Supplementary Materials: Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

Jinfan Yang ^{1,*}, Guangyi Li ², Lulu Zhang ¹ and Sufeng Zhang ^{2,*}

2. Results and Discussion

2.1. Catalyst Characterizations

Figure S1. HRTEM images of GC400 (a) and AC400 (b).

Catalyst	Total acid density (mmol·g ⁻¹)		-SO3H ^b	-COOH ^a	-OH ^a
	NH ₃ adsorption	Titration ^a	(mmoi·g ⁻)	$(\text{mmol}\cdot\text{g}^{-})$	(mmol·g ⁻)
GC400	1.1	1.22	0.66	0.15	0.41
AC400	0.44	0.46	0.21	0.03	0.22

Table S1. Acid amount of different functional groups on two samples

^a Determined by BOEHM titration method. ^b Determined by elemental analysis.

BOEHM Titration

The overall amount of -SO₃H, -COOH and phenolic -OH sites on the surface of the catalyst was measured. To do this, 0.1 g catalyst was dispersed into 30 mL 4 mmol·L⁻¹ NaOH solution, sonicated for 1.5 h and then centrifuged. The resulting filtrate was titrated with 1 mmol·L⁻¹ potassium hydrogenphthalate solution using phenolphthalein as indicator. The molar amount of phenolic -OH sites per gram of catalyst was calculated by subtracting the total amount of -SO₃H and -COOH sites per gram of catalyst from the overall amount of -SO₃H, -COOH and phenolic -OH sites per gram of catalyst from the overall amount of -SO₃H, -COOH and phenolic -OH sites per gram of catalyst from the overall amount of -SO₃H, -COOH and phenolic -OH sites per gram of catalyst.

The total amount of -SO3H and -COOH sites on the surface of the catalyst was measured as follows. 0.1 g catalyst was dispersed into 30 mL 4 mmol·L⁻¹ NaHCO₃ solution, sonicated for 1.5 h and then centrifuged. The liquid as obtained was titrated with 0.1 mol·L⁻¹ HCl (precalibrated by a standard NaOH solution) using methyl orange as indicator. The molar amount of -COOH sites per gram of catalyst was calculated by subtracting the molar amount of -SO₃H sites per gram of catalyst from the total amount of -SO₃H and -COOH sites per gram of catalyst.

Figure S2. The behavior of GC400 (a) and AC400 (b) in contact with n-butanol.

Figure S3. NH₃-TPD results of GC400 and unsulfonated GC400.

2.2. Esterification Activity over Two Sulfonated Carbon Materials

Figure S4. HPLC chromatograms of the liquid products from the esterification of LA and n-butanol over GC400 (a) and AC400 (b). Reaction conditions: 0.16 g LA, 3.7 g n-butanol and 0.16 g catalyst; 373 K, 4 h.

Figure S5. Conversions of LA catalyzed by different liquid acids. Reaction conditions: 1.16 g LA, 3.7 g n-butanol and 1.16 g catalyst, 333 K, 4 h. The concentrations of the acid solutions are 20 wt%.

Figure S6. Conversions of LA catalyzed by different concentrations of H2SO4 solution. Reaction conditions: 1.16 g LA, 3.7 g n-butanol and 1.16 g catalyst, 333 K, 4 h.

Figure S7. Conversions of LA over GC400 and AC400 when identical amounts of –SO3H sites in reaction mixture were utilized. Reaction conditions: 1.16 g LA, 3.7 g n-butanol, 0.0232 g GC400 or 0.063 g AC400, 373 K, 2 h.

Figure S8. Effect of stirrer speed (**a**) and particle size (**b**) on esterification of LA over AC400. Reaction conditions: a. 1.16 g LA, 0.116 g catalyst (>200 mesh), 373 K, 4 h; b.1.16 g LA, 3.7 g n-butanol, 0.116 g catalyst, 200rpm, 373 K, 4 h.

2.5. Comparison with Other Typical Solid Acids

Figure S9. Conversions of LA over GC400 and Nafion-212 as the function of reaction time. Reaction conditions: 1.16 g LA, 3.7 g n-butanol and 0.058 g catalyst, 373 K.

3. Materials and Methods

3.1. Catalyst Preparation

Figure S10. SEM images of GC400 sample.