted enzymes. In particular, the catalytic
machinery of ByNDT is essentially identical to that of mesophilic homologues and a great number
of stabilizing interactions involved in the association of subunits within the homohexamer can be
identified. In this regard, it should be remarked that most cellular adaptations to low temperatures
and the underlying molecular mechanisms are not fully understood and although general trends at
the molecular level are expected to exist explaining cold-adaptation, it cannot be discarded individual
strategies for each protein based on specific combinations of structural alterations [32]. In the case of
BpNDT, we believe that features derived from its multimeric nature such as the specific topological
features of this oligomer in which active sites face the solvent in an equatorial arrangement with loops
at their entrances endowed with local flexibility may be critical factors underpinning its adaptation
to low temperatures. Yet, we believe that our results highlight the necessity to integrate molecular
information coming from functional and structural analyses of individual macromolecules into the
high level cellular processes where they participate to fully explain cold-adaptation.

Finally, in this work, we have shown that one-pot, one-step nucleoside synthesis catalyzed by
BpNDT represents a valuable alternative to chemical methods and nucleoside phosphorylases [60].
Furthermore, ByNDT is an interesting biocatalyst from an industrial point of view, since it can perform
at 40 °C but also at low temperatures, minimizing undesirable chemical reactions that can occur at
higher temperatures and protecting heat-labile substrates [61].

Acknowledgments: This work was supported by grant CTQ2009-11543 from the Spanish Ministry of Science
and Innovation and grant 52009 /PPQ-1752 (CAPOTE) from Comunidad de Madrid. José Miguel Manchefio
acknowledges the ESRF for provision of synchrotron radiation facilities.

Author Contributions: 1.d.LM., JM.M.,, J.E-L. and A.E-T. conceived and designed the experiments. All the
participants contributed to the development and analysis of experimental data. .d.1.M., JM.M., ].E-L., A.E-T. and
ER. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.S.; Williams, T.J. Biotechnological uses of
enzymes from psychrophiles. Microb. Biotechnol. 2011, 4, 449-460. [CrossRef] [PubMed]

2. Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low-temperature extremophiles and their
applications. Curr. Opin. Biotechnol. 2002, 13, 253-261. [CrossRef]

3. Gerday, C.; Aittaleb, M.; Bentahir, M.; Chessa, ].P.; Claverie, P.; Collins, T.; D’Amico, S.; Dumont, J.;
Garsoux, G.; Georlette, D.; et al. Cold-adapted enzymes: From fundamentals to biotechnology.
Trends Biotechnol. 2000, 18, 103-107. [CrossRef]


http://dx.doi.org/10.1111/j.1751-7915.2011.00258.x
http://www.ncbi.nlm.nih.gov/pubmed/21733127
http://dx.doi.org/10.1016/S0958-1669(02)00317-8
http://dx.doi.org/10.1016/S0167-7799(99)01413-4

Catalysts 2018, 8,8 17 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D’Amico, S.; Claverie, P,; Collins, T.; Georlette, D.; Gratia, E.; Hoyoux, A.; Meuwis, M.A; Feller, G.; Gerday, C.
Molecular basis of cold adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2002, 357, 917-925. [CrossRef]
[PubMed]

Morita, R.Y. Psychrophilic bacteria. Bacteriol. Rev. 1975, 39, 144-167. [PubMed]

Feller, G.; Gerday, C. Psychrophilic enzymes: Molecular basis of cold adaptation. Cell. Mol. Life Sci. 1997, 53,
830-841. [CrossRef] [PubMed]

Larkin, J.M.; Stokes, J.L. Taxonomy of psychrophilic strains of Bacillus. ]. Bacteriol. 1967, 94, 889-895.
[PubMed]

Seo, J.B.; Kim, H.S,; Jung, G.Y.; Nam, M.H.; Chung, J.H.; Kim, J.Y.; Yoo, ].S.; Kim, C.W.; Kwon, O.
Psychrophilicity of Bacillus psychrosaccharolyticus: A proteomic study. Proteomics 2004, 4, 3654-3659.
[CrossRef] [PubMed]

Fresco-Taboada, A.; del Cerro, C.; Fernandez-Lucas, ].; Arroyo, M.; Acebal, C.; Garcia, ].L.; de la Mata, I. Genome
of the psychrophilic bacterium Bacillus psychrosaccharolyticus, a potential source of 2’-deoxyribosyltransferase
for industrial nucleoside synthesis. Genome Announc. 2013, 1. [CrossRef] [PubMed]

Lewkowicz, E.S.; Iribarren, A.M. Nucleoside phosphorylases. Curr. Org. Chem. 2006, 10, 1197-1215.
[CrossRef]

Mikhailopulo, I.A. Biotechnology of nucleic acid constituents—State of the art and perspectives. Curr. Org. Chem.
2007, 11, 317-333. [CrossRef]

Fresco-Taboada, A.; de la Mata, I.; Arroyo, M.; Fernandez-Lucas, ]J. New insights on nucleoside
2/'-deoxyribosyltransferases: A versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs.
Appl. Microbiol. Biotechnol. 2013, 97, 3773-3785.

Galmarini, C.M.; Mackey, ].R.; Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment.
Lancet Oncol. 2002, 3, 415-424. [CrossRef]

Jordheim, L.P,; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and
nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447-464. [CrossRef]
[PubMed]

Brandon, M.L.; Mj, L.; Chaung, W.; Teebor, G.; Boorstein, R.J. 5-Chloro-2'-deoxyuridine cytotoxicity results
from base excision repair of uracil subsequent to thymidylate synthase inhibition. Mutat. Res. 2000, 459,
161-169. [CrossRef]

Sato, A.; Hiramoto, A.; Uchikubo, Y.; Miyazaki, E.; Satake, A.; Naito, T.; Hiraoka, O.; Miyake, T.; Kim, H.S,;
Wataya, Y. Gene expression profiles of necrosis and apoptosis induced by 5-fluoro-2’-deoxyuridine. Genomics
2008, 92, 9-17. [CrossRef] [PubMed]

Médici, R.; Lewkowicz, E.S.; Iribarren, A.M. Microbial synthesis of 2,6-diaminopurine nucleosides. J. Mol.
Catal. B Enzym. 2006, 39, 40—44. [CrossRef]

Fernandez-Lucas, ].; Acebal, C.; Sinisterra, J.V.; Arroyo, M.; de la Mata, 1. Lactobacillus reuteri
2'-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl. Environ. Microbiol. 2010, 76,
1462-1470. [CrossRef] [PubMed]

Kaminski, P.A. Functional cloning, heterologous expression, and purification of two different
N-deoxyribosyltransferases from Lactobacillus helveticus. |. Biol. Chem. 2002, 277, 14400-14407. [CrossRef]
[PubMed]

Anand, R.; Kaminski, P.A ; Ealick, S.E. Structures of purine 2/ -deoxyribosyltransferase, substrate complexes,
and the ribosylated enzyme intermediate at 2.0 A resolution. Biochemistry 2004, 43, 2384-2393. [CrossRef]
[PubMed]

Lawrence, K.A.; Jewett, M\W.,; Rosa, P.A.; Gherardini, EC. Borrelia burgdorferi bb0426 encodes a
2’-deoxyribosyltransferase that plays a central role in purine salvage. Mol. Microbiol. 2009, 72, 1517-1529.
[CrossRef] [PubMed]

Bosch, J.; Robien, M.A.; Mehlin, C.; Boni, E.; Riechers, A.; Buckner, ES.; Van Voorhis, W.C.; Myler, P]J.;
Worthey, E.A.; DeTitta, G.; et al. Using fragment cocktail crystallography to assist inhibitor design of
Trypanosoma brucei nucleoside 2-deoxyribosyltransferase. J. Med. Chem. 2006, 49, 5939-5946. [CrossRef]
[PubMed]

Crespo, N.; Sanchez-Murcia, PA.; Gago, F; Cejudo-Sanches, J.; Galmes, M.A.; Fernandez-Lucas, J.;
Manchefio, ].M. 2/-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot,


http://dx.doi.org/10.1098/rstb.2002.1105
http://www.ncbi.nlm.nih.gov/pubmed/12171655
http://www.ncbi.nlm.nih.gov/pubmed/1095004
http://dx.doi.org/10.1007/s000180050103
http://www.ncbi.nlm.nih.gov/pubmed/9413552
http://www.ncbi.nlm.nih.gov/pubmed/6051360
http://dx.doi.org/10.1002/pmic.200401025
http://www.ncbi.nlm.nih.gov/pubmed/15529406
http://dx.doi.org/10.1128/genomeA.00309-13
http://www.ncbi.nlm.nih.gov/pubmed/23723405
http://dx.doi.org/10.2174/138527206777697995
http://dx.doi.org/10.2174/138527207780059330
http://dx.doi.org/10.1016/S1470-2045(02)00788-X
http://dx.doi.org/10.1038/nrd4010
http://www.ncbi.nlm.nih.gov/pubmed/23722347
http://dx.doi.org/10.1016/S0921-8777(99)00061-0
http://dx.doi.org/10.1016/j.ygeno.2008.02.002
http://www.ncbi.nlm.nih.gov/pubmed/18572099
http://dx.doi.org/10.1016/j.molcatb.2006.01.024
http://dx.doi.org/10.1128/AEM.01685-09
http://www.ncbi.nlm.nih.gov/pubmed/20048065
http://dx.doi.org/10.1074/jbc.M111995200
http://www.ncbi.nlm.nih.gov/pubmed/11836245
http://dx.doi.org/10.1021/bi035723k
http://www.ncbi.nlm.nih.gov/pubmed/14992575
http://dx.doi.org/10.1111/j.1365-2958.2009.06740.x
http://www.ncbi.nlm.nih.gov/pubmed/19460093
http://dx.doi.org/10.1021/jm060429m
http://www.ncbi.nlm.nih.gov/pubmed/17004709

Catalysts 2018, 8,8 18 of 19

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

one-step synthesis of nucleosides from poorly soluble purine bases. Appl. Microbiol. Biotechnol. 2017, 101,
7187-7200. [CrossRef] [PubMed]

Fernandez-Lucas, J.; Condezo, L.A.; Martinez-Lagos, F; Sinisterra, ].V. Synthesis of 2’-deoxyribosylnucleosides
using new 2'-deoxyribosyltransferase microorganism producers. Enzym. Microb. Technol. 2007, 40, 1147-1155.
[CrossRef]

Fresco-Taboada, A.; Serra, I.; Fernandez-Lucas, J.; Acebal, C.; Arroyo, M.; Terreni, M.; de la Mata, I. Nucleoside
2'-deoxyribosyltransferase from psychrophilic bacterium Bacillus psychrosaccharolyticus—Preparation of
an immobilized biocatalyst for the enzymatic synthesis of therapeutic nucleosides. Molecules 2014, 19,
11231-11249. [CrossRef] [PubMed]

Miyamoto, Y.; Masaki, T.; Chohnan, S. Characterization of N-deoxyribosyltransferase from Lactococcus lactis
subsp lactis. BBA Proteins Proteom. 2007, 1774, 1323-1330. [CrossRef] [PubMed]

Kaminski, P.A.; Dacher, P.; Dugué, L.; Pochet, S. In vivo reshaping the catalytic site of nucleoside
2'-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution.
J. Biol. Chem. 2008, 283, 20053-20059. [CrossRef] [PubMed]

Holm, L.; Rosenstrom, P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010, 38, W545-W549.
[CrossRef] [PubMed]

Ye, Y.; Godzik, A. Flexible structure alignment by chaining aligned fragment pairs allowing twists.
Bioinformatics 2003, 19, ii246—-ii255. [CrossRef] [PubMed]

Armstrong, S.R.; Cook, WJ,; Short, S.A,; Ealick, S.E. Crystal structures of nucleoside
2’-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site.
Structure 1996, 4, 97-107. [CrossRef]

Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. . Mol. Biol. 2007,
372,774-797. [CrossRef] [PubMed]

Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold-adaptation. Nat. Rev. Microbiol. 2003, 1,
200-208. [CrossRef] [PubMed]

Short, S.A.; Armstrong, S.R.; Ealick, S.E.; Porter, D.J. Active site amino acids that participate in the catalytic
mechanism of nucleoside 2’-deoxyribosyltransferase. J. Biol. Chem. 1996, 271, 4978-4987. [PubMed]
Russell, R.J.; Gerike, U.; Danson, M.].; Hough, D.W.,; Taylor, G.L. Structural adaptations of the cold-active
citrate synthase from an Antarctic bacterium. Structure 1988, 6, 351-361. [CrossRef]

Aghajari, N.; Van Petegem, F; Villeret, V.; Chessa, ]J.P.; Gerday, C.; Haser, R.; Van Beeumen, J. Crystal
structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold adapted proteases.
Proteins 2003, 50, 636—647. [CrossRef] [PubMed]

Kang, H.; Heo, D.; Choi, S.; Kim, K.; Shim, J.; Kim, C.; Sung, H.; Yun, C. Functional characterization of
Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent
stress. Biochem. Biophys. Res. Commun. 2007, 358, 743-750. [CrossRef] [PubMed]

Okubo, Y.; Yokoigawa, K.; Esaki, N.; Soda, K.; Misono, H. High catalytic activity of alanine racemase from
psychrophilic Bacillus psychrosaccharolyticus at high temperatures in the presence of pyridoxal 5'-phosphate.
FEMS Microbiol. Lett. 2000, 192, 169-173. [CrossRef]

Nandakumar, R.; Mattiasson, B. Affinity isolation of a cold-adapted enzyme: Lactate dehydrogenase from
Bacillus psychrosaccharolyticus. Bioseparation 1999, 7, 327-331. [CrossRef] [PubMed]

Fresco-Taboada, A.; Serra, I.; Arroyo, M.; Fernandez-Lucas, J.; de la Mata, I; Terreni, M. Development of
an immobilized biocatalyst based on Bacillus psychrosaccharolyticus NDT for the preparative synthesis of
trifluridine and decytabine. Catal. Today 2016, 259, 197-204. [CrossRef]

Xu, Y,; Feller, G.; Gerday, C.; Glansdorff, N. Metabolic enzymes from psychrophilic bacteria: Challenge of
adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. |. Bacteriol. 2003,
185,2161-2168. [CrossRef] [PubMed]

Danzin, C.; Cardinaud, R. Deoxyribosyl transfer catalysis with trans-N-deoxyribosylase. Eur. |. Biochem.
1976, 62, 365-372. [CrossRef] [PubMed]

Porter, D.J.; Short, S.A. Nucleoside 2-deoxyribosyltransferase. Pre-steady-state kinetic analysis of native
enzyme and mutant enzyme with an alanyl residue replacing Glu-98. J. Biol. Chem. 1995, 270, 15557-15562.
[CrossRef] [PubMed]

Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer.
Chem. Rev. 2009, 109, 2880-2893. [CrossRef] [PubMed]


http://dx.doi.org/10.1007/s00253-017-8450-y
http://www.ncbi.nlm.nih.gov/pubmed/28785897
http://dx.doi.org/10.1016/j.enzmictec.2006.08.022
http://dx.doi.org/10.3390/molecules190811231
http://www.ncbi.nlm.nih.gov/pubmed/25090115
http://dx.doi.org/10.1016/j.bbapap.2007.08.008
http://www.ncbi.nlm.nih.gov/pubmed/17881307
http://dx.doi.org/10.1074/jbc.M802706200
http://www.ncbi.nlm.nih.gov/pubmed/18487606
http://dx.doi.org/10.1093/nar/gkq366
http://www.ncbi.nlm.nih.gov/pubmed/20457744
http://dx.doi.org/10.1093/bioinformatics/btg1086
http://www.ncbi.nlm.nih.gov/pubmed/14534198
http://dx.doi.org/10.1016/S0969-2126(96)00013-5
http://dx.doi.org/10.1016/j.jmb.2007.05.022
http://www.ncbi.nlm.nih.gov/pubmed/17681537
http://dx.doi.org/10.1038/nrmicro773
http://www.ncbi.nlm.nih.gov/pubmed/15035024
http://www.ncbi.nlm.nih.gov/pubmed/8617773
http://dx.doi.org/10.1016/S0969-2126(98)00037-9
http://dx.doi.org/10.1002/prot.10264
http://www.ncbi.nlm.nih.gov/pubmed/12577270
http://dx.doi.org/10.1016/j.bbrc.2007.04.184
http://www.ncbi.nlm.nih.gov/pubmed/17512907
http://dx.doi.org/10.1016/S0378-1097(00)00427-4
http://dx.doi.org/10.1023/A:1008103611658
http://www.ncbi.nlm.nih.gov/pubmed/10643641
http://dx.doi.org/10.1016/j.cattod.2015.06.032
http://dx.doi.org/10.1128/JB.185.7.2161-2168.2003
http://www.ncbi.nlm.nih.gov/pubmed/12644485
http://dx.doi.org/10.1111/j.1432-1033.1976.tb10168.x
http://www.ncbi.nlm.nih.gov/pubmed/1082813
http://dx.doi.org/10.1074/jbc.270.26.15557
http://www.ncbi.nlm.nih.gov/pubmed/7797551
http://dx.doi.org/10.1021/cr900028p
http://www.ncbi.nlm.nih.gov/pubmed/19476376

Catalysts 2018, 8,8 19 of 19

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

Clement, J.; Nakamura, J. 5—Hydroxymethyl-2’ -deoxyuridine, but not temozolomide, enhances the selective
synthetic lethality in BRCA1 and BRCAZ2- deficient cells caused by PARP inhibition. Cancer Res. 2013, 73.
[CrossRef]

Sambrook, J.; Fritsch, E.J.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor
Laboratory Press: Cold Spring Harbor, NY, USA, 1989.

Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad.
Sci. USA 1977, 72, 5463-5464. [CrossRef]

Laemmli, UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature
1970, 227, 680-685. [CrossRef] [PubMed]

Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254. [CrossRef]

Brown, P.H.; Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical
ultracentrifugation. Biophys. J. 2006, 90, 4651-4661. [CrossRef] [PubMed]

Cole, J.L. Analysis of heterogeneous interactions. Methods Enzymol. 2004, 384, 212-232. [PubMed]

Minton, A.; Jaenicke, R.; Durchschlag, H. Alternative Strategies for the Characterization of Associations in
Multicomponent Solutions via Measurement of Sedimentation Equilibrium Analytical Ultracentrifugation IV. Progress
in Colloid and Polymer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 107, pp. 11-19.
Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D
Biol. Crystallogr. 2010, 66, 133-144. [CrossRef] [PubMed]

Evans, PR. An introduction to data reduction: Space-group determination, scaling and intensity statistics.
Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 282-292. [CrossRef] [PubMed]

McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr.
Sect. D Biol. Crystallogr. 2007, 63, 32—41. [CrossRef] [PubMed]

Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D
Biol. Crystallogr. 2010, 66, 486-501. [CrossRef] [PubMed]

Afonine, P.V,; Grosse-Kunstleve, RW.; Echols, N.; Headd, ]J.J.; Moriarty, N.W.; Mustyakimov, M.;
Terwilliger, T.C.; Urzhumtsev, A.; Zwart, PH.; Adams, P.D. Towards automated crystallographic structure
refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 352-367. [CrossRef]
[PubMed]

Adams, P.D.; Afonine, P.V.; Bunkéczi, G.; Chen, V.B.; Davis, LW.; Echols, N.; Headd, J.J.; Hung, LW.;
Kapral, G.J.; Grosse-Kunstleve, RW.; et al. PHENIX: A comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 213-221. [CrossRef]
[PubMed]

Touw, W.G.; Baakman, C.; Black, J.; te Beek, T.A.; Krieger, E.; Joosten, R.P; Vriend, G. A series of PDB-related
databanks for everyday needs. Nucleic Acids Res. 2015, 43, D364-D368. [CrossRef] [PubMed]

DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: San Carlos, CA, USA, 2002.
Bzowska, A.; Kulikowska, E.; Shugar, D. Purine nucleoside phosphorylases: Properties, functions,
and clinical aspects. Pharmacol. Ther. 2000, 88, 349-425. [CrossRef]

Jeon, J.; Kim, ].T.; Kang, S.; Lee, ].H.; Kim, S.J. Characterization and its potential application of two esterases
derived from the Arctic sediment metagenome. Mar. Biotechnol. 2009, 11, 307-316. [CrossRef] [PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1158/1538-7445.AM2013-4486
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1038/227680a0
http://www.ncbi.nlm.nih.gov/pubmed/5432063
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1529/biophysj.106.081372
http://www.ncbi.nlm.nih.gov/pubmed/16565040
http://www.ncbi.nlm.nih.gov/pubmed/15081689
http://dx.doi.org/10.1107/S0907444909047374
http://www.ncbi.nlm.nih.gov/pubmed/20124693
http://dx.doi.org/10.1107/S090744491003982X
http://www.ncbi.nlm.nih.gov/pubmed/21460446
http://dx.doi.org/10.1107/S0907444906045975
http://www.ncbi.nlm.nih.gov/pubmed/17164524
http://dx.doi.org/10.1107/S0907444910007493
http://www.ncbi.nlm.nih.gov/pubmed/20383002
http://dx.doi.org/10.1107/S0907444912001308
http://www.ncbi.nlm.nih.gov/pubmed/22505256
http://dx.doi.org/10.1107/S0907444909052925
http://www.ncbi.nlm.nih.gov/pubmed/20124702
http://dx.doi.org/10.1093/nar/gku1028
http://www.ncbi.nlm.nih.gov/pubmed/25352545
http://dx.doi.org/10.1016/S0163-7258(00)00097-8
http://dx.doi.org/10.1007/s10126-008-9145-2
http://www.ncbi.nlm.nih.gov/pubmed/18814017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Biochemical Characterization of Recombinant BpNDT 
	Substrate Specificity 
	Structural Analysis of BpNDT 
	Active Site of BpNDT 
	Enzymatic Production of Nucleoside Analogues 

	Discussion 
	Materials and Methods 
	Chemicals 
	Cloning, Sequencing and Tagging of BpNDT 
	Production and Purification of Recombinant His-Tag BpNDT 
	Site Directed Mutagenesis of His-tag BpNDT 
	N-Deoxyribosyltransferase Assay 
	Thermal Inactivation Studies 
	Effect of Ionic Strength and Cations on Enzyme Activity 
	Analytical Ultracentrifugation Analysis 
	Enzyme Crystallization and Data Collection 
	Structure Solution and Refinement 
	Spectroscopic Studies 
	Differential Scanning Calorimetry Studies 
	Kinetic Studies 
	Accession Number 

	Conclusions 
	References

