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Abstract: In this work, an efficient and green lipase-mediated technique has been mined for the
amidation of anilines with 1,3-diketones via C–C bond cleavage. Under the optimal conditions,
high yields (64.3%–96.2%) could be obtained when Novozym 435 was used as the catalyst.
Furthermore, Novozym 435 exhibited a satisfying reusability and more than 80% of yield can be
obtained after seven cycles. This work provides a more rapid and mild strategy for amide synthesis
with high yield and expands the application of enzyme in organic synthesis.
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1. Introduction

As a fundamental reaction in organic synthesis, the formation of amides is used in the production
of a broad range of bulk commodities, high-value fine chemicals, agrochemicals, and pharmaceuticals,
etc. [1–3]. Up to now, various methods have been used for this purpose, including amidation using
carboxylic acids or their derivatives as acyl donors, the transition-metal-catalyzed amidation of aryl
halides or nitriles with nitrogen-containing reagents, and the amidation between alcohols or aldehydes
with amines by oxidative coupling [4–7]. However, most of these methods suffer from unstable
substrates, the use of transition metals, expensive reagents, or extreme reaction conditions. To overcome
these problems, more efficient and mild methods for the synthesis of amides are urgently needed.
Biocatalysis is a green and sustainable technique that can answer this need well. Some methods for the
acylation of amines catalyzed by enzyme (lipase, protease, amidase, penicillin G acylase, etc.) have
been developed by utilizing carboxylic acids, anhydrides, or esters as acyl donors [8–13]. Nevertheless,
one of the main drawbacks of enzymatic synthesis of amides is the low reaction rate, which seriously
limits its industrial applications.

1,3-Diketones, the inexpensive and widely available starting chemicals in organic synthesis, have
been employed as novel acylation agents for synthesizing esters or amides and have received much
attention in the last decade [14–18]. Several research groups have realized the transformations of
1,3-diketones to amides via C–C bond cleavage (Scheme 1a) [19–21]. Due to the importance of the
novel oxidative amidation, it is still a fascinating theme for researchers in organic synthesis.

Recently, research has shown that lipase can catalyze the in situ generation of peracids by
the perhydrolysis of carboxylic acids or esters [22–24]. This process is a representative case of
enzyme catalytic promiscuity, which indicates the capability of an enzyme to catalyze chemical
reactions different from its physiological reactions [25–27]. The in situ generated peracids from
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the lipase-catalyzed perhydrolysis have been successfully utilized in Baeyer–Villiger reactions,
the epoxidation of alkenes, and the oxidation of amines [28–33]. In this study, we designed a new
strategy for the lipase-mediated amidation of anilines with 1,3-diketones via C–C bond cleavage
(Scheme 1b). This mild method can afford excellent yields of amides in a shorter reaction time (1 h)
under room temperature (R.T.) than the results from the reported literature (Scheme 1a). Moreover,
compared with traditional amide synthesis catalyzed by lipase using carboxylic acids, anhydrides, or
esters as acyl donors reported so far [8–10], lipase-mediated oxidative amidation presents the highest
catalytic efficiency—even at room temperature. To the best of our knowledge, no other reports have
presented the lipase-mediated oxidative formation of amides.
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Scheme 1. Amidation of anilines with 1,3-diketones as acyl donors.

2. Results and Discussion

Initially, aniline (1a) and acetylacetone (2a) were selected as model substrates for the oxidative
formation of acetanilide (3aa). Generally, hydrogen peroxide (H2O2) is a simple and mild oxidant
in enzymatic oxidations. However, the enzyme is unstable for its sensitivity to high concentrations
of H2O2 [34,35]. Many papers have reported the stabilization of lipases versus hydrogen peroxide
inactivation (via genetic tools, immobilization, chemical modification, etc.) [36–38]. According to
previous lipase-mediated oxidations, urea hydrogen peroxide (UHP) was selected for its ability to
generate the oxidant in a controlled manner and avoid the inactivition of lipase [39,40]. Thus, we
adapted UHP as the oxidizing agent for the perhydrolysis of ethyl acetate (EA) to generate peracid
in this study. Several lipases of different origin were used to catalyze the reaction, and the
results are summarized in Table 1. It could be observed that ANL, CalB, APE1547, and Novozym
435 (a commercial immobilized CalB) can catalyze this reaction (Entries 1–4). Among these used
lipases, CalB and Novozym 435, which are supplied by Novozymes, are the widly used lipase in
biocatalysis [41]. Considering the relatively inexpensive price, CalB and Novozym 435 are more
attractive in this lipase-mediated amidation. However, BSL2 and CSL exhibited no activity for the
synthesis of acetanilide (Entries 5 and 6). When the denatured Novozym 435 was used as the catalyst
(Entry 7), we found a similar result to that obtained from the control (Entry 9), which indicated that a
special spatial conformation of enzyme plays an important role in this reaction. As for the oxidant, the
oxidative amidation could not occur when UHP was absent in this reaction (Entry 8). It was noteworthy
that the 92.5% yield of the oxidative amidation mediated by Novozym 435 could be obtained in 1 h,
which indicated that this green and efficient means has great potential in industrial production.

An appropriate reaction medium is one of the influencing factors on the catalytic performance and
stability of enzyme. Thus, six solvents were investigated for this lipase-mediated amidation, and the
results are shown in Figure 1. Compared with other solvents, the high yield (>90%) could be observed
while acetonitrile or water was used in this reaction. Generally, the substitution of hazardous solvents
with more environmentally friendly alternatives is a major purpose for green organic synthesis [42,43].



Catalysts 2017, 7, 115 3 of 9

It is also interesting that almost no hydrolysis of amide was induced in the short reaction time on the
basis of high yield of acetanilide when water was used as the solvent. Thus, considering acetonitrile is
more toxic, we chose water as the solvent, which fulfilled our main goal of exploiting a green protocol
for the synthesis of amides.

Table 1. Lipase-mediated synthesis of acetanilide (3aa) from aniline (1a) and pentane-2,4-dione (2a) [a].

Entry Enzyme Yield [b] (%)

1 ANL (Lipase from Aspergillus niger) 64.2 ± 1.9
2 CalB (Candida antarctica lipase B) 87.6 ± 2.2
3 APE1547 (Aeropyrum pernix esterase) 79.3 ± 1.4
4 Novozym 435 92.5 ± 1.5
5 BSL2 (Bacillus subtilis lipase) ND [d]

6 CSL (Lipase from Candida sp. 99–125) ND [d]

7 denatured Novozym 435 [c] ND [d]

8 No UHP ND [d]

9 Control ND [d]

[a] Reaction conditions: 1a (1 mmol), 2a (1 mmol), H2O (2 mL), UHP (1.2 mmol), EA (0.2 mL), enzyme (150 U),
room temperature, 1 h; [b] isolated yield; [c] Pretreated Novozym 435 by heating it for 1 h in boiling water; [d] ND:
not detected.
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Figure 1. Effect of reaction medium on the oxidative formation of acetanilide (3aa). Reaction conditions:
1a (1 mmol), 2a (1 mmol), solvent (2 mL), UHP (1.2 mmol), EA (0.2 mL), Novozym 435 (150 U), room
temperature, 1 h. THF: tetrahydrofuran; DMSO: dimethyl sulfoxide; DMF: dimethylformamide.

The effects of enzyme dosage and oxidant loading were studied (Table 2). It was found that a high
dosage of Novozym 435 could enhance the yield of acetanilide (3aa). A more than linear increment
from 50 to 100 U was observed, which indicated that the peracid must reach a certain concentration
to afford the product. However, the yield could not be improved by further increasing the dosage of
Novozym 435 (>150 U). Therefore, 150 U of Novozym 435 turned out to be sufficient in this oxidative
amidation. With respect to the oxidant loading, the yield of amide increased as the oxidant loading was
elevated from 1 to 1.2 equiv, and the yield changed slightly at higher oxidant loadings. In this work,
EA was used as the substrate of enzyme to generate peroxyacetic acid in situ. Therefore, the amount of
EA has also been investigated (data not shown here). It was found that a lower amount of EA resulted
in a longer reaction time to obtain a high yield. More peracid could be generated by increasing the
amount of EA and that may help to increase the yield of amide. EA with a concentration of 10%v/v
was sufficient for this reaction.
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Table 2. Optimization of enzyme dosage and oxidant loading for the synthesis of acetanilide (3aa).

Entry Enzyme Dosage (U) Oxidant Loading (Equiv.) Yield (%)

1 50 1 11.8 ± 1.3
2 100 1 64.5 ± 2.1
3 150 1 81.1 ± 1.8
4 180 1 82.6 ± 2.2
5 200 1 84.7 ± 1.1
6 150 1.2 92.5 ± 1.5
7 150 1.4 93.7 ± 0.7

Reaction conditions: 1a (1 mmol), 2a (1 mmol), H2O (2 mL), EA (0.2 mL), room temperature, 1 h.

It is known that immobilization can improve the stability of enzyme and increase its reusability,
which makes the enzymatic reaction economically viable [44–46]. In this work, the reusability of
Novozym 435 was studied. It can be seen in Figure 2 that the yield of this reaction slightly decreased
as the number of reaction cycles increased and that a yield of more than 80% can be obtained even after
seven cycles. The lost of enzyme activity is probably due to the leakage of enzyme from the support or
the deactivation of enzyme by the peracid during the amidation [47–50].
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Figure 2. The reusability of Novozym 435 Reaction conditions: 1a (1 mmol), 2a (1 mmol), H2O (2 mL),
UHP (1.2 mmol), EA (0.2 mL), Novozym 435 (150 U), room temperature, 1 h.

Various anilines were selected to be acylated by different 1,3-diketones via C–C bond cleavage to
evaluate the scope of this protocol. Table 3 shows that all the selected 1,3-diketones (2a–2d) can react
with aniline and afford the desired amides in good yields (76.6%–92.5%). The less sterically hindered
1,3-diketones (2a and 2b) can react more easily with aniline than Compound 2c. When Compound 2d
was employed, the acetylation product could be obtained with only an 87.4% yield. For the substrate
of aryl amines (Table 4), anilines containing electronic donating groups (1b–1g) can afford higher
yields than anilines bearing electron withdrawing groups (1h–1p). Furthermore, no reaction could be
observed with strong electron withdrawing groups (1r and 1s) or hindered group (1t) present at the
ortho position of anilines.
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Table 3. Amidation of aniline (1a) with various 1,3-diketones as the acyl donor.
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A possible reaction pathway for this lipase-mediated amidation was proposed (Scheme 2). At first,
the substrate 2a was deprotonated by lipase to form an enolate ion. Next, another substrate aniline 1a
connected the enolate ion to obtain an intermediate 4aa (enaminone). Then, the enaminone could be
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epoxidize by peroxyacetic acid which was in situ generated by lipase, followed by its reaction with
water, leading to 5aa. Finally, a rearrangement of the intermediate 5aa was made to produce acetanilide
3aa. To confirm the proposed reaction mechanism, control experiments were designed (data not shown
here). We carried out the enamination of acetylacetone (2a) with aniline (1a) at room temperature for
0.5 h and obtained the corresponding enaminone (4aa) with a 93% yield. Then, the purified enaminone
(4aa) could be oxidized by the commercial peroxyacetic acid to produce acetanilide (3aa) in 15 min with
a high yield (97%). These experimental results verified our hypothesized mechanism to some extent.
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3. Materials and Methods

3.1. Materials

Lipase from Aspergillus niger (53,000 U/g), Candida antarctica lipase B (CalB, 10,000 U/mL), and
Novozym 435 (15,000 U/g) were purchased from Sigma (Beijing, China). Lipase from Candida sp.
99–125 (CSL, 7500 U/g) was purchased from Beijing CTA New Century Biotechnology Co., Ltd.
(Beijing, China). Bacillus subtilis lipase (BSL2, 3600 U/g) was expressed from a homely constructed
Bacillus subtilis strain BSL2 [51]. Aeropyrum pernix esterase (APE1547, 5500 U/g) was expressed from
a hyperthermophilic archaeon strain [52]. One unit (U) of enzyme activity was defined as the amount
of enzyme that hydrolyzes 1 µmol of 4-nitrophenyl acetate per min at 30 ◦C. All the enzymes were
used after lyophilization for the lipase-mediated amidation directly. The chemical reagents were of
analytical reagent grade and purchased from Shanghai Chemical Reagent Co., Ltd. (Shanghai, China).
NMR spectra were taken with an Inova 500 (500 MHz) spectrometer.

3.2. General Procedure of the Lipase-Mediated Oxidative Formation of Amides

A mixture of substituted aniline (1 mmol), 1,3-diketone (1 mmol), Novozym 435 (150 U),
EA (0.2 mL), and UHP (1.2 mmol) in water (2 mL) was shaken (200 rpm) at room temperature
in a round-bottom flask for 1 h. The reaction mixture was extracted twice by ethyl acetate. The organic
layers were combined, dried over sodium sulfate, and concentrated to obtain the crude amide, which
was further purified by column chromatography (ethyl acetate/hexane) on silica gel to yield the pure
product. Each experiment was performed triplicate, and all the obtained data were based on the
average values.

4. Conclusions

In this work, we have communicated a green and efficient method for the amidation of anilines
with 1,3-diketones via C–C bond cleavage. This lipase-mediated amidation can proceed more rapidly
(1 h) in water with high yields (64.3%–96.2%) under room temperature than the traditional amidations
catalyzed by Novozym 435 and the reported amidations via C–C bond cleavage. Furthermore,
Novozym 435 can be reutilized for seven cycles and retain its high catalytic performance. The strategy
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described herein provides a new case for enzyme catalytic promiscuity which can contribute to the
progress of novel synthetic methodology and green technology.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/4/115/s1.
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