Roghayeh Sadeghi Erami, Diana Díaz-García, Sanjiv Prashar, Antonio Rodríguez-Diéguez, Mariano Fajardo, Mehdi Amirnasr and Santiago Gómez-Ruiz

Final Material	Theoretical Pd (wt %)	G-COOH (g)	Pd (mg)	[PdCl2(cod)] (mg)	Experimental Pd wt %)
G-COOH-Pd-5	5	1.0	52.6	141.2	3.06
G-COOH-Pd-10	10	1.0	111.1	298.1	7.93
G-COOH-Pd-15	15	1.0	176.4	473.4	11.20

Table S1. Experimental quantities of reagents for the Pd loading study.

Table S2. Adsorptive parameters of the materials G-COOH and G-COOH-Pd-10.

Material	BET surface area (m²/g)	BJH Adsorption cumulative surface area of pores (m²/g)	BJH Desorption cumulative surface area of pores (m²/g)	BJH Adsorption cumulative volume of pores (cm ³ /g)	BJH Desorption cumulative volume of pores (cm³/g)
G-COOH	7.7	4.874	7.286	0.0350	0.0357
G-COOH-Pd-10	4.1	3.838	6.167	0.0383	0.0385

Figure S1. TEM image of G-COOH showing the single layer of graphene.

Figure S2. TEM image of a cluster of agglomerated Pd nanoparticles.

Figure S3. TEM image showing the impregnation of a cluster of Pd nanoparticles at the edge of the graphene layer.

Figure S5. Nitrogen adsorption desorption isotherm of G-COOH.

Figure S6. XRD of the material G-COOH-Pd-10

Figure S7. Comparison of the ¹⁹F NMR spectra of the reaction between 1-bromo-4-fluorobenzene and phenylboronic acid catalyzed by G-COOH-Pd-10 in the presence of a constant quantity of standard (4-fluorobenzophenone) at different reaction time periods.

Figure S8. ¹⁹F NMR spectrum of the starting solution of 1-bromo-4-fluorobenzene in the presence of a constant quantity of standard (4-fluorobenzophenone) (0 hours).

Figure S9. ¹⁹F NMR spectrum of the reaction between 1-bromo-4-fluorobenzene and phenylboronic acid catalyzed by G-COOH-Pd-10 after three hours of reaction in the presence of a constant quantity of standard (4-fluorobenzophenone).

Figure S10. ¹⁹F NMR spectrum of the reaction between 1-bromo-4-fluorobenzene and phenylboronic acid catalyzed by G-COOH-Pd-10 after eight hours of reaction in the presence of a constant quantity of standard (4-fluorobenzophenone).

Figure S11. ¹⁹F NMR spectrum of the reaction between 1-bromo-4-fluorobenzene and phenylboronic acid catalyzed by G-COOH-Pd-10 after 24 hours of reaction in the presence of a constant quantity of standard (4-fluorobenzophenone).

Figure S12. ¹⁹F NMR spectrum of the reaction between 1-bromo-4-fluorobenzene and phenylboronic acid catalyzed by G-COOH-Pd-10 after 48 hours of reaction in the presence of a constant quantity of standard (4-fluorobenzophenone).

Figure S13. Comparison of the ¹⁹F NMR spectra of the reaction between 1-bromo-2-fluorobenzene and 4-fluorophenylboronic acid catalyzed by G-COOH-Pd-10 in the presence of a constant quantity of standard (4-fluorobenzophenone) at different reaction time periods.

Spectroscopic Data (1H and 19F NMR) of all the Synthesized Fluorinated Biaryl Derivatives

The spectroscopic data found for this compound are the same tan those found in the literature [1]. In addition, it is a commercial compound with CAS Number: 324-74-3. ¹H NMR (400 MHz, CDCl₃) δ: 7.60–7.54 (m, 4H, H2 and H3), 7.50–7.34 (m, 3H, H4, and H5), 7.20–7.12 (m, 2H, H1). ¹⁹F NMR (376 MHz, CDCl₃) δ: –116.2 (m).

The spectroscopic data found for this compound are the same than those found in the literature [2]. ¹H NMR (400 MHz, CDCl₃) δ: 7.53–7.47 (m, 6 H, H2, H3, and H4), 7.15–7.10 (m, 2 H, H1), 6.75 (dd, *J* = 10.8, 17.6 Hz, 1 H, H5), 5.80 (d, J = 17.6 Hz, 1 H, H6), 5.28 (d, J = 11.6 Hz, 1 H, H6). ¹⁹F NMR (376 MHz, CD₃COCD₃): –112.2 (m).

The spectroscopic data found for this compound are the same than those found in the literature [3]. In addition, it is a commercial compound with CAS Number: 5731-10-2. ¹H NMR (400 MHz, CDCl₃): 7.30 (t, 2H, J = 9.0 Hz, H1), 7.76 (m, 4H, H2, and H3), 7.99 (d, 2H, J = 8.8 Hz, H4), 12.94 (1H, br s). ¹⁹F NMR (376 MHz, CD₃COCD₃): -112.4 (m).

The spectroscopic data found for this compound are the same tan those found in the literature [4]. In addition, it is a commercial compound with CAS Number: 398-23-2. ¹H NMR (400 MHz, CDCl₃): 7.13 (t, 4H, J = 9 Hz, H1), 7.48 (dd, 4H, J = 9 and 5 Hz, H2). ¹⁹F NMR (376 MHz, CD₃COCD₃): -112.3 (m).

The spectroscopic data found for this compound are the same tan those found in the literature [5]. ¹H NMR (400 MHz, CDCl₃): δ = 7.20 (m, 1H, H1), 7.37 (m, 1H, H2), 7.25 (m, 1H, H3), 7.45 (d, 1H, H4), 7.57 (m, 2H, H5), 7.18 (m, 2H, H6). ¹⁹F NMR (376 MHz, CD₃COCD₃): –111.1 (m), –114.8 (m).

The spectroscopic data found for this compound are the same tan those found in the literature [6]. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, 2H, *J* = 8.5, 5.0 Hz, H5, and H8), 7.38 (td, 1H, *J* = 8.0, 6.0 Hz, H3), 7.31 (d,1H, *J* = 7.5 Hz, H4), 7.23 (dt, 1H, *J* = 10.0, 3.5 Hz, H2), 7.13 (t,2H, *J* = 8.5 Hz, H6 and H7), 7.03 (td, 1H, *J* = 10.0, 2.5 Hz, H1). ¹⁹F NMR (376 MHz, CD₃COCD₃): -109.3 (m), -111.4 (m).

¹H NMR (400 MHz, CDCl₃) δ 7.26–7.21 (m, 2H, H2), 7.16–7.13 (m, 1H, H3), 7.11–7.06 (m, 2H, H1), 6.98–6.89 (m, 2H, H4, and H5), 2.22 (s, 3H, methyl group (6)). ¹⁹F NMR (376 MHz, CD₃COCD₃): –112.3 (m), –112.5 (m).

¹H NMR (400 MHz, CD₃COCD₃) δ 7.41–7.34 (m, 2H, H2), 7.26–7.18 (m, 2H, H3 and H4), 7.12–7.01 (m, 2H, H1), 6.94–6.99 (dd, 1H, H5), 2.20 (s, 3H, Methyl group (6)). ¹⁹F NMR (376 MHz, CD₃COCD₃): –111.8 (m), –114.5 (m).

References

- Furuya, T.; Kaiser, H. M.; Ritter, T. Palladium-Mediated Fluorination of Arylboronic Acids. *Angew. Chem. Int. Ed.* 2008, 47, 5993–5996.
- 2. Liu, Y.; Wang, J. Synthesis of 4-Substituted Styrene Compounds via Palladium-Catalyzed Suzuki Coupling Reaction Using Free Phosphine Ligand in Air. *Synthetic Communications*, **2010**, *40*, 196–205.
- 3. Li, X.; Abell, C.; Ladlow, M. A Novel Anthracenyl Tagged Protecting Group for "Phase-Switching" Applications in Parallel Synthesis. J. Org. Chem. 2003, 68, 4189–4194.
- Kude, K.; Hayase, S.; Kawatsura, M.; Itoh, T. Iron-Catalyzed Quick Homocoupling Reaction of Aryl or Alkynyl Grignard Reagents Using a Phosphonium Ionic Liquid Solvent System. *Heteroatom Chem.* 2010, 22, 397–404.
- Kurscheid, B.; Belkoura, L.; Hoge, B. Air-Stable and Catalytically Active Phosphinous Acid Transition-Metal Complexes. *Organometallics* 2012, *31*, 1329–1334.
- 6. Wang, Z.-Y.; Ma, Q.-M.; Lia, R.-H.; Shao, L.-X. Palladium-catalyzed Suzuki-Miyaura coupling of aryl sulfamates with arylboronic acids. *Org. Biomol. Chem.* **2013**, *11*, 7899–7906.